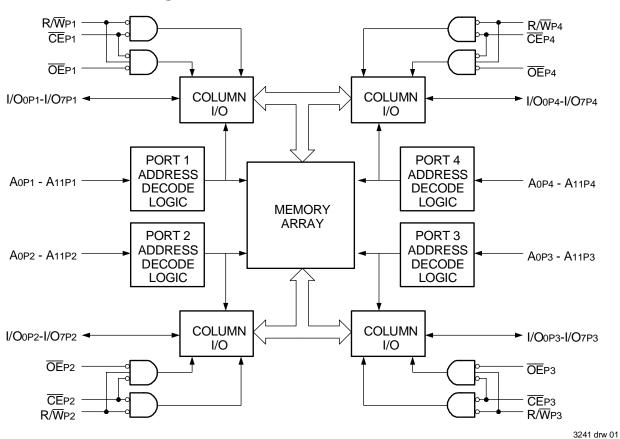
HIGH-SPEED 4K x 8 FourPort™ STATIC RAM

Features

High-speed access


- Commercial: 20/25/35ns (max.)
- Industrial: 25ns (max.)
- Military: 25/35ns (max.)
- Low-power operation
 - IDT7054S
 Active: 750mW (typ.)
 Standby: 7.5mW (typ.)
 - IDT7054L Active: 750mW (typ.) Standby: 1.5mW (typ.)
- True FourPort memory cells which allow simultaneous access of the same memory locations
- Fully asynchronous operation from each of the four ports: P1, P2, P3, and P4

- TTL-compatible; single 5V (±10%) power supply
- Available in 128 pin Thin Quad Flatpack and 108 pin PGA packages
- Industrial temperature range (-40°C to +85°C) is available for selected speeds

Description

The IDT7054 is a high-speed 4K x 8 FourPort[™] Static RAM designed to be used in systems where multiple access into a common RAM is required. This FourPort Static RAM offers increased system performance in multiprocessor systems that have a need to communicate in real time and also offers added benefit for high-speed systems in which multiple access is required in the same cycle.

The IDT7054 is also designed to be used in systems where on-chip hardware port arbitration is not needed. This part lends itself to those systems which cannot tolerate wait states or are designed to be able to

JANUARY 2009

Functional Block Diagram

IDT7054S/L

High-Speed 4K x 8 FourPort[™] Static RAM

Military, Industrial and Commercial Temperature Ranges

externally arbitrated or withstand contention when all ports simultaneously access the same FourPort RAM location.

The IDT7054 provides four independent ports with separate control, address, and I/O pins that permit independent, asynchronous access for reads or writes to any location in memory. It is the user's responsibility to ensure data integrity when simultaneously accessing the same memory location from all ports. An automatic power down feature, controlled by \overline{CE} , permits the on-chip circuitry of each port to enter a very low power standby power mode.

Fabricated using IDT's CMOS high-performance technology, this FourPort SRAM typically operates on only 750mW of power. Low-power (L) versions offer battery backup data retention capability, with each port typically consuming 50μ W from a 2V battery.

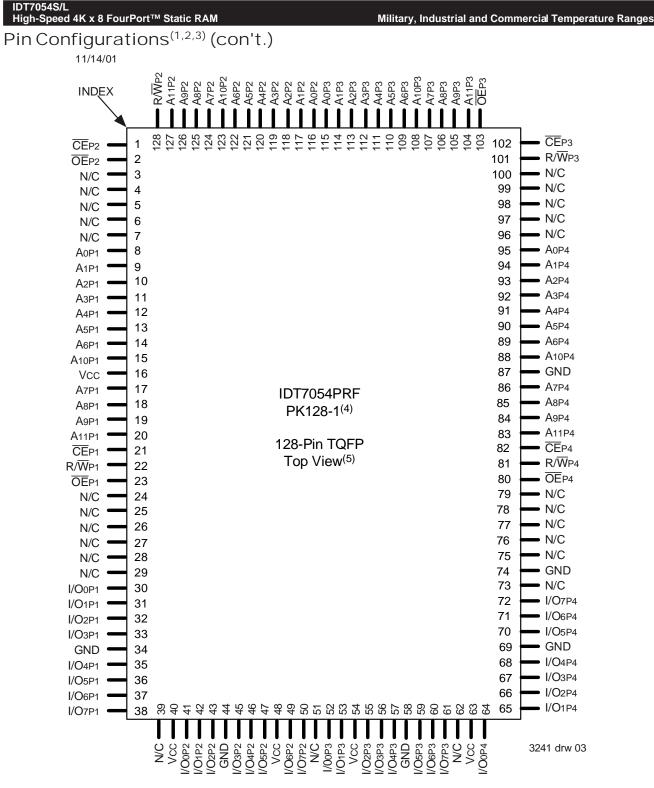
The IDT7054 is packaged in a ceramic 108-pin Pin Grid Array (PGA) and a 128-pin Thin Quad Flatpack (TQFP). The military grade product is manufactured in compliance with the latest revision of MIL-PRF-38535 QML, making it ideally suited to military temperature applications demanding the highest level of performance and reliability.

