International TOR Rectifier

POWER MOSFET THRU-HOLE (TO-257AA)

IRFY240,IRFY240M 200V, N-CHANNEL HEXFET® MOSFET TECHNOLOGY

Product Summary

Part Number	RDS(on)	ΙD	Eyelets		
IRFY240	0.18 Ω	16A	Glass		
IRFY240M	0.18 Ω	16A	Glass		

HEXFET® MOSFET technology is the key to International Rectifier's advanced line of power MOSFET transistors. The efficient geometry design achieves very low on-state resistance combined with high transconductance. HEXFET transistors also feature all of the well-established advantages of MOSFETs, such as voltage control, very fast switching, ease of paralleling and electrical parameter temperature stability. They are well-suited for applications such as switching power supplies, motor controls, inverters, choppers, audio amplifiers, high energy pulse circuits, and virtually any application where high reliability is required. The HEXFET transistor's totally isolated package eliminates the need for additional isolating material between the device and the heatsink. This improves thermal efficiency and reduces drain capacitance.

Features:

- Simple Drive Requirements
- Ease of Paralleling
- Hermetically Sealed
- Electrically Isolated
- Glass Eyelets
- For Space Level Applications Refer to Ceramic Version Part Numbers IRFY240C. IRFY240CM

Absolute Maximum Ratings

	Parameter		Units
ID @ VGS = 10V, TC = 25°C	Continuous Drain Current	16	
ID @ VGS = 10V, TC = 100°C	Continuous Drain Current	10.2	Α
IDM	Pulsed Drain Current ①	64	
P _D @ T _C = 25°C	Max. Power Dissipation	100	W
	Linear Derating Factor	0.8	W/°C
VGS	Gate-to-Source Voltage	±20	V
EAS	Single Pulse Avalanche Energy ②	580	mJ
IAR	Avalanche Current ①	16	Α
EAR	Repetitive Avalanche Energy ①	10	mJ
dv/dt	Peak Diode Recovery dv/dt 3	5.0	V/ns
TJ	Operating Junction	-55 to 150	
TSTG Storage Temperature Range			°C
	Lead Temperature	300(0.063in./1.6mm from case for 10 sec)	
	Weight	3.3 (Typical)	g

For footnotes refer to the last page

Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)

	_					
	Parameter	Min	Тур	Max	Units	Test Conditions
BVDSS	Drain-to-Source Breakdown Voltage	200	_	_	V	VGS = 0V, ID = 1.0mA
ΔBVDSS/ΔTJ	Temperature Coefficient of Breakdown Voltage	-	0.29	_	V/°C	Reference to 25°C, I _D = 1.0mA
RDS(on)	Static Drain-to-Source On-State Resistance	_	_	0.18	Ω	VGS = 10V, ID = 10.2A _④
VGS(th)	Gate Threshold Voltage	2.0	_	4.0	V	$V_{DS} = V_{GS}$, $I_{D} = 250\mu A$
9fs	Forward Transconductance	6.1	_	_	S (7)	V _{DS} > 15V, I _{DS} = 10.2A ④
IDSS	Zero Gate Voltage Drain Current		_	25	μА	V _{DS} = 160V ,V _{GS} =0V
		_	_	250	μΑ	V _{DS} = 160V,
						VGS = 0V, TJ = 125°C
IGSS	Gate-to-Source Leakage Forward	_	_	100	nA	VGS = 20V
IGSS	Gate-to-Source Leakage Reverse	_	_	-100	nA	V _{GS} = -20V
Qg	Total Gate Charge	_	_	60		VGS =10V, ID = 16A
Qgs	Gate-to-Source Charge	_	_	10.6	nC	V _{DS} = 50V
Q _{gd}	Gate-to-Drain ('Miller') Charge		_	37.6		
^t d(on)	Turn-On Delay Time		_	20		V _{DD} = 100V, I _D = 16A,
tr	Rise Time	_	_	152		$R_G = 9.1\Omega$
^t d(off)	Turn-Off Delay Time		_	58	ns	
tf	Fall Time		_	67		
LS+LD	Total Inductance	_	6.8	_	nΗ	Measured from drain lead (6mm/0.25in. from package) to source lead (6mm/0.25in. from package)
C _{iss}	Input Capacitance	_	1300	_		VGS = 0V, VDS = 25V
Coss	Output Capacitance	_	400	_	pF	f = 1.0MHz
C _{rss}	Reverse Transfer Capacitance	_	130	_		

Source-Drain Diode Ratings and Characteristics

	Parameter		Min	Тур	Max	Units	Test Conditions
Is	Continuous Source Current (Body Diode)			_	16	۸	
ISM	Pulse Source Current (Body Diode) ①		-	_	64	Α	
VSD	Diode Forward Voltage		-	_	1.5	V	$T_j = 25$ °C, $I_S = 16A$, $V_{GS} = 0V$ ④
t _{rr}	Reverse Recovery Time			_	500	nS	Tj = 25°C, Iϝ = 16A, di/dt ≤ 100A/μs
QRR	Reverse Recovery Charge			_	5.3	μC	V _{DD} ≤ 50V ④
ton	Forward Turn-On Time	Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by $L_S + L_D$.					

Thermal Resistance

	Parameter	Min	Тур	Max	Units	Test Conditions
RthJC	Junction-to-Case	_	_	1.25		
RthCS	Case-to-sink	_	0.21	_	°C/W	
R _{th} JA	Junction-to-Ambient	_	_	80		Typical socket mount

Note: Corresponding Spice and Saber models are available on the G&S Website.

