## feATURES

- 5 V at 200 mA from Two Cells
- $10 \mu \mathrm{~A}$ Quiescent Current in Shutdown
- Operates with $\mathrm{V}_{\text {IN }}$ as Low as 1.5 V
- Low-Battery Detector Active in Shutdown
- Low Switch VCESAT: 370 mV at 1 A Typical
- $120 \mu \mathrm{~A}$ Quiescent Current in Active Mode
- Switching Frequency Up to 300 kHz
- Programmable Peak Current with One Resistor
- 8-Lead SO Package


## APPLICATIONS

- 2-, 3-, or 4-Cell to 5V or 3.3V Step-Up
- Portable Instruments
- Bar Code Scanners
- Palmtop Computers
- Diagnostic Medical Instrumentation
- Personal Data Communicators/Computers


## DESCRIPTIOn

The $\mathrm{LT}^{\circledR} 1304$ is a micropower step-up DC/DC converter ideal for use in small, low voltage, battery-operated systems. The devices operate from a wide input supply range of 1.5 V to 8 V . The LT1304-3.3 and LT1304-5 generate regulated outputs of 3.3 V and 5 V and the adjustable LT1304 can deliver output voltages up to 25 V . Quiescent current, $120 \mu \mathrm{~A}$ in active mode, decreases to just $10 \mu \mathrm{~A}$ in shutdown with the low-battery detector still active. Peak switch current, internally set at 1 A , can be reduced by adding a single resistor from the $\mathrm{I}_{\text {LIM }}$ pin to ground. The high speed operation of the LT1304 allows the use of small, surface-mountable inductors and capacitors. The LT1304 is available in an 8-lead SO package.
$\overline{\mathbf{Q}}$, LTC and LT are registered trademarks of Linear Technology Corporation.

## TYPICAL APPLICATION

2-Cell to 5V Step-Up Converter with Low-Battery Detect


Efficiency


## ABSOLUTE MAXIMUM RATINGS

VIN Voltage .............................................................. 8V
SW Voltage .............................................. -0.4 V to 25 V
FB Voltage (LT1304) ..................................... VIN +0.3 V
Sense Voltage (LT1304-3.3/LT1304-5) .................... 8V
I LIM Voltage ............................................................ 5V
SHDN Voltage .......................................................... 6V
LBI Voltage ............................................................. VIN
LBO Voltage .............................................................. 8V
Maximum Power Dissipation ............................. 500 mW
Junction Temperature ......................................... $125^{\circ} \mathrm{C}$
Operating Temperature Range ..................... $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range ................. $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec ).................. $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION


Consult factory for Industrial and Military grade parts.

