

### HIP2100

100V/2A Peak, Low Cost, High Frequency Half Bridge Driver

FN4022 Rev 15.00 August 31, 2015

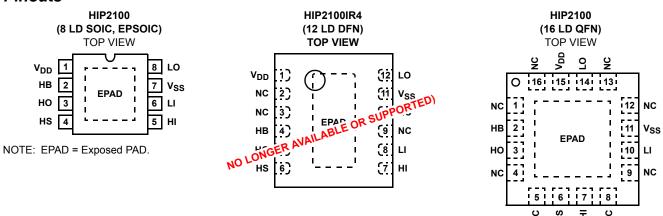
The HIP2100 is a high frequency, 100V Half Bridge N-Channel power MOSFET driver IC. The low-side and high-side gate drivers are independently controlled and matched to 8ns. This gives the user maximum flexibility in dead-time selection and driver protocol. Undervoltage protection on both the low-side and high-side supplies force the outputs low. An on-chip diode eliminates the discrete diode required with other driver ICs. A new level-shifter topology yields the low-power benefits of pulsed operation with the safety of DC operation. Unlike some competitors, the high-side output returns to its correct state after a momentary undervoltage of the high-side supply.

### Applications

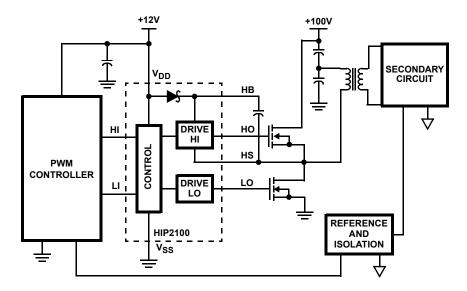
- · Telecom Half Bridge Power Supplies
- · Avionics DC/DC Converters
- · Two-Switch Forward Converters
- · Active Clamp Forward Converters

#### Features

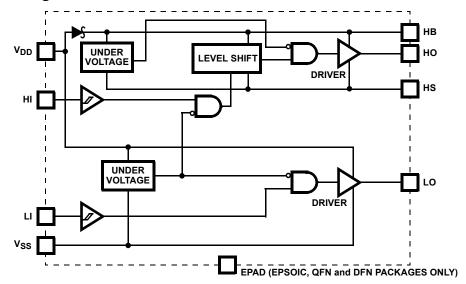
- · Drives N-Channel MOSFET Half Bridge
- · SOIC, EPSOIC, QFN and DFN Package Options
- SOIC, EPSOIC and DFN Packages Compliant with 100V Conductor Spacing Guidelines of IPC-2221
- Pb-Free Product Available (RoHS Compliant)
- Bootstrap Supply Max Voltage to 114VDC
- On-Chip 1Ω Bootstrap Diode
- Fast Propagation Times for Multi-MHz Circuits
- Drives 1000pF Load with Rise and Fall Times Typ. 10ns
- CMOS Input Thresholds for Improved Noise Immunity
- · Independent Inputs for Non-Half Bridge Topologies
- · No Start-Up Problems
- Outputs Unaffected by Supply Glitches, HS Ringing Below Ground, or HS Slewing at High dv/dt
- · Low Power Consumption
- · Wide Supply Range
- · Supply Undervoltage Protection
- 3Ω Driver Output Resistance
- · QFN/DFN Package:
  - Compliant to JEDEC PUB95 MO-220 QFN - Quad Flat No Leads - Package Outline
  - Near Chip Scale Package Footprint, which Improves PCB Efficiency and has a Thinner Profile


### **Ordering Information**

| PART NUMBER (Note 1)                                                                          | PART<br>MARKING | TEMP. RANGE<br>(°C) | PACKAGE                 | PKG.<br>DWG. # |
|-----------------------------------------------------------------------------------------------|-----------------|---------------------|-------------------------|----------------|
| HIP2100IB (No longer available, recommended replacements: HIP2100IBZ, HIP2100IBZT)            | 2100 IB         | -40 to +125         | 8 Ld SOIC               | M8.15          |
| HIP2100IBZ (Note 2)                                                                           | 2100 IBZ        | -40 to +125         | 8 Ld SOIC (Pb-free)     | M8.15          |
| HIP2100EIBZ (Note 2)                                                                          | 2100 EIBZ       | -40 to +125         | 8 Ld EPSOIC (Pb-free)   | M8.15C         |
| HIP2100IRZ (Note 2)                                                                           | HIP 2100IRZ     | -40 to +125         | 16 Ld 5x5 QFN (Pb-free) | L16.5x5        |
| HIP2100IR4Z (Note 2) (No longer available, recommended replacements: HIP2100IRZ, HIP2100IRZT) | 21 00IR4Z       | -40 to +125         | 12 Ld 4x4 DFN (Pb-free) | L12.4x4A       |


- 1. Add "T" suffix for tape and reel. Please refer to TB347 for details on reel specifications.
- These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte
  tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil
  Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J
  STD-020.