For footnotes refer to the last page

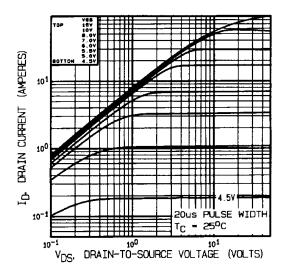


Fig 1. Typical Output Characteristics

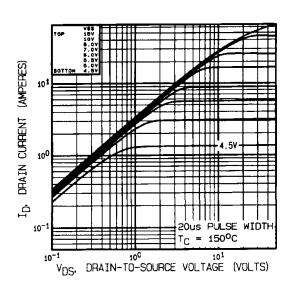


Fig 2. Typical Output Characteristics

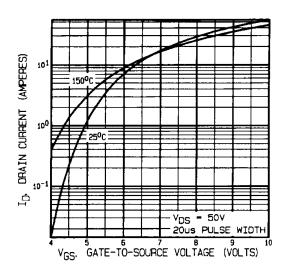
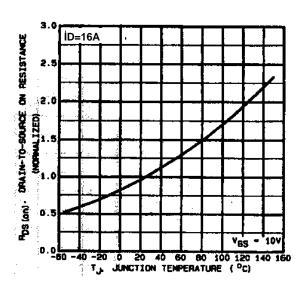
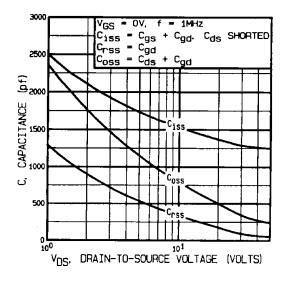
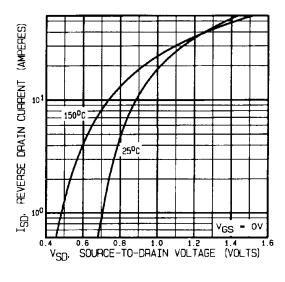
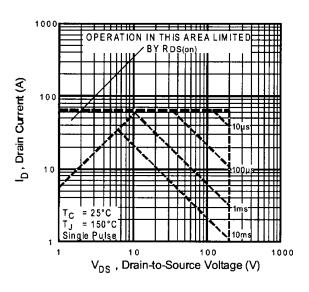




Fig 3. Typical Transfer Characteristics


Fig 4. Normalized On-Resistance Vs. Temperature



DE TOTAL GATE CHARGE (nC)

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

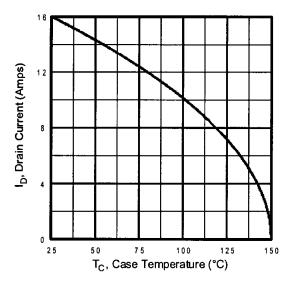


Fig 9. Maximum Drain Current Vs. Case Temperature

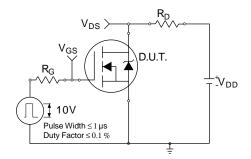


Fig 10a. Switching Time Test Circuit

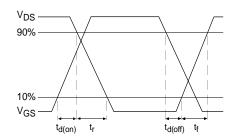


Fig 10b. Switching Time Waveforms

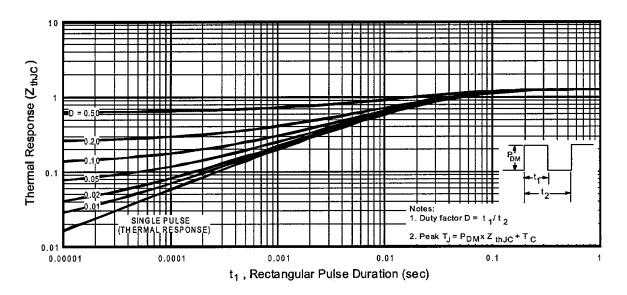


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

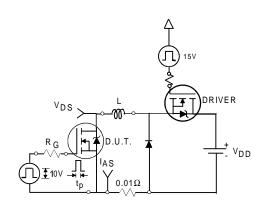


Fig 12a. Unclamped Inductive Test Circuit

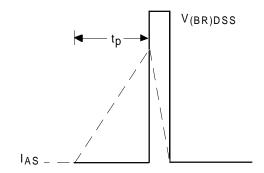


Fig 12b. Unclamped Inductive Waveforms

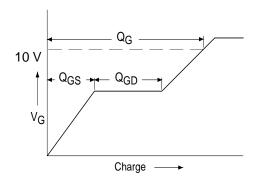



Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

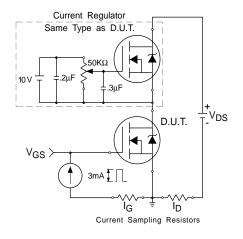
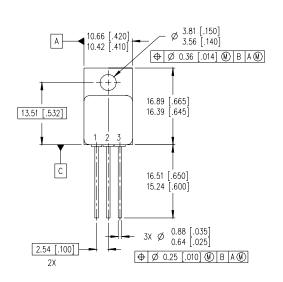
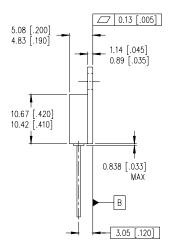


Fig 13b. Gate Charge Test Circuit

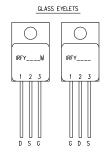



Footnotes:

- ① Repetitive Rating; Pulse width limited by maximum junction temperature.
- ② $V_{DD} = 50V$, starting $T_{J} = 25$ °C, L = 4.5mH Peak $I_{L} = 16A$, $V_{GS} = 10V$

- $3 \text{ ISD} \le 16A$, $di/