## ELECTRICAL CHARACT $\in$ RISTICS ${ }_{v_{W}}=2 v, V_{\text {SHON }}=2 V$ unless otherwise noted.

| PARAMETER | CONDITIONS |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Minimum Operating Voltage |  | - |  | 1.5 | 1.65 | V |
| Operating Voltage Range |  | - |  |  | 8 | V |
| Quiescent Current | $\mathrm{V}_{\overline{\text { SHDN }}}=2 \mathrm{~V}$, Not Switching | $\bullet$ |  | 120 | 200 | $\mu \mathrm{A}$ |
| Quiescent Current in Shutdown | $\begin{aligned} & V_{\overline{S H D N}}=0 V, V_{I N}=2 V \\ & V_{\overline{S H D N}}=0 V, V_{I N}=5 \mathrm{~V} \end{aligned}$ |  |  | $\begin{gathered} \hline 7 \\ 27 \end{gathered}$ | $\begin{aligned} & 15 \\ & 50 \end{aligned}$ | $\mu \mathrm{A}$ $\mu \mathrm{A}$ |
| Comparator Trip Point | LT1304 | $\bullet$ | 1.22 | 1.24 | 1.26 | V |
| FB Pin Bias Current | LT1304 | $\bullet$ |  | 10 | 25 | nA |
| Sense Pin Leakage in Shutdown | $V \overline{\text { SHDN }}=0 \mathrm{~V}$, Fixed Output Versions | $\bullet$ |  | 0.002 | 1 | $\mu \mathrm{A}$ |
| Output Sense Voltage | LT1304-3.3 <br> LT1304-5 | $\bullet$ | $\begin{aligned} & 3.17 \\ & 4.80 \end{aligned}$ | $\begin{gathered} 3.3 \\ 5.05 \end{gathered}$ | $\begin{aligned} & 3.43 \\ & 5.25 \end{aligned}$ | V |
| Line Regulation | $1.8 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 8 \mathrm{~V}$ | $\bullet$ |  | 0.04 | 0.15 | \%/V |
| LBI Input Threshold | Falling Edge | $\bullet$ | 1.10 | 1.17 | 1.25 | V |
| LBI Bias Current |  | $\bullet$ |  | 6 | 20 | nA |
| LBI Input Hysteresis |  | $\bullet$ |  | 35 | 65 | mV |
| LBO Output Voltage Low | $\mathrm{I}_{\text {SINK }}=500 \mu \mathrm{~A}$ | $\bullet$ |  | 0.2 | 0.4 | V |
| LBO Output Leakage Current | $\mathrm{LBI}=1.5 \mathrm{~V}, \mathrm{LBO}=5 \mathrm{~V}$ | $\bullet$ |  | 0.01 | 0.1 | $\mu \mathrm{A}$ |
| SHDN Input Voltage High SHDN Input Voltage Low |  | $\bullet$ | 1.4 |  | 0.4 | V |
| $\overline{\text { SHDN }}$ Pin Bias Current | $\begin{aligned} & V \overline{S H D N}=5 \mathrm{~V} \\ & V \overline{\mathrm{SHDN}}=0 \mathrm{~V} \end{aligned}$ | $\bullet$ | -5 | $\begin{gathered} 5 \\ -2 \end{gathered}$ | 8 | $\mu \mathrm{A}$ $\mu \mathrm{A}$ |
| Switch OFF Time |  | $\bullet$ | 1 | 1.5 | 2 | $\mu \mathrm{S}$ |
| Switch ON Time | Current Limit Not Asserted | $\bullet$ | 4 | 6 | 8 | $\mu \mathrm{S}$ |
| Maximum Duty Cycle | Current Limit Not Asserted | $\bullet$ | 76 | 80 | 88 | \% |
| Peak Switch Current | $\mathrm{I}_{\text {LIM }}$ Pin Open, $\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$ 20 k from $\mathrm{L}_{\text {LIM }}$ to GND |  | 0.8 | $\begin{gathered} 1 \\ 500 \end{gathered}$ | 1.2 | A mA |

## ELECTRICAL CHARACTERISTICS $v_{I N}=2 v, v_{\overline{S H O N}}=2 v$ unless otherwise noted.

| PARAMETER | CONDITIONS | MIN | TYP | MAX | UNITS |
| :--- | :--- | :--- | :--- | ---: | ---: |
| Switch Saturation Voltage | $I_{S W}=1 \mathrm{~A}$ |  | 0.37 |  | V |
|  | $\mathrm{I}_{\mathrm{SW}}=700 \mathrm{~mA}$ | $\bullet$ | 0.26 | 0.35 | V |
| Switch Leakage | Switch $0 \mathrm{ff}, \mathrm{V}_{S W}=5 \mathrm{~V}$ | $\bullet$ | 0.01 | 7 | $\mu \mathrm{~A}$ |

The - denotes specifications which apply over the $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ operating temperature range.

## TYPICAL PERFORMAOCE CHARACTERISTICS



1304601

Feedback Voltage



1304602

${ }^{1304} 603$

## TYPICAL PERFORMANCE CHARACTERISTICS



Burst Mode is a trademark of Linear Technology Corporation.

## PIn functions

LBI (Pin 1): Low-Battery Detector Input. When voltage on this pin is less than 1.17 V , detector output is low.

LBO (Pin 2): Low-Battery Detector Output. Open collector can sink up to $500 \mu \mathrm{~A}$. Low-battery detector remains active when device is shut down.
$V_{\text {IN }}$ (Pin 3): Input Supply. Must be bypassed close (<0.2") to the pin. See required layout in the Typical Applications.
SW (Pin 4): Collector of Power NPN. Keep copper traces on this pin short and direct to minimize RFI.
GND (Pin 5): Device Ground. Must be low impedance; solder directly to ground plane.
$I_{\text {LIM (Pin 6): Current Limit Set Pin. Float for 1A peak switch }}$ current; a resistor to ground will lower peak current.

SHDN (Pin 7): Shutdown Input. When low, switching regulator is turned off. The low-battery detector remains active. The $\overline{\text { SHDN }}$ input should not be left floating. If $\overline{\mathrm{SHDN}}$ is not used, tie the pin to $\mathrm{V}_{\text {IN }}$.