Pin Configurations^(1,2,3)

11/14/01

81	80	77	74	72	69	68	65	63	60	57	54]
R/W P2	A11 P2	A7 P2	A₅ P2	A3 P2	Ao P2	Ao P3	Аз РЗ	A₅ P3	A7 P3	A11 P3	R/W P3	1
⁸⁴ NC	83 OE P2	78 A8 P2	76 A10 P2	73 A4 P2	70 A1 P2	67 A1 P3	64 A4 P3	61 A10 P3	59 A8 P3	56 OE P3	53 NC	1
87 A2 P1	86 A1 P1	82 CE P2	79 A9 P2	75 A6 P2	71 A2 P2	66 A2 P3	62 A6 P3	58 A9 P3	55 CE P3	51 A1 P4	50 A2 P4	1
90 A5 P1	⁸⁸ Аз Р1	85 A0 P1		I	1	1	1	I	52 A0 P4	49 A3 P4	47 A5 P4	0
92 A10 P1	91 A6 P1	89 A4 P1							48 A4 P4	46 A6 P4	45 A10 P4	0
95 A8 P1	94 A7 P1	93 VCC				054G 8-1 ⁽⁴⁾			44 GND	43 A7 P4	42 A8 P4	0
96 A9 P1	97 A11 P1	98 CE P1				in PGA /iew ⁽⁵⁾			³⁹ CE P4	40 A11 P4	41 A9 P4	0
99 R/W P1	100 OE P1	102 I/O0 P1							35 GND	37 0E P4	³⁸ R/W P4	0
101 NC	103 I/O1 P1	106 GND							31 GND	³⁴ I/O7 P4	36 NC	0
¹⁰⁴ I/O2 P1	105 I/O3 P1	1 I/O6 P1	⁴ Vcc	8 GND	12 Vcc	17 Vcc	21 GND	25 Vcc	²⁸ I/O2 P4	³² I/O5 P4	33 I/O6 P4	0
107 I/O4 P1	2 I/O7 P1	5 I/O0 P2	7 I/O2 P2	10 I/O4 P2	13 I/O6 P2	¹⁶ I/O1 P3	19 I/O3 P3	22 I/O5 P3	24 I/O7 P3	29 I/O3 P4	30 I/O4 P4	0
108 I/O5 P1	³ NC	6 I/O1 P2	9 I/O3 P2	11 I/O5 P2	14 I/O7 P2	15 I/O0 P3	18 I/O2 P3	20 I/O4 P3	23 I/O6 P3	26 I/O0 P4	27 I/O1 P4	0
												-

NOTES:


1. All Vcc pins must be connected to the power supply.

2. All GND pins must be connected to the ground supply.

3. Package body is approximately 1.21 in x 1.21 in x .16 in.

4. This package code is used to reference the package diagram.

5. This text does not indicate orientation of the actual part-marking.

NOTES:

- 1. All Vcc pins must be connected to the power supply.
- 2. All GND pins must be connected to the ground supply.
- 3. Package body is approximately 14mm x 20mm x 1.4mm.
- 4. This package code is used to reference the package diagram.
- 5. This text does not indicate orientation of the actual part-marking.