### **Pinouts**



### Application Block Diagram



### Functional Block Diagram



\*EPAD = Exposed Pad. The EPAD is electrically isolated from all other pins. For best thermal performance connect the EPAD to the PCB power ground plane.

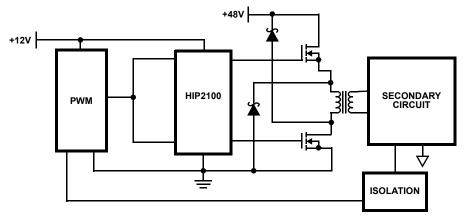



FIGURE 1. TWO-SWITCH FORWARD CONVERTER

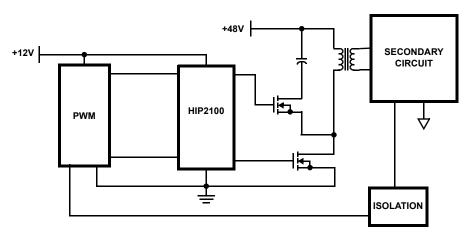



FIGURE 2. FORWARD CONVERTER WITH AN ACTIVE CLAMP

#### **Absolute Maximum Ratings**

| Supply Voltage, V <sub>DD.</sub> V <sub>HB</sub> -V <sub>HS</sub> (Notes 3, 4) | -0.3V to 18V          |
|--------------------------------------------------------------------------------|-----------------------|
| LI and HI Voltages (Note 4)0.3V to                                             | V <sub>DD</sub> +0.3V |
| Voltage on LO (Note 4)0.3V to                                                  | V <sub>DD</sub> +0.3V |
| Voltage on HO (Note 4) V <sub>HS</sub> -0.3V to                                | V <sub>HB</sub> +0.3V |
| Voltage on HS (Continuous) (Note 4)                                            | -1V to 110V           |
| Voltage on HB (Note 4)                                                         | +118V                 |
| Average Current in V <sub>DD</sub> to HB diode                                 | 100mA                 |
| ESD Classification                                                             | lass 1 (1kV)          |

#### **Maximum Recommended Operating Conditions**

| Supply Voltage, V <sub>DD</sub>                      | +9V to 14.0VDC                                          |
|------------------------------------------------------|---------------------------------------------------------|
| Voltage on HS                                        | 1V to 100V                                              |
| Voltage on HS                                        | (Repetitive Transient) -5V to 105V                      |
| Voltage on HB V <sub>HS</sub> +8V to V <sub>HS</sub> | +14.0V and V <sub>DD</sub> -1V to V <sub>DD</sub> +100V |
| HS Slew Rate                                         | <50V/ns                                                 |

#### **Thermal Information**

| Thermal Resistance (Typical)               | θ <sub>JA</sub> (°C/W) | θ <sub>JC</sub> (°C/W) |
|--------------------------------------------|------------------------|------------------------|
| SOIC (Note 5)                              | 95                     | 50                     |
| EPSOIC (Note 6)                            | 40                     | 3.0                    |
| QFN (Note 6)                               | 37                     | 6.5                    |
| DFN (Note 6)                               | 40                     | 3.0                    |
| Max Power Dissipation at +25°C in Free Air | (SOIC, Note 5          | 5) 1.3W                |
| Max Power Dissipation at +25°C in Free Air | (EPSOIC, Not           | te 6) 3.1W             |
| Max Power Dissipation at +25°C in Free Air | (QFN, Note 6)          | ) 3.3W                 |
| Storage Temperature Range                  | 65°                    | C to +150°C            |
| Junction Temperature Range                 | 55°                    | C to +150°C            |
| Pb-Free Reflow Profile                     | se                     | e link below           |
| http://www.intersil.com/pbfree/Pb-FreeR    | eflow.asp              |                        |

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

#### NOTES:

- 3. The HIP2100 is capable of derated operation at supply voltages exceeding 14V. Figure 16 shows the high-side voltage derating curve for this mode of operation.
- 4. All voltages referenced to  $\ensuremath{V_{SS}}$  unless otherwise specified.
- 5. θ<sub>JA</sub> is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.
- θ<sub>JA</sub> is measured in free air with the component mounted on a high effective thermal conductivity test board with "direct attach" features. θ<sub>JC</sub>, the
  "case temp" is measured at the center of the exposed metal pad on the package underside. See Tech Brief TB379.