FB/SENSE (Pin 8): On the LT1304 (adjustable) this pin goes to the comparator input. On the fixed-output versions, the pin connects to the resistor divider which sets output voltage. The divider is disconnected from the pin during shutdown.

## BLOCK DIAGRAMS



Figure 1. LT1304 Block Diagram. Independent Low-Battery Detector A3 Remains Alive When Device Is in Shutdown


Figure 2. LT1304-3.3/LT1304-5 Block Diagram

## operation

The LT1304's operation can best be understood by examining the block diagram in Figure 1. Comparator A1 monitors the output voltage via resistor divider string $\mathrm{R} 3 / \mathrm{R4} 4$ at the FB pin. When $\mathrm{V}_{\mathrm{FB}}$ is higher than the 1.24 V reference, A2 and the timers are turned off. Only the reference, A1 and A3 consume current, typically $120 \mu \mathrm{~A}$. As $\mathrm{V}_{\mathrm{FB}}$ drops below 1.24V plus A1's hysteresis (about 6 mV ), A1 enables the rest of the circuit. Power switch Q1 is then cycled on for $6 \mu \mathrm{~s}$, or until current comparator A2 turns off the ON timer, whichever comes first. Off-time is fixed at approximately $1.5 \mu \mathrm{~s}$. Q1's switching causes current to alternately build up in inductor L1 and discharge into output capacitor C2 via D1, increasing the output voltage. As $\mathrm{V}_{\text {FB }}$ increases enough to overcome C1's hysteresis, switching action ceases. C2 is left to supply current to the load until $V_{\text {OUT }}$ decreases enough to force A1's output high, and the entire cycle repeats.

If switch current reaches 1 A , causing A2 to trip, switch ON time is reduced. This allows continuous mode operation during bursts. A2 monitors the voltage across $7.2 \Omega$ resistor R1, which is directly related to the switch current. Q2's collector current is set by the emitter-area ratio to $0.5 \%$ of Q1's collector current. R1's voltage drop exceeds 36 mV , corresponding to 1 A switch current, A2's output goes high, truncating the ON time part of the switch cycle. The 1A peak current can be reduced by tying a resistor between the l LIM $^{\text {pin }}$ and ground, causing a voltage drop to appear across R2. The drop offsets some of the 36 mV reference voltage, lowering peak current. A 22k resistor limits current to approximately 550 mA . A capacitor connected between I Lim and ground provides soft start. Shutdown is accomplished by grounding the SHDN pin.

The low-battery detector A3 has its own 1.17V reference and is always on. The open collector output device can sink up to $500 \mu \mathrm{~A}$. Approximately 35 mV of hysteresis is built into A3 to reduce "buzzing" as the battery voltage reaches the trip level.

## Inductor Selection

Inductors used with the LT1304 must be capable of handling the worst-case peak switch current of 1.2A without saturating. Open flux rod or drum core units may be biased into saturation by $20 \%$ with only a small reduc-
tion in efficiency. For the majority of 2-cell or 3-cell input LT1304 applications, a $22 \mu \mathrm{H}$ or $20 \mu \mathrm{H}$ inductor such as the Sumida CD54-220 (drum) or Coiltronics CTX20-1 (toroid) will suffice. If switch current is reduced using the l lim pin, smaller inductors such as the Sumida CD43 series or Coilcraft D01608 series can be used. Minimizing DCR is important for best efficiency. Ideally, the inductor DCR should be less than $0.05 \Omega$, although the physical size of such an inductor makes its use prohibitive in many space conscious applications. If EMI is a concern, such as when sensitive analog circuitry is present, a toroidal inductor such as the Coiltronics CTX20-1 is suggested.

A special case exists where the $\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {IN }}$ differential is high, such as a 2 V to 12 V boost converter. If the required duty cycle for continuous mode operation is higher than the LT1304 can provide, the converter must be designed for discontinuous operation. This means that the inductor current decreases to zero during the switch OFF time. For a simple step-up (boost) converter, duty cycle can be calculated by the following formula:

$$
D C=1-\left[\left(V_{I N}-V_{S A T}\right) /\left(V_{\text {OUT }}+V_{D}\right)\right]
$$

where,
$\mathrm{V}_{\text {IN }}=$ Minimum input voltage
$V_{S A T}=$ Switch saturation voltage (0.3V)
$V_{\text {OUT }}=$ Output voltage
$V_{D}=$ Diode forward voltage (0.4V)
If the calculated duty cycle exceeds the minimum LT1304 duty cycle of $76 \%$, the converter should be designed for discontinuous mode operation. The inductance must be low enough so that current in the inductor reaches the peak current in a single cycle. Inductor value can be calculated by:

