

Features

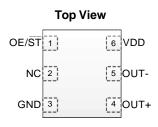
- Any frequency between 1 MHz and 220 MHz accurate to 6 decimal places
- LVPECL and LVDS output signaling types
- 0.6ps RMS phase jitter (random) over 12 kHz to 20 MHz bandwidth
- Frequency stability as low as ±10 ppm
- Industrial and extended commercial temperature ranges
- Industry-standard packages: 3.2x2.5, 5.0x3.2 and 7.0x5.0 mmxmm
- For frequencies higher than 220 MHz, refer to SiT9122 datasheet

Electrical Characteristics

Applications

- 10GB Ethernet, SONET, SATA, SAS, Fibre Channel, PCI-Express
- Telecom, networking, instrumentation, storage, servers

Parameter and Conditions	Symbol	Min.	Тур.	Max.	Unit	Condition		
	L	VPECL an	d LVDS, C	ommon El	ectrical C	characteristics		
Supply Voltage	Vdd	2.97	3.3	3.63	V			
		2.25	2.5	2.75	V			
		2.25	-	3.63	V	Termination schemes in Figures 1 and 2 - XX ordering code		
Output Frequency Range	f	1	-	220	MHz			
Frequency Stability	F_stab	-10	-	+10	ppm			
		-20	-	+20	ppm	Inclusive of initial tolerance, operating temperature, rated power		
		-25	-	+25	ppm	supply voltage, and load variations		
		-50	-	+50	ppm			
First Year Aging	F_aging1	-2	-	+2	ppm	25°C		
10-year Aging	F_aging10	-5	-	+5	ppm	25°C		
Operating Temperature Range	T_use	-40	-	+85	°C	Industrial		
		-20	-	+70	°C	Extended Commercial		
Input Voltage High	VIH	70%	-	-	Vdd	Pin 1, OE or ST		
Input Voltage Low	VIL	-	-	30%	Vdd	Pin 1, OE or ST		
Input Pull-up Impedance	Z_in	-	100	250	kΩ	Pin 1, OE logic high or logic low, or \overline{ST} logic high		
		2	-	-	MΩ	Pin 1, ST logic low		
Start-up Time	T_start	-	6	10	ms	Measured from the time Vdd reaches its rated minimum va		
Resume Time	T_resume	-	6	10	ms	In Standby mode, measured from the time \overline{ST} pin crosses 50% threshold.		
Duty Cycle	DC	45	-	55	%	Contact SiTime for tighter dutycycle		
		Ľ	VPECL, DO	C and AC C	Characteri	stics		
Current Consumption	ldd	-	61	69	mA	Excluding Load Termination Current, Vdd = 3.3V or 2.5V		
OE Disable Supply Current	I_OE	-	-	35	mA	OE = Low		
Output Disable Leakage Current	I_leak	-	-	1	μA	OE = Low		
Standby Current	I_std	-	-	100	μA	\overline{ST} = Low, for all Vdds		
Maximum Output Current	I_driver	-	-	30	mA	Maximum average current drawn from OUT+ or OUT-		
Output High Voltage	VOH	Vdd-1.1	-	Vdd-0.7	V	See Figure 1(a)		
Output Low Voltage	VOL	Vdd-1.9	-	Vdd-1.5	V	See Figure 1(a)		
Output Differential Voltage Swing	V_Swing	1.2	1.6	2.0	V	See Figure 1(b)		
Rise/Fall Time	Tr, Tf	-	300	700	ps	20% to 80%, see Figure 1(a)		
OE Enable/Disable Time	T_oe	-	-	115	ns	f = 212.5 MHz - For other frequencies, T_oe = 100ns + 3 period		
RMS Period Jitter	T_jitt	-	1.2	1.7	ps	f = 100 MHz, VDD = 3.3V or 2.5V		
		-	1.2	1.7	ps	f = 156.25 MHz, VDD = 3.3V or 2.5V		
PMS Phase litter (rendem)	Tabi	-	1.2	1.7	ps	f = 212.5 MHz, VDD = 3.3V or 2.5V		
RMS Phase Jitter (random)	T_phj	-	0.6	0.85	ps	f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz, all Vdds		
			LVDS, DC	and AC Ch	naracteris	tics		
Current Consumption	ldd	-	47	55	mA	Excluding Load Termination Current, Vdd = 3.3V or 2.5V		
OE Disable Supply Current	I_OE	I	_	35	mA	OE = Low		
Differential Output Voltage	VOD	250	350	450	mV	See Figure 2		