### **Electrical Specifications** $V_{DD} = V_{HB} = 12V$ , $V_{SS} = V_{HS} = 0V$ , No Load on LO or HO, Unless Otherwise Specified.

|                                          |                   |                                          | T,       | j = +2 | 5°C  | $T_J = -40^{\circ}C \text{ TO } +125^{\circ}C$ |                 |       |
|------------------------------------------|-------------------|------------------------------------------|----------|--------|------|------------------------------------------------|-----------------|-------|
| PARAMETERS                               | SYMBOL            | TEST CONDITIONS                          | MIN      | ТҮР    | MAX  | MIN<br>(Note 7)                                | MAX<br>(Note 7) | UNITS |
| SUPPLY CURRENTS                          | "                 |                                          | <b>"</b> | ı      |      | l'                                             | l .             | l.    |
| V <sub>DD</sub> Quiescent Current        | I <sub>DD</sub>   | LI = HI = 0V                             | -        | 0.1    | 0.15 | -                                              | 0.2             | mA    |
| V <sub>DD</sub> Operating Current        | I <sub>DDO</sub>  | f = 500kHz                               | -        | 1.5    | 2.5  | -                                              | 3               | mA    |
| Total HB Quiescent Current               | I <sub>HB</sub>   | LI = HI = 0V                             | -        | 0.1    | 0.15 | -                                              | 0.2             | mA    |
| Total HB Operating Current               | Інво              | f = 500kHz                               | -        | 1.5    | 2.5  | -                                              | 3               | mA    |
| HB to V <sub>SS</sub> Current, Quiescent | I <sub>HBS</sub>  | V <sub>HS</sub> = V <sub>HB</sub> = 114V | -        | 0.05   | 1    | -                                              | 10              | μΑ    |
| HB to V <sub>SS</sub> Current, Operating | I <sub>HBSO</sub> | f = 500kHz                               | -        | 0.7    | -    | -                                              | -               | mA    |
| INPUT PINS                               |                   |                                          | "        |        |      | ı                                              | ı               |       |
| Low Level Input Voltage Threshold        | V <sub>IL</sub>   |                                          | 4        | 5.4    | -    | 3                                              | -               | V     |
| High Level Input Voltage Threshold       | V <sub>IH</sub>   |                                          | -        | 5.8    | 7    | -                                              | 8               | V     |
| Input Voltage Hysteresis                 | V <sub>IHYS</sub> |                                          | -        | 0.4    | -    | -                                              | -               | V     |
| Input Pulldown Resistance                | R <sub>I</sub>    |                                          | -        | 200    | -    | 100                                            | 500             | kΩ    |
| UNDERVOLTAGE PROTECTION                  |                   | 1                                        | <u> </u> |        |      | l .                                            | 1               |       |
| V <sub>DD</sub> Rising Threshold         | $V_{DDR}$         |                                          | 7        | 7.3    | 7.8  | 6.5                                            | 8               | V     |
| V <sub>DD</sub> Threshold Hysteresis     | $V_{DDH}$         |                                          | -        | 0.5    | -    | -                                              | -               | V     |
| HB Rising Threshold                      | V <sub>HBR</sub>  |                                          | 6.5      | 6.9    | 7.5  | 6                                              | 8               | V     |
| HB Threshold Hysteresis                  | V <sub>HBH</sub>  |                                          | -        | 0.4    | -    | -                                              | -               | V     |



# Electrical Specifications $V_{DD} = V_{HB} = 12V, V_{SS} = V_{HS} = 0V, No Load on LO or HO, Unless Otherwise Specified. (Continued)$

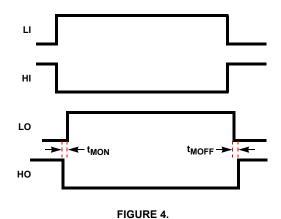
|                              |                  |                                                    | T <sub>J</sub> = +25°C T |      |      | T <sub>J</sub> = -40°C | TO +125°C       |       |
|------------------------------|------------------|----------------------------------------------------|--------------------------|------|------|------------------------|-----------------|-------|
| PARAMETERS                   | SYMBOL           | TEST CONDITIONS                                    | MIN                      | TYP  | MAX  | MIN<br>(Note 7)        | MAX<br>(Note 7) | UNITS |
| BOOT STRAP DIODE             |                  |                                                    |                          |      |      |                        |                 |       |
| Low-Current Forward Voltage  | V <sub>DL</sub>  | I <sub>VDD-HB</sub> = 100μA                        | -                        | 0.45 | 0.55 | -                      | 0.7             | V     |
| High-Current Forward Voltage | V <sub>DH</sub>  | I <sub>VDD-HB</sub> = 100mA                        | -                        | 0.7  | 0.8  | -                      | 1               | V     |
| Dynamic Resistance           | R <sub>D</sub>   | I <sub>VDD-HB</sub> = 100mA                        | -                        | 0.8  | 1    | -                      | 1.5             | Ω     |
| LO GATE DRIVER               |                  |                                                    |                          |      |      |                        |                 |       |
| Low Level Output Voltage     | V <sub>OLL</sub> | I <sub>LO</sub> = 100mA                            | -                        | 0.25 | 0.3  | -                      | 0.4             | V     |
| High Level Output Voltage    | V <sub>OHL</sub> | $I_{LO}$ = -100mA, $V_{OHL}$ = $V_{DD}$ - $V_{LO}$ | -                        | 0.25 | 0.3  | -                      | 0.4             | V     |
| Peak Pullup Current          | I <sub>OHL</sub> | V <sub>LO</sub> = 0V                               | -                        | 2    | -    | -                      | -               | Α     |
| Peak Pulldown Current        | I <sub>OLL</sub> | V <sub>LO</sub> = 12V                              | -                        | 2    | -    | -                      | -               | Α     |
| HO GATE DRIVER               | •                |                                                    |                          |      |      | 11                     | 1               |       |
| Low Level Output Voltage     | V <sub>OLH</sub> | I <sub>HO</sub> = 100mA                            | -                        | 0.25 | 0.3  | -                      | 0.4             | V     |
| High Level Output Voltage    | V <sub>OHH</sub> | $I_{HO}$ = -100mA, $V_{OHH}$ = $V_{HB}$ - $V_{HO}$ | -                        | 0.25 | 0.3  | -                      | 0.4             | V     |
| Peak Pullup Current          | I <sub>OHH</sub> | V <sub>HO</sub> = 0V                               | -                        | 2    | -    | -                      | -               | Α     |
| Peak Pulldown Current        | lolh             | V <sub>HO</sub> = 12V                              | -                        | 2    | -    | -                      | -               | Α     |