$$
\mathrm{L}=\left(\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{SAT}}\right)\left(\mathrm{t}_{\mathrm{ON}} / 1 \mathrm{~A}\right)
$$

where,
$\mathrm{t}_{\mathrm{ON}}=$ Minimum on-time of LT1304 $(4 \mu \mathrm{~s})$
One advantage of discontinuous mode operation is that inductor values are usually quite low so very small units can be used. Ripple current is higher than with continuous mode designs and efficiency will be somewhat less.

## OPGRATION

Table 1 lists inductor suppliers along with appropriate part numbers.

Table 1. Recommended Inductors

| VENDOR | SERIES | PHONE NUMBER |
| :--- | :--- | :---: |
| Sumida | CD54, CD43 | $(708) 956-0666$ |
| Coiltronics | CTX20-1 | $(407) 241-7876$ |
| Dale | LPT4545 | $(605) 665-9301$ |
| Coilcraft | D03316, D01608, D03308 | $(708) 639-6400$ |

## Capacitor Selection

Low ESR (Equivalent Series Resistance) capacitors should be used at the output of the LT1304 to minimize output ripple voltage. High quality input bypassing is also required. For surface mount applications AVX TPS series tantalum capacitors are recommended. These have been specifically designed for switch mode power supplies and have low ESR along with high surge current ratings. A $100 \mu \mathrm{~F}, 10 \mathrm{~V}$ AVX TPS surface mount capacitor typically limits output ripple voltage to 70 mV when stepping up from 2 V to 5 V at a 200 mA load. For through hole applications Sanyo OS-CON capacitors offer extremely low ESR in a small package size. Again, if peak switch current is reduced using the $\mathrm{I}_{\text {LIM }}$ pin, capacitor requirements can be eased and smaller, higher ESR units can be used. Suggested capacitor sources are listed in Table 2.

Table 2. Recommended Capacitors

| VENDOR | SERIES | TYPE | PHONE NUMBER |
| :--- | :--- | :--- | :--- |
| AVX | TPS | Surface Mount | $(803) 448-9411$ |
| Sanyo | OS-CON | Through Hole | $(619) 661-6835$ |
| Sprague | $595 D$ | Surface Mount | $(603) 225-1961$ |

## Diode Selection

Best performance is obtained with a Schottky rectifier such as the 1N5818. Motorola makes the MBRS130L Schottky which is slightly better than the 1N5818 and comes in a surface mount package. For lower switch currents, the MBR0530 is recommended. It comes in a very small SOD-123 package. Multiple 1N4148s in parallel can be used in a pinch, although efficiency will suffer.

## ILIM Function

The LT1304's current limit (lim) pin can be used for soft start. Upon start-up, the LT1304 will draw maximum current (about 1A) from the supply to charge the output capacitor. Figure 3 shows $\mathrm{V}_{\text {OUT }}$ and $\mathrm{V}_{\text {IN }}$ waveforms as the device is turned on. The high current flow can create IR drops along supply and ground lines or cause the input supply to drop out momentarily. By adding R1 and C1 as shown in Figure 4, the switch current is initially limited to well under 1A as detailed in Figure 5. Current flowing into C1 from R1 and the I LIM pin will eventually charge C1 and R1 effectively takes C1 out of the circuit. R1 also provides a discharge path for C1 when SHUTDOWN is brought low for turn-off.


Figure 3. Start-Up Response. Input Current Rises Quickly to 1A. V 20 mA Load


Figure 4. 2-Cell to 5V/200mA Boost Converter Takes Four External Parts. Components with Dashed Lines Are for Soft Start (Optional)

## operation

If the full power capability of the LT1304 is not required, peak switch current can be limited by connecting a resistor $R_{\text {LIM }}$ from the $\mathrm{I}_{\text {LIM }}$ pin to ground. With $\mathrm{R}_{\text {LIM }}=22 \mathrm{k}$, peak switch current is reduced to approximately 500 mA . Smaller power components can then be used. The graph in Figure 6 shows switch current vs $R_{\text {LIM }}$ resistor value.