IDT7054S/L

High-Speed 4K x 8 FourPort[™] Static RAM

Pin Configurations^(1,2)

Military, Industrial and Commercial Temperature Ranges

Capacitance⁽¹⁾ (TA = +25°C, f = 1.0MHz) TQFP ONLY

Symbol	Parameter	Conditions ⁽²⁾	Мах.	Unit
Cin	Input Capacitance	VIN = OV	9	pF
Соит	Output Capacitance	Vout = 0V	10	pF
NOTEC				3241 tbl 03

NOTES:

1. This parameter is determined by device characterization but is not production tested.

3dV references the interpolated capacitance when the input and the output signals switch from 0V to 3V or from 3V to 0V.

Maximum Operating Temperature and Supply Voltage⁽¹⁾

Grade	Ambient Temperature	GND	Vcc
Military	-55°C to +125°C	0V	5.0V <u>+</u> 10%
Commercial	0°C to +70°C	0V	5.0V <u>+</u> 10%
Industrial	-40°C to +85°C	0V	5.0V <u>+</u> 10%
			3241 tbl 04

NOTES:

1. This is the parameter TA. This is the "instant on" case temperature.

Symbol	Rating	Commercial & Industrial	Military	Unit
Vterm ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +7.0	-0.5 to +7.0	V
Tbias	Temperature Under Bias	-55 to +125	-65 to +135	٥C
Tstg	Storage Temperature	-65 to +150	-65 to +150	٥C
Ιουτ	DC Output Current	50	50	mA

NOTES:

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. VTERM must not exceed Vcc + 10% for more than 25% of the cycle time or 10ns maximum, and is limited to \leq 20mA for the period of VTERM \geq Vcc + 10%.

NOTES:

1. All Vcc pins must be connected to the power supply.

2. All GND pins must be connected to the ground supply.

Recommended DC Operating Conditions

Symbol	Parameter	Min.	Тур.	Мах.	Unit
Vcc	Supply Voltage	4.5	5.0	5.5	۷
GND	Ground	0	0	0	V
V⊪	Input High Voltage	2.2		6.0 ⁽²⁾	V
Vil	Input Low Voltage	-0.5 ⁽¹⁾		0.8	V
NOTEO					3241 tbl 02

NOTES:

1. VIL \geq -1.5V for pulse width less than 10ns.

2. VTERM must not exceed Vcc + 10%.

IDT7054S/L High-Speed 4K x 8 FourPort™ Static RAM

Military, Industrial and Commercial Temperature Ranges

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range^(1,5) (Vcc = 5.0V ± 10%)

						4X20 I Only	Com	IX25 I, Ind litary	Con	4X35 n'I & tary	
Symbol	Parameter	Condition	Versi	on	TYP. ⁽²⁾	Max.	TYP. ⁽²⁾	Мах.	TYP. ⁽²⁾	Max.	Unit
ICC1	Operating Power Supply Current	$\overline{CE} = VIL$ Outputs Disabled $f = 0^{(3)}$	COM'L.	S L	150 150	300 250	150 150	300 250	150 150	300 250	mA
	(All Ports Active)	$I = 0^{\omega_2}$	MIL. & IND.	S L			150 150	360 300	150 150	360 300	mA
ICC2	Current	CE = VIL Outputs Disabled	COM'L.	S L	240 210	370 325	225 195	350 305	210 180	335 290	mA
	(All Ports Active)	$f = f_{MAX}^{(4)}$	MIL. & IND.	S L			225 195	400 340	210 180	395 330	mA
ISB	Standby Current (All Ports - TTL Level	Ports - TTL Level $f = f_{MAX}^{(4)}$	COM'L.	S L	70 60	95 80	60 50	85 70	40 35	75 60	mA
	Inputs)		MIL. & IND.	S L			60 50	115 85	40 35	110 80	mA
ISB1	(All Ports - All	ts - All CE > Vcc - 0.2V	COM'L.	S L	1.5 0.3	15 1.5	1.5 0.3	15 1.5	1.5 0.3	15 1.5	mA
	CMOS Level Inputs)	$V_{IN} \ge V_{CC} - 0.2V \text{ or}$ $V_{IN} \le 0.2V, f = 0^{(3)}$	MIL. & IND.	S L			1.5 0.3	30 4.5	1.5 0.3	30 4.5	mA

3241 tbl 06

NOTES:

1. 'X' in part number indicates power rating (S or L).