### **Switching Specifications** $V_{DD} = V_{HB} = 12V$ , $V_{SS} = V_{HS} = 0V$ , No Load on LO or HO, Unless Otherwise Specified.

|                                                             |                                   |                          | T <sub>J</sub> = +25°C |     | $T_J = -40$ °C | TO +125°C       |                 |       |
|-------------------------------------------------------------|-----------------------------------|--------------------------|------------------------|-----|----------------|-----------------|-----------------|-------|
| PARAMETERS                                                  | SYMBOL                            | TEST<br>CONDITIONS       | MIN                    | ТҮР | MAX            | MIN<br>(Note 7) | MAX<br>(Note 7) | UNITS |
| Lower Turn-Off Propagation Delay (LI Falling to LO Falling) | t <sub>LPHL</sub>                 |                          | -                      | 20  | 35             | -               | 45              | ns    |
| Upper Turn-Off Propagation Delay (HI Falling to HO Falling) | t <sub>HPHL</sub>                 |                          | -                      | 20  | 35             | -               | 45              | ns    |
| Lower Turn-On Propagation Delay (LI Rising to LO Rising)    | t <sub>LPLH</sub>                 |                          | -                      | 20  | 35             | -               | 45              | ns    |
| Upper Turn-On Propagation Delay (HI Rising to HO Rising)    | t <sub>HPLH</sub>                 |                          | -                      | 20  | 35             | -               | 45              | ns    |
| Delay Matching: Lower Turn-On and Upper Turn-Off            | t <sub>MON</sub>                  |                          | -                      | 2   | 8              | -               | 10              | ns    |
| Delay Matching: Lower Turn-Off and Upper Turn-On            | t <sub>MOFF</sub>                 |                          | -                      | 2   | 8              | -               | 10              | ns    |
| Either Output Rise/Fall Time                                | t <sub>RC</sub> , t <sub>FC</sub> | C <sub>L</sub> = 1000pF  | -                      | 10  | -              | -               | -               | ns    |
| Either Output Rise/Fall Time (3V to 9V)                     | t <sub>R</sub> , t <sub>F</sub>   | C <sub>L</sub> = 0.1µF   | -                      | 0.5 | 0.6            | -               | 0.8             | μs    |
| Either Output Rise Time Driving DMOS                        | t <sub>RD</sub>                   | C <sub>L</sub> = IRFR120 | -                      | 20  | -              | -               | -               | ns    |
| Either Output Fall Time Driving DMOS                        | t <sub>FD</sub>                   | C <sub>L</sub> = IRFR120 | -                      | 10  | -              | -               | -               | ns    |
| Minimum Input Pulse Width that Changes the Output           | t <sub>PW</sub>                   |                          | -                      | -   | -              | -               | 50              | ns    |
| Bootstrap Diode Turn-On or Turn-Off Time                    | t <sub>BS</sub>                   |                          | -                      | 10  | -              | -               | -               | ns    |

#### NOTE:

7. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization and are not production tested.