Figure 5. Start-Up Response with $1 \mu \mathrm{~F} / 1 \mathrm{M} \Omega$ Components in Figure 2 Added. Input Current Is More Controlled. $V_{0 U T}$ Reaches 5 V in $\mathbf{6 m s}$. Output Drives 20 mA Load


Figure 6. Peak Switch Current vs RLIM Value

## Layout/Input Bypassing

The LT1304's high speed switching mandates careful attentionto PC board layout. Suggested component placement is shown in Figure 7. The input supply must have low impedance at AC and the input capacitor should be placed as indicated in the figure. The value of this capacitor depends on how close the input supply is to the IC. In situations where the input supply is more than a few inches away from the IC, a $47 \mu \mathrm{~F}$ to $100 \mu \mathrm{~F}$ solid tantalum
bypass capacitor is required. If the input supply is close to the IC, a $1 \mu$ F ceramic capacitor can be used instead. The LT1304 switches current in 1 A pulses, so a low impedance supply must be available. If the power source (for example, a 2 AA cell battery) is within 1 or 2 inches of the IC, the battery itself provides bulk capacitance and the $1 \mu \mathrm{~F}$ ceramic capacitor acts to smooth voltage spikes at switch turn-on and turn-off. If the power source is far away from the IC, inductance in the power source leads results in high impedance at high frequency. A local high capacitance bypass is then required to restore low impedance at the IC.


Figure 7. Suggested Layout for Best Performance. Input Capacitor Placement as Shown Is Highly Recommended. Switch Trace (Pin 4) Copper Area Is Minimized

## Low-Battery Detector

The LT1304 contains an independent low-battery detector that remains active when the device is shut down. This detector, actually a hysteretic comparator, has an open collector output that can sink up to $500 \mu \mathrm{~A}$. The comparator also operates below the switcher's undervoltage lockout threshold, operating until $\mathrm{V}_{\text {IN }}$ reaches approximately 1.4V. Figure 8 illustrates the input/output characteristic of the detector. Hysteresis is clearly evident in the figure.

## OPERATION



Figure 8. Low-Battery Detector Transfer Function. Pull-Up $R=22 k, V_{\text {IN }}=2 V$, Sweep Frequency $=10 \mathrm{~Hz}$

## Battery Life

How may hours does it work? This is the bottom line question that must be asked of any efficiency study. AA alkaline cells are not perfect power sources. For efficient power transfer, energy must be taken from AA cells at a rate that does not induce excessive loss. AA cells internal impedance, about $0.2 \Omega$ fresh and $0.5 \Omega$ end-of-life, results in significantefficiency loss athigh discharge rates. Figure 10 illustrates battery life vs load current of Figure 9's LT1304, 2-cell to 5V DC/DC converter. Note the accelerated decrease in hours at higher power levels. Figure 11 plots total watt hours vs load current. Watt hours are determined by the following formula:

$$
\mathrm{WH}=\operatorname{ILOAD}(5 \mathrm{~V})(\mathrm{H})
$$



Figure 9. 2-Cell to 5V Converter Used in Battery Life Study


Figure 10. Battery Life vs Load Current. Dots Specify Actual Measurements


Figure 11. Output Watt Hours vs Load Current. Note Rapid Fall-Off at Higher Discharge Rates

Figure 11's graph varies significantly from electrical efficiency plot pictured on the first page of this data sheet. Why? As more current is drawn from the battery, voltage drop across the cells' internal impedance increases. This causes internal power loss (heating), reducing cell terminal voltage. Since the regulator input acts as a negative resistance, more current is drawn from the battery as the terminal voltage decreases. This positive feedback action compounds the problem.

## OPERATION

Figure 12 shows overall energy conversion efficiency, assuming availability of 6.5 WH of battery energy. This efficiency approximates the electrical efficiency at load current levels from 1 mA to 10 mA , but drops severely at load currents above 10 mA (load power above 50 mW ). The moral of the story is this: if your system needs 5 V at more than 40 mA to 50 mA , consider using a NiCd battery ( $1 / 10$ the internal impedance) instead of a AA cell alkaline battery.