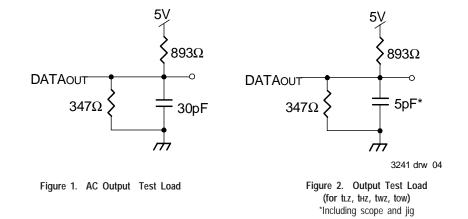
2. Vcc = 5V, TA = +25°C and are not production tested.

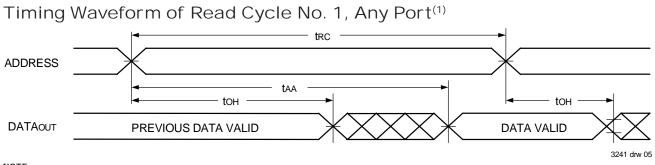
3. f = 0 means no address or control lines change.

4. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency read cycle of 1/tRc, and using "AC Test Conditions" of input levels of GND to 3V.

5. For the case of one port, divide the appropriate current above by four.

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range (Vcc = $5.0V \pm 10\%$)


			7054S		705		
Symbol	Parameter	Test Conditions	Min.	Max.	Min.	Max.	Unit
lu	Input Leakage Current ⁽¹⁾	Vcc = 5.5V, VIN = 0V to Vcc	_	10		5	μA
Ilo	Output Leakage Current	\overline{CE} = VIH, VOUT = 0V to VCC	_	10	_	5	μA
Vol	Output Low Voltage	Iol = 4mA	_	0.4		0.4	V
Vон	Output High Voltage	Iон = -4mA	2.4	_	2.4	-	V


NOTE:

1. At Vcc \leq 2.0V input leakages are undefined.

2674 tbl 07

IDT7054S/L High-Speed 4K x 8 FourPort™ Sta	tic RAM
AC Test Conditions	
Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	3ns Max.
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
Output Load	Figures 1 and 2
	3241 tbl 08

1. $R/\overline{W} = V_{IH}$, $\overline{OE} = V_{IL}$, and $\overline{CE} = V_{IL}$.

Military, Industrial and Commercial Temperature Ranges

AC Electrical Characteristics Over the Operating Temperature and Supply Voltage⁽³⁾

			7054X20 Com'l Only		7054X25 Com'l, Ind & Military		7054X35 Com'l & Military		
Symbol	Parameter	Min. Max.		Min.	Мах.	Min.	Max.	Unit	
READ CYCLE									
trc	Read Cycle Time	20		25		35	_	ns	
taa	Address Access Time		20	-	25		35	ns	
tace	Chip Enable Access Time		20		25	-	35	ns	
taoe	Output Enable Access Time		10		15		25	ns	
toн	Output Hold from Address Change	0	_	0		0		ns	
tLz	Output Low-Z Time ^(1,2)	5	_	5		5		ns	
tHZ	Output High-Z Time ^(1,2)		12		15	-	15	ns	
tPU	Chip Enable to Power Up Time ⁽²⁾	0	1	0		0		ns	
tpd	Chip Disable to Power Down Time ⁽²⁾		20		25		35	ns	

NOTES:

1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2).

2. This parameter is guaranteed by device characterization but is not production tested.

3. 'X' in part number indicates power rating (S or L).

Timing Waveform of Read Cycle No. 2, Any Port^(1, 2) **t**ACE CE **t**AOE tHZ ŌĒ t∟z tHZ VALID DATA DATAOUT t∟z tPU 🛓 tPD Icc CURRENT 50% 50% lsв

3241 drw 06

3241 tbl 09

NOTES:

1. $R/\overline{W} = V_{IH}$ for Read Cycles.

2. Addresses valid prior to or coincident with \overline{CE} transition LOW.

AC Electrical Characteristics Over the Operating Temperature and Supply Voltage⁽⁵⁾