### Pin Descriptions

| SYMBOL          | DESCRIPTION                                                                                                                                                 |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $V_{DD}$        | Positive Supply to lower gate drivers. De-couple this pin to V <sub>SS</sub> . Bootstrap diode connected to HB.                                             |
| НВ              | High-Side Bootstrap supply. External bootstrap capacitor is required. Connect positive side of bootstrap capacitor to this pin. Bootstrap diode is on-chip. |
| НО              | High-Side Output. Connect to gate of High-Side power MOSFET.                                                                                                |
| HS              | High-Side Source connection. Connect to source of High-Side power MOSFET. Connect negative side of bootstrap capacitor to this pin.                         |
| HI              | High-Side input.                                                                                                                                            |
| LI              | Low-Side input.                                                                                                                                             |
| V <sub>SS</sub> | Chip negative supply, generally will be ground.                                                                                                             |
| LO              | Low-Side Output. Connect to gate of Low-Side power MOSFET.                                                                                                  |
| EPAD            | Exposed Pad. Connect to ground or float. The EPAD is electrically isolated from all other pins.                                                             |

### **Timing Diagrams**





### **Typical Performance Curves**

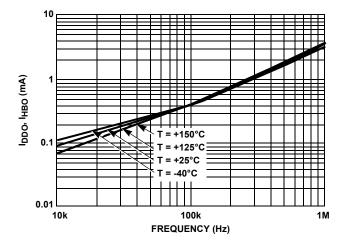



FIGURE 5. OPERATING CURRENT vs FREQUENCY

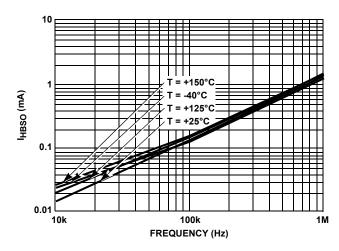



FIGURE 6. HB TO  $V_{SS}$  OPERATING CURRENT vs FREQUENCY

## Typical Performance Curves (Continued)

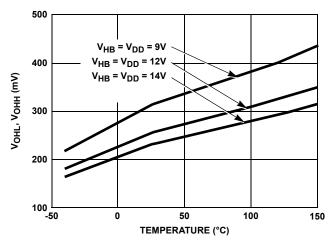



FIGURE 7. HIGH LEVEL OUTPUT VOLTAGE vs TEMPERATURE



FIGURE 9. UNDERVOLTAGE LOCKOUT THRESHOLD vs
TEMPERATURE

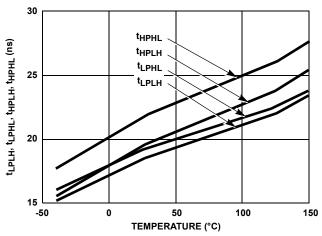



FIGURE 11. PROPAGATION DELAYS vs TEMPERATURE

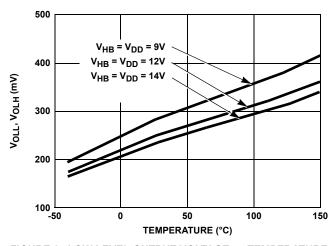



FIGURE 8. LOW LEVEL OUTPUT VOLTAGE vs TEMPERATURE

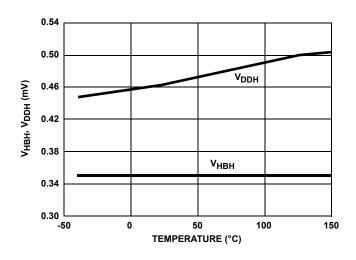



FIGURE 10. UNDERVOLTAGE LOCKOUT HYSTERESIS vs TEMPERATURE

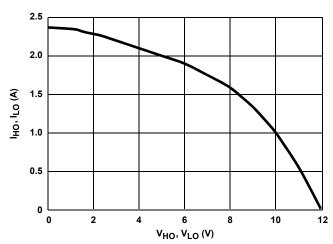



FIGURE 12. PEAK PULLUP CURRENT vs OUTPUT VOLTAGE

## Typical Performance Curves (Continued)

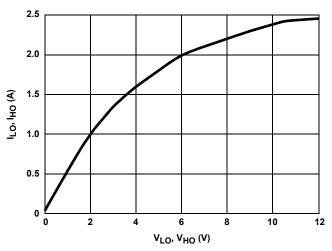



FIGURE 13. PEAK PULLDOWN CURRENT vs OUTPUT VOLTAGE

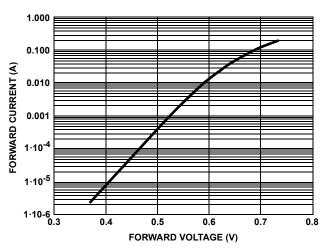



FIGURE 14. BOOTSTRAP DIODE I-V CHARACTERISTICS

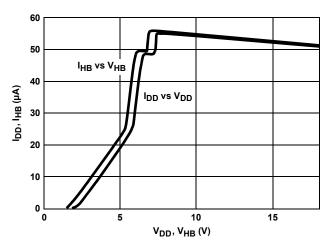



FIGURE 15. QUIESCENT CURRENT vs VOLTAGE

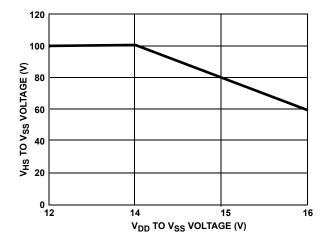



FIGURE 16.  $V_{HS}$  VOLTAGE vs  $V_{DD}$  VOLTAGE

### **Revision History**

The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to the web to make sure that you have the latest revision.