Figure 12. Overall System Efficiency Including Battery Efficiency vs Load Current. Internal Impedance of Alkaline AA Cells Accounts for Rapid Drop in Efficiency at Higher Load Current

## TYPICAL APPLICATIONS

Super Burst ${ }^{\text {Tm }}$ Low $I_{0}$ DC/DC Converter


Super Burst Efficiency


## TYPICAL APPLICATIONS

2-Cell to 3.3V Boost Converter

3.3V SEPIC (Step-Up/Step-Down Converter)


5V SEPIC (Step-Up/Step-Down Converter)


2-Cell to 3.3V Converter Efficiency


1304 TA06
3.3V SEPIC Efficiency


5V SEPIC Efficiency


## LT1304/LT1304-3.3/LT1304-5

## TYPICAL APPLICATIONS

5V to 12V DC/DC Converter


5V to 12V Converter Efficiency


1304 TA12

Single Li-Ion Cell to 5V Converter with Load Disconnect at $\mathrm{V}_{\mathrm{IN}}<2.7 \mathrm{~V}$


## TYPICAL APPLICATIONS

Negative LCD Bias Generator


Electroluminescent Panel Driver with 200Hz Oscillator


* DALE LPE3325-A205 TRANSFORMER MEASURES $6.5 \mathrm{~mm} \times 8.2 \mathrm{~mm} \times 5.2 \mathrm{~mm}(\mathrm{H})$ (605) 665-9301

13

## TYPICAL APPLICATIONS

2- to 4-Cell to 1kV Step-Up Converter


2- to 4-Cell to 5V Converter with Output Disconnect


## TYPICAL APPLICATIONS

## 2-Cell to 5V Converter with Auxiliary 10V Output



1304 TA18

2-Cell to 5V Converter with Auxiliary -5V Output


## LT1304/LT1304-3.3/LT1304-5

## PACKAGE DESCRIPTION Dimension in inches (millimeter) unless otherwise noted.

## S8 Package

8-Lead Plastic Small Outline (Narrow 0.150)
(LTC DWG \# 05-08-1610)

*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006 " ( 0.152 mm ) PER SIDE

**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED $0.010^{\prime \prime}(0.254 \mathrm{~mm})$ PER SIDE

## RELATED PARTS

| PART NUMBER | DESCRIPTION | COMMENTS |
| :--- | :--- | :--- |
| LTC ${ }^{\oplus} 1163$ | Triple High Side Driver for 2-Cell Inputs | 1.8 V Minimum Input, Drives N-Channel MOSFETs |
| LT1239 | Backup Battery Management System | Easy-to-Use, Fail-Safe Backup Protection |
| LT1301 | Fixed 5V/12V Step-Up Micropower DC/DC Converter | $12 \mathrm{~V} / 200 \mathrm{~mA}$ from $5 \mathrm{~V}, 120 \mu \mathrm{~A} \mathrm{I}_{Q}, 88 \%$ Efficiency |
| LT1302 | High Output Current Micropower DC/DC Converter | $5 \mathrm{~V} / 600 \mathrm{~mA}$ from 2V, 2A Internal Switch, 200 $\mu \mathrm{A} \mathrm{I}_{Q}$ |
| LT1303 | Micropower DC/DC Converter | Low-Battery Detector Inactive in Shutdown |
| LTC1477 | Protected Switch | Ultralow R $\mathrm{R}_{\mathrm{DS}(0 \mathrm{ON})}$ Switch: $0.07 \Omega$ |
| LT1521 | 300mA, $12 \mu \mathrm{~A}$ I Low Dropout Regulator | 500 mV Dropout at Full Load |

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Voltage Regulators category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
TLF30682QVS01XUMA1 TPSM84209RKHR FAN53526UC106X FAN53526UC128X MP1587EN-LF FAN48610BUC33X FAN48617UC50X FAN53526UC89X MIC45116-1YMP-T1 NCV891234MW50R2G EN2342QI AST1S31PUR 16017 A6986FTR NCP81103MNTXG NCP81203PMNTXG MAX17242ETPA+ MAX16935RATEB/V+ MP2313GJ-Z NCP81208MNTXG MP8759GD-Z FAN53526UC100X FAN53526UC84X PCA9412AUKZ MP2314SGJ-Z AS1340A-BTDM-10 MP3421GG-P NCP81109GMNTXG MP6003DN-LF-Z MAX16935BAUES/V+ LT8315IFE\#PBF SCY1751FCCT1G NCP81109JMNTXG MAX16956AUBA/V+ AP3409ADNTR-G1 FAN48623UC36FX MPQ2454GH MPQ2454GH-AEC1 MP21148GQD-P AS3701B-BWLM-68 MPQ2143DJ-P MP9942AGJ-P MP8759GD-P MP5610GQG-P MP28200GG-P MP2451DJ-LF-Z MP2326GD-P MP2314SGJ-P MP2158AGQH-P MP2148GQD-18-P