Electrical Characteristics(continued)

Parameter and Conditions	Symbol	Min.	Тур.	Max.	Unit	Condition		
LVDS, DC and AC Characteristics (continued)								
Output Disable Leakage Current	I_leak	-	-	1	μΑ	OE = Low		
Standby Current	I_std	-	-	100	μΑ	ST = Low, for all Vdds		
VOD Magnitude Change	ΔVOD	-	-	50	mV	See Figure 2		
Offset Voltage	VOS	1.125	1.2	1.375	V	See Figure 2		
VOS Magnitude Change	ΔVOS	-	-	50	mV	See Figure 2		
Rise/Fall Time	Tr, Tf	-	495	700	ps	20% to 80%, see Figure 2		
OE Enable/Disable Time	T_oe	-	-	115	ns	f = 212.5 MHz - For other frequencies, T_oe = 100ns + 3 period		
RMS Period Jitter	T_jitt	-	1.2	1.7	ps	f = 100 MHz, VDD = 3.3V or 2.5V		
		-	1.2	1.7	ps	f = 156.25 MHz, VDD = 3.3V or 2.5V		
		-	1.2	1.7	ps	f = 212.5 MHz, VDD = 3.3V or 2.5V		
RMS Phase Jitter (random)	T_phj	-	0.6	0.85	ps	f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz, all Vdds		

Pin Description

Pin	Мар	Functionality						
	OE	Input	H or Open: specified frequency output L: output is high impedance					
1	ST	Input	H or Open: specified frequency output L: Device goes to sleep mode. Supply current reduces to I_std.					
2	NC	NA	No Connect; Leave it floating or connect to GND for better heat dissipation					
3	GND	Power	VDD Power Supply Ground					
4	OUT+	Output	Oscillator output					
5	OUT-	Output	Complementary oscillator output					
6	VDD	Power	Power supply voltage					

Absolute Maximum

Attempted operation outside the absolute maximum ratings may cause permanent damage to the part. Actual performance of the IC is only guaranteed within the operational specifications, not at absolute maximum ratings.

Parameter	Min.	Max.	Unit
Storage Temperature	-65	150	°C
VDD	-0.5	4	V
Electrostatic Discharge (HBM)	-	2000	V
Soldering Temperature (follow standard Pb free soldering guidelines)	-	260	°C

Thermal Consideration

Package	θJA, 4 Layer Board (°C/W)	θJC, Bottom (°C/W)
7050, 6-pin	142	27
5032, 6-pin	97	20
3225, 6-pin	109	20

Environmental Compliance

Parameter	Condition/Test Method
Mechanical Shock	MIL-STD-883F, Method2002
Mechanical Vibration	MIL-STD-883F, Method2007
Temperature Cycle	JESD22, Method A104
Solderability	MIL-STD-883F, Method2003
Moisture Sensitivity Level	MSL1 @ 260°C

Waveform Diagrams

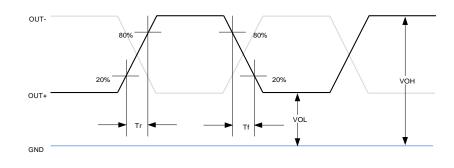


Figure 1(a). LVPECL Voltage Levels per Differential Pin (OUT+/OUT-)

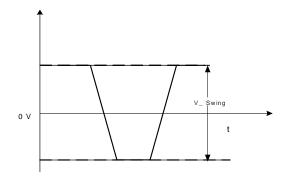


Figure 1(b). LVPECL Voltage Levels Across Differential Pair

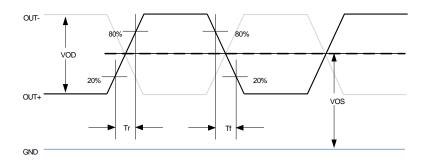


Figure 2. LVDS Voltage Levels per Differential Pin (OUT+/OUT-)

Termination Diagrams

LVPECL:

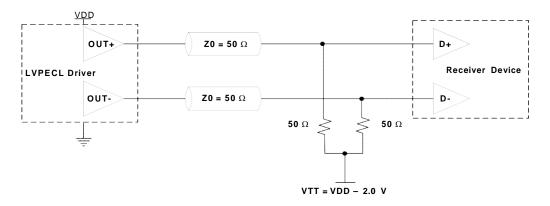


Figure 3. LVPECL Typical Termination

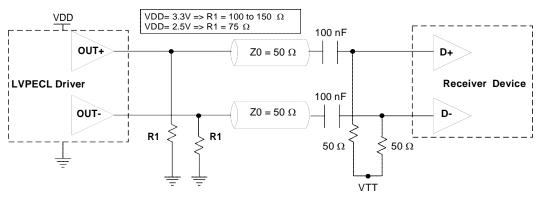
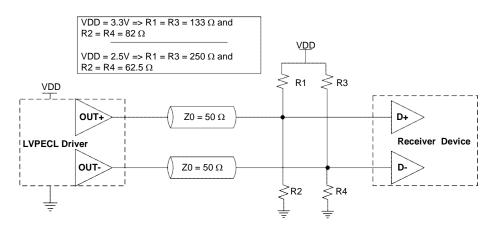
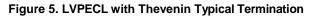




Figure 4. LVPECL AC Coupled Termination

LVDS:

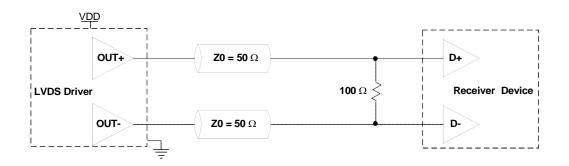
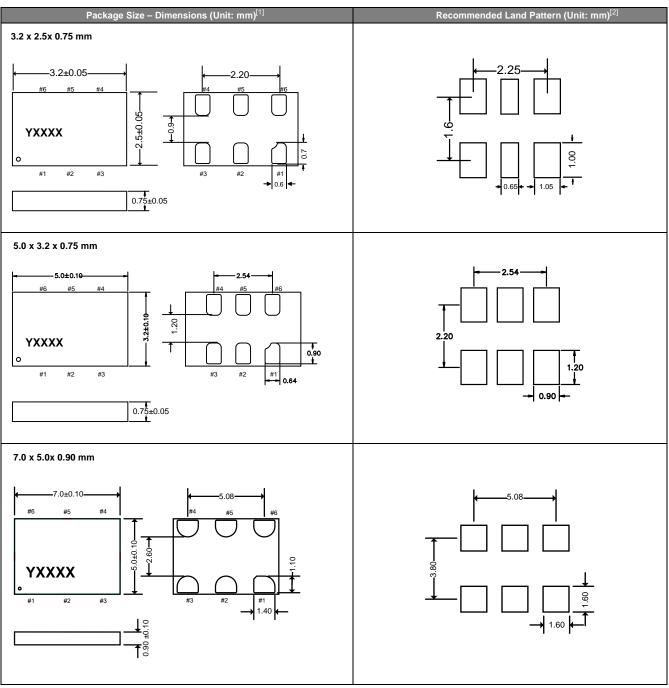
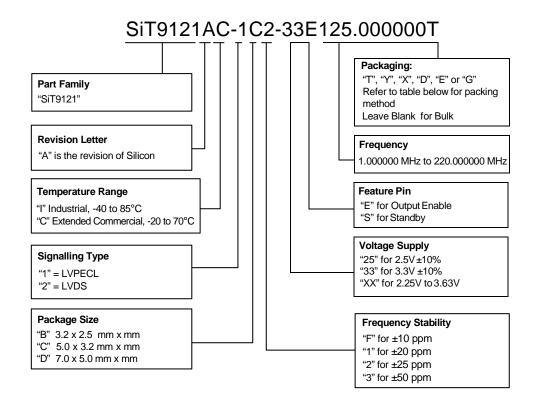



Figure 6. LVDS Single Termination (Load Terminated)

Dimensions and Patterns



Notes:

- 1. Top Marking: Y denotes manufacturing origin and XXXX denotes manufacturing lot number. The value of "Y" will depend on the assembly location of the device.
- 2. A capacitor of value 0.1 μF between Vdd and GND is recommended.