| DATE            | REVISION  | CHANGE                                                                                                                                                                                                                                                                                                                           |
|-----------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| August 31, 2015 | FN4022.15 | Updated Ordering Information Table on page 1.                                                                                                                                                                                                                                                                                    |
|                 |           | Added Revision History and About Intersil sections.                                                                                                                                                                                                                                                                              |
|                 |           | Updated POD M8.15 from rev 1 to rev 4. Changes since rev 1: Updated to new format by removing table, moving dimensions onto drawing and adding land pattern Typical Recommended Land Pattern, changed the following: 2.41(0.095) to 2.20(0.087) 0.76 (0.030) to 0.60(0.023) 0.200 to 5.20(0.205) Changed Note 1 "1982" to "1994" |

#### About Intersil

Intersil Corporation is a leading provider of innovative power management and precision analog solutions. The company's products address some of the largest markets within the industrial and infrastructure, mobile computing and high-end consumer markets.

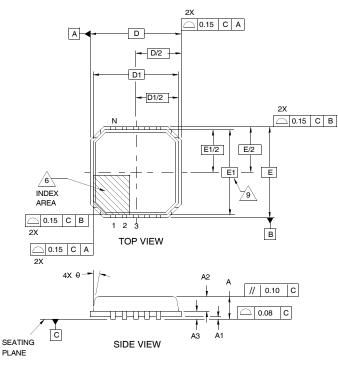
For the most updated datasheet, application notes, related documentation and related parts, please see the respective product information page found at <a href="https://www.intersil.com">www.intersil.com</a>.

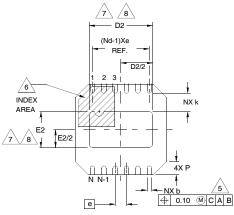
You may report errors or suggestions for improving this datasheet by visiting www.intersil.com/ask.

Reliability reports are also available from our website at www.intersil.com/support

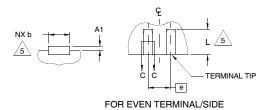
© Copyright Intersil Americas LLC 2004-2015. All Rights Reserved. All trademarks and registered trademarks are the property of their respective owners.

For additional products, see <a href="https://www.intersil.com/en/products.html">www.intersil.com/en/products.html</a>


Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted in the quality certifications found at <a href="https://www.intersil.com/en/support/qualandreliability.html">www.intersil.com/en/support/qualandreliability.html</a>


Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see <a href="https://www.intersil.com">www.intersil.com</a>




### Dual Flat No-Lead Plastic Package (DFN) Micro Lead Frame Plastic Package (MLFP)

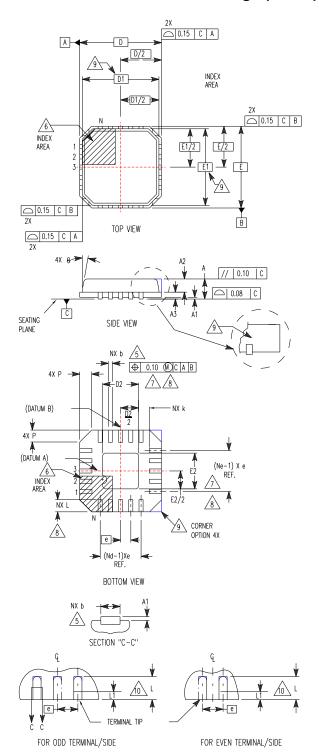




**BOTTOM VIEW** 



L12.4x4A


### 12 LEAD DUAL FLAT NO-LEAD PLASTIC PACKAGE

| SYMBOL | MIN   | NOMINAL   | MAX  | NOTES |  |
|--------|-------|-----------|------|-------|--|
| Α      | -     | 0.85      | 0.90 | -     |  |
| A1     | 0.00  | 0.01      | 0.05 | -     |  |
| A2     | -     | 0.65      | 0.70 | -     |  |
| A3     |       | 0.20 REF  |      | -     |  |
| b      | 0.18  | 0.23      | 0.30 | 5, 8  |  |
| D      |       | 4.00 BSC  |      | -     |  |
| D1     |       | 3.75 BSC  |      | -     |  |
| D2     | 2.65  | 2.65 2.80 |      | 7, 8  |  |
| Е      |       | 4.00 BSC  |      | -     |  |
| E1     |       | 3.75 BSC  |      | -     |  |
| E2     | 1.43  | 1.58      | 1.73 | 7, 8  |  |
| е      |       | 0.50 BSC  |      | -     |  |
| k      | 0.635 | -         | -    | -     |  |
| L      | 0.30  | 0.40      | 0.50 | 8     |  |
| N      |       | 2         |      |       |  |
| Nd     |       | 6         |      |       |  |
| Р      | 0.24  | 0.42      | 0.60 | -     |  |
| θ      | -     | -         | 12   | -     |  |