			7054X20 Com'l Only		7054X25 Com'l, Ind & Military		7054X35 Com'l & Military	
Symbol	Parameter	Min. Max.		Min.	Max.	Min.	Max.	Unit
WRITE CYCLI	E							
twc	Write Cycle Time	20		25		35		ns
tew	Chip Enable to End-of-Write	15		20	_	30		ns
taw	Address Valid to End-of-Write	15		20		30		ns
tas	Address Set-up Time	0		0		0		ns
twp	Write Pulse Width ⁽³⁾	15		20	_	30		ns
twr	Write Recovery Time	0		0	_	0	_	ns
tDW	Data Valid to End-of-Write	15		15		20	_	ns
tHZ	Output High-Z Time ^(1,2)	_	15		15		15	ns
tDH	Data Hold Time	0		0		0		ns
twz	Write Enable to Output in High-Z ^(1,2)		12		15		15	ns
tow	Output Active from End-of-Write ^(1,2)	0		0		0		ns
twdd	Write Pulse to Data Delay ⁽⁴⁾	_	35		45		55	ns
todd	Write Data Valid to Read Data Delay ⁽⁴⁾		30		35		45	ns

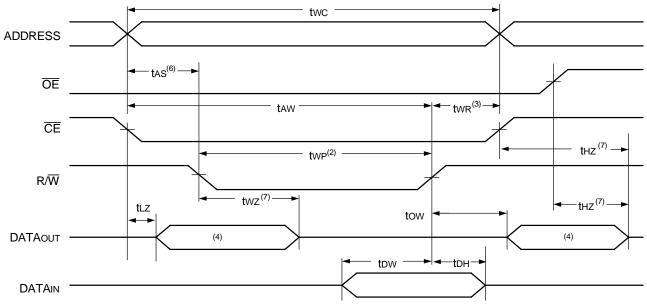
3241 tbl 10

NOTES:

1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2).

2. This parameter is guaranteed by device characterization but is not production tested.

3. If OE = VIL during a RW controlled write cycle, the write pulse width must be the larger of twp or (twz + tow) to allow the I/O drivers to turn off data to be placed on the bus for the required tow. If OE = VIH during an RW controlled write cycle, this requirement does not apply and the write pulse can be as short as the specified twp. Specified for OE = VIH (refer to "Timing Waveform of Write Cycle", Note 8).


4. Port-to-port delay through RAM cells from writing port to reading port, refer to "Timing Waveform of Write with Port-to-Port Read".

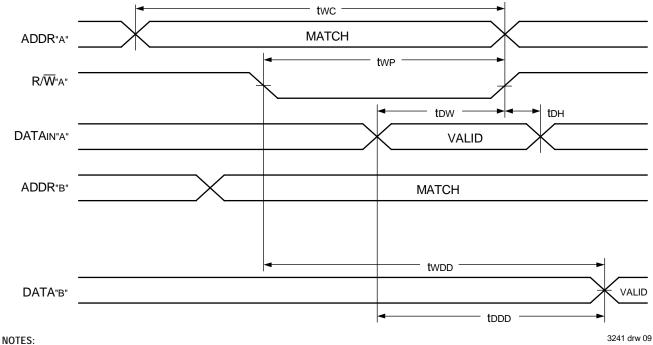
5. 'X' in part number indicates power rating.

IDT7054S/L High-Speed 4K x 8 FourPort™ Static RAM

Military, Industrial and Commercial Temperature Ranges

Timing Waveform of Write Cycle No. 1, R/W Controlled Timing^(5,8)

3241 drw 07


Timing Waveform of Write Cycle No. 2, **CE** Controlled Timing^(1,5)

NOTES:

- 1. R/\overline{W} or $\overline{CE} = V_{IH}$ during all address transitions.
- 2. A write occurs during the overlap (tew or twp) of a \overline{CE} = ViL and a R/W = ViL.
- 3. two is measured from the earlier of \overline{CE} or $R/\overline{W} = V_{IH}$ to the end of write cycle.
- 4. During this period, the I/O pins are in the output state, and input signals must not be applied.
- 5. If the CE LOW transition occurs simultaneously with or after the R/W = VIL transition, the outputs remain in the High-impedance state.
- 6. Timing depends on which enable signal is asserted last, \overline{CE} or R/\overline{W} .
- 7. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2). This parameter is guaranteed but is not production tested.
- 8. If \overline{OE} = VIL during a RW controlled write cycle, the write pulse width must be the larger of twp or (twz + tow) to allow the I/O drivers to turn off data to be placed on the bus for the required tow. If \overline{OE} = VIH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the specified twp.

Timing Waveform of Write with Port-to-Port Read^(1, 2)

1. $\overline{OE} = V_{IL}$ for the reading ports.

2. All timing is the same for left and right ports. Port "A" may be either of the four ports and Port "B" is any other port.