Ordering Information

Ordering Codes for Supported Tape & Reel Packing Method

Device Size	8 mm T&R (3ku)	8 mm T&R (1ku)	8 mm T&R (250u)	12 mm T&R (3ku)	12 mm T&R (1ku)	12 mm T&R (250u)	16 mm T&R (3ku)	16 mm T&R (1ku)	16 mm T&R (250u)
7.0 x 5.0 mm	-	-	-	-	-	-	Т	Y	х
5.0 x 3.2 mm	-	-	-	Т	Y	Х	-	-	-
3.2 x 2.5 mm	D	E	G	Т	Y	Х	-	-	-

Frequencies Not Supported

Range 1: From 209.000001 MHz to 210.999999 MHz

Revision History

Version	Release Date	Change Summary
1.01	2/20/13	Original
1.02	12/3/13	Added input specifications, LVPECL/LVDS waveforms, packaging T&R options
1.03	2/6/14	Added 8mm T&R option and ±10 ppm
1.04	4/8/14	Included 1.8V option for LVDS output only
1.05	7/30/14	Included Thermal Consideration table
1.06	10/20/14	Modified Thermal Consideration values. Preliminary removed from the title
1.07	1/4/16	Removed 1.8V option

Disclaimer: This document is not an official SiTime datasheet. It is exported from a Master FrameMaker document for your convenience, to simplify the generation of your datasheet. The information in the official SiTime datasheet on SiTime's website will be the final reference in case of conflicting information.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for sitime manufacturer:

Other Similar products are found below :

SiT6100DK SiT8920AM-31-33N-40.00000 SiT8103AI-22-33E-33.33300X 9121AI-2C2-25E200.00000 9121AC-2C3-25E100.00000 9102AI-233N25E200.0000 9102AC-283N25E200.0000 SiT1602AI-32-33E-50.00000X SIT5000AICGE-33N0-25.00000X SiT3008BI-C2-33E-27.00000D SiT8008BI-72-33E-30.00000 SiT8008BI-72-33E-31.250000 SiT8008BI-72-33E-33.00000 SiT8008BI-72-33E-48.00000 SiT8008BI-72-33E-66.00000 SiT8008BI-72-33E-66.60000 SiT8008BI-72-33E-66.660000 SiT8008BI-72-33E-66.666000 SiT8008BI-72-33E-74.176000 SiT8008BI-72-33E-77.760000 SiT1602BI-72-33E-7.372800 SiT1602BI-72-33E-10.000000 SiT1602BI-72-33E-24.576000 SiT1602BI-72-33E-33.300000 SiT1602BI-72-33E-40.500000 SiT1602BI-72-33E-54.000000 SiT1602BI-72-33E-66.6666000 SiT1602BI-72-33E-66.666600 SiT1602BI-72-33E-66.666660 SiT1602BI-72-33E-77.760000 SiT8008BI-72-33E-20.000000 SiT8008BI-72-33E-32.768000 SiT8008BI-72-33E-37.500000 SiT8008BI-72-33E-40.500000 SiT8008BI-72-33E-74.250000 SiT1602BI-72-33E-33.330000 SiT1602BI-72-33E-66.666600 SiT1602BI-72-33E-66.6666600 SiT1602BI-72-33E-74.250000 SiT1602BI-72-33E-33.330000 SiT1602BI-72-33E-66.666600 SiT1602BI-72-33E-66.6666000 SiT8008BI-72-33E-74.250000 SiT1602BI-72-33E-33.330000 SiT1602BI-72-33E-66.000000 SiT1602BI-72-33E-66.6666000 SiT8008BI-72-33E-74.250000 SiT1602BI-72-33E-33.330000 SiT1602BI-72-33E-60.000000 SiT1602BI-72-33E-66.6666000 SiT8008BI-72-33E-74.250000 SiT8008BI-72-33E-33.330000 SiT1602BI-72-33E-60.000000 SiT1602BI-72-33E-66.6660000 SiT8008BI-82-33E-33.33300 SiT8008BI-82-33E-33.33300 SiT8008BI-82-33E-33.33300 SiT8008BI-82-33E-50.000000 SiT8008BI-82-33E-65.000000 SiT8008BI-82-33E-66.666600 SiT8008BI-82-33E-66.666660 SiT8008BI-82-33E-73.333300 SiT8008BI-82-33E-74.175824 SiT1602BI-82-33E-1.000000