Rev. 0 8/03

- 1. Dimensioning and tolerancing conform to ASME Y14.5M-1994.
- 2. N is the number of terminals.
- 3. Nd refer to the number of terminals on D.
- 4. All dimensions are in millimeters. Angles are in degrees.
- 5. Dimension b applies to the metallized terminal and is measured between 0.15mm and 0.30mm from the terminal tip.
- The configuration of the pin #1 identifier is optional, but must be located within the zone indicated. The pin #1 identifier may be either a mold or mark feature.
- Dimensions D2 and E2 are for the exposed pads which provide improved electrical and thermal performance.
- 8. Nominal dimensions are provided to assist with PCB Land Pattern Design efforts, see Intersil Technical Brief TB389.
- COMPLIANT TO JEDEC MO-229-VGGD-2 ISSUE C except for the L dimension.

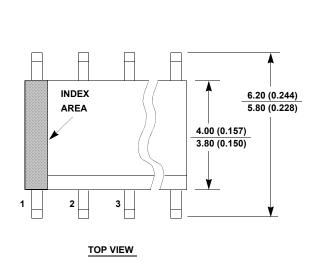
### Quad Flat No-Lead Plastic Package (QFN) Micro Lead Frame Plastic Package (MLFP)

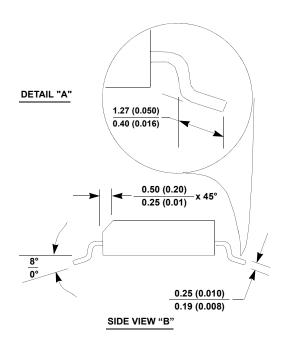


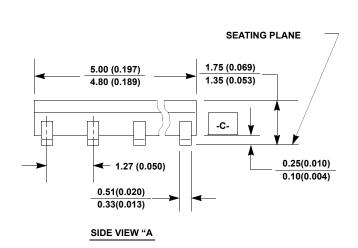
L16.5x5

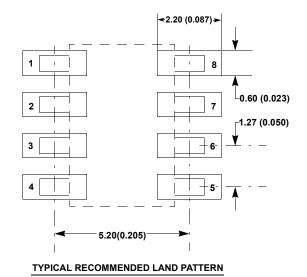
16 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE (COMPLIANT TO JEDEC MO-220VHHB ISSUE C)

| SYMBOL | MIN  | NOMINAL   | MAX  | NOTES |  |  |
|--------|------|-----------|------|-------|--|--|
| Α      | 0.80 | 0.90      | 1.00 | -     |  |  |
| A1     | -    | -         | 0.05 | -     |  |  |
| A2     | -    | -         | 1.00 | 9     |  |  |
| A3     |      | 0.20 REF  |      | 9     |  |  |
| b      | 0.28 | 0.33      | 0.40 | 5, 8  |  |  |
| D      |      | 5.00 BSC  |      | -     |  |  |
| D1     |      | 4.75 BSC  |      | 9     |  |  |
| D2     | 2.55 | 2.70 2.85 |      | 7, 8  |  |  |
| Е      |      | 5.00 BSC  |      |       |  |  |
| E1     |      | 4.75 BSC  |      | 9     |  |  |
| E2     | 2.55 | 2.70      | 2.85 | 7, 8  |  |  |
| е      |      | 0.80 BSC  |      | -     |  |  |
| k      | 0.25 | -         | -    | -     |  |  |
| L      | 0.35 | 0.60      | 0.75 | 8     |  |  |
| L1     | -    | -         | 0.15 | 10    |  |  |
| N      |      | 16        |      |       |  |  |
| Nd     |      | 4         |      |       |  |  |
| Ne     | 4    | 4         |      | 3     |  |  |
| Р      | -    | -         | 0.60 | 9     |  |  |
| θ      | -    | -         | 12   | 9     |  |  |


Rev. 2 10/02

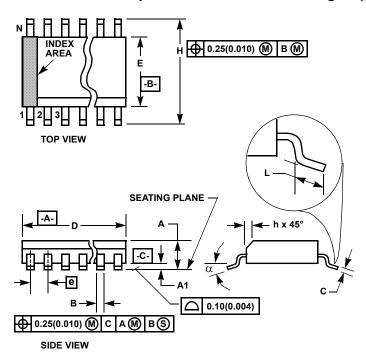

- 1. Dimensioning and tolerancing conform to ASME Y14.5-1994.
- 2. N is the number of terminals.
- 3. Nd and Ne refer to the number of terminals on each D and E.
- 4. All dimensions are in millimeters. Angles are in degrees.
- 5. Dimension b applies to the metallized terminal and is measured between 0.15mm and 0.30mm from the terminal tip.
- The configuration of the pin #1 identifier is optional, but must be located within the zone indicated. The pin #1 identifier may be either a mold or mark feature.
- 7. Dimensions D2 and E2 are for the exposed pads which provide improved electrical and thermal performance.
- 8. Nominal dimensions are provided to assist with PCB Land Pattern Design efforts, see Intersil Technical Brief TB389.
- Features and dimensions A2, A3, D1, E1, P & 0 are present when Anvil singulation method is used and not present for saw singulation.
- Depending on the method of lead termination at the edge of the package, a maximum 0.15mm pull back (L1) maybe present. L minus L1 to be equal to or greater than 0.3mm.

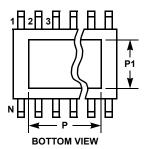

## **Package Outline Drawing**


#### M8.15

8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE Rev 4, 1/12








- 1. Dimensioning and tolerancing per ANSI Y14.5M-1994.
- Package length does not include mold flash, protrusions or gate burrs.
   Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006 inch) per side.
- 3. Package width does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25mm (0.010 inch) per side.
- 4. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
- 5. Terminal numbers are shown for reference only.
- The lead width as measured 0.36mm (0.014 inch) or greater above the seating plane, shall not exceed a maximum value of 0.61mm (0.024 inch).
- Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.
- 8. This outline conforms to JEDEC publication MS-012-AA ISSUE C.

### Small Outline Exposed Pad Plastic Packages (EPSOIC)





M8.15C 8 LEAD NARROW BODY SMALL OUTLINE EXPOSED PAD PLASTIC PACKAGE

|        | INC    | HES    | MILLIM |       |       |
|--------|--------|--------|--------|-------|-------|
| SYMBOL | MIN    | MAX    | MIN    | MAX   | NOTES |
| Α      | 0.056  | 0.066  | 1.43   | 1.68  | -     |
| A1     | 0.001  | 0.005  | 0.03   | 0.13  | -     |
| В      | 0.0138 | 0.0192 | 0.35   | 0.49  | 9     |
| С      | 0.0075 | 0.0098 | 0.19   | 0.25  | -     |
| D      | 0.189  | 0.196  | 4.80   | 4.98  | 3     |
| Е      | 0.150  | 0.157  | 3.811  | 3.99  | 4     |
| е      | 0.050  | BSC    | 1.27   | -     |       |
| Н      | 0.230  | 0.244  | 5.84   | 6.20  | -     |
| h      | 0.010  | 0.016  | 0.25   | 0.41  | 5     |
| L      | 0.016  | 0.035  | 0.41   | 0.89  | 6     |
| N      | 3      | 3      | 8      | 7     |       |
| α      | 0°     | 8°     | 0°     | 8°    | -     |
| Р      | -      | 0.126  | -      | 3.200 | 11    |
| P1     | -      | 0.099  | -      | 2.514 | 11    |

Rev. 1 6/05

- Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication Number 95.
- 2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
- Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006 inch) per side.
- Dimension "E" does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25mm (0.010 inch) per side.
- 5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
- 6. "L" is the length of terminal for soldering to a substrate.
- "N" is the number of terminal positions.
- 8. Terminal numbers are shown for reference only.
- The lead width "B", as measured 0.36mm (0.014 inch) or greater above the seating plane, shall not exceed a maximum value of 0.61mm (0.024 inch).
- 10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.
- Dimensions "P" and "P1" are thermal and/or electrical enhanced variations. Values shown are maximum size of exposed pad within lead count and body size.

## **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Gate Drivers category:

Click to view products by Renesas manufacturer:

Other Similar products are found below:

00028 00053P0231 8967380000 56956 57.404.7355.5 LT4936 57.904.0755.0 5801-0903 5803-0901 5811-0902 5813-0901 58410 00576P0030 00581P0070 5882900001 00103P0020 00600P0005 00-9050-LRPP 00-9090-RDPP 5951900000 01-1003W-10/32-15 5952500000 5952700000 5952800000 0131700000 00-2240 00-2520-RDNP LTP70N06 LVP640 0158-624-00 5J0-1000LG-SIL 020017-13 LY1D-2-5S-AC120 LY2-0-US-AC120 LY2-US-AC240 LY3-UA-DC24 00-5150 00576P0020 00600P0010 LZNQ2M-US-DC5 LZNQ2-US-DC12 LZP40N10 00-8196-RDPP 00-8274-RDPP 00-8275-RDNP 00-8609-RDPP 00-8722-RDPP 00-8728-WHPP 00-8869-RDPP 00-9051-RDPP