Functional Description

The IDT7054 provides four ports with separate control, address, and I/O pins that permit independent access for reads or writes to any location in memory. These devices have an automatic power down feature controlled by \overline{CE} . The \overline{CE} controls on-chip power down circuitry that permits the respective port to go into standby mode when not selected ($\overline{CE} = VIH$). When a port is enabled, access to the entire memory array is permitted. Each port has its own Output Enable control (\overline{OE}). In the read mode, the port's \overline{OE} turns on the output drivers when set LOW. READ/ WRITE conditions are illustrated in the table.

Table I - Read/Write Control

	Any Port ⁽¹⁾			
R/W	ĒĒ	ŌĒ	D0-7	Function
Х	Н	Х	Z	Port Deselected: Power-Down
Х	Η	Х	Z	CEP1=CEP2=CEP3=CEP4=V⊩ Power Down Mode ISB or ISB1
L	L	Х	DATAIN	Data on port written into memory ⁽²⁾
Н	L	L	DATAOUT	Data in memory output on port
Х	Х	Н	Z	Outputs Disabled
				3241 tbl 11

NOTES:

1. "H" = VIH, "L" = VIL, "X" = Don't Care, "Z "= High Impedance

2. For valid write operation, no more than one port can write to the same address location at the same time.

IDT7054S/L High-Speed 4K x 8 FourPort[™] Static RAM

Ordering Information

NOTE:

1. Industrial temperature range is available.

For other speeds, packages and powers contact your sales office.

Datasheet Document History

1/18/99:	Initiated datasheet document history
	Converted to new format
	Cosmetic typographical corrections
	Added additional notes to pin configurations
6/4/99:	Changed drawing format
	Page 1 Corrected DSC number
9/1/99:	Removed Preliminary
11/10/99:	Replaced IDT logo
5/23/00:	Page 4 Increased storage temperature parameter
	Clarified TA parameter
	Page 5 DC Electrical parameters-changed wording from "open" to "disabled"
	Changed ±200mV to 0mV in notes
10/22/01:	Page 2 & 3 Added date revision for pin configurations
	Page 5, 7 & 8 Added Industrial temp to column heading for 25ns speed to DC & AC Electrical Characteristics
	Page 11 Added Industrial temp offering to 25ns ordering information
	Page 4, 5, 7 & 8 Removed Industrial temp footnote from all tables
	Page 6 Changed 5ns to 3ns in AC Test Conditions table
	Page 1 & 11 Replace TM logo with ® logo
01/29/09:	Page 11 Removed "IDT" from orderable part number

CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road San Jose, CA 95138

for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com

for Tech Support: 408-284-2794 DualPortHelp@idt.com

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for SRAM category:

Click to view products by IDT manufacturer:

Other Similar products are found below :

5962-8855206XA CY6116A-35DMB CY7C128A-45DMB CY7C1461KV33-133AXI CY7C199-45LMB GS8161Z36DD-200I GS88237CB-200I R1QDA7236ABB-20IB0 RMLV0408EGSB-4S2#AA0 IS64WV3216BLL-15CTLA3 IS66WVE4M16ECLL-70BLI PCF8570P K6T4008C1B-GB70 CY7C1353S-100AXC AS6C8016-55BIN AS7C164A-15PCN 515712X IS62WV51216EBLL-45BLI IS63WV1288DBLL-10HLI IS66WVE2M16ECLL-70BLI 47L16-E/SN IS66WVE4M16EALL-70BLI IS62WV6416DBLL-45BLI IS61WV102416DBLL-10TLI CY7C1381KV33-100AXC CY7C1381KV33-100BZXI CY7C1373KV33-100AXC CY7C1381KVE33-133AXI CY7C4042KV13-933FCXC 8602501XA 5962-3829425MUA 5962-8855206YA 5962-8866201XA 5962-8866201YA 5962-8866204TA 5962-8866206MA 5962-8866207NA 5962-8866208UA 5962-8872502XA 5962-8959836MZA 5962-8959841MZA 5962-9062007MXA 5962-9161705MXA N08L63W2AB7I 7130LA100PDG GS81284Z36B-250I M38510/28902BVA 5962-8971203XA 5962-8971202ZA 5962-8872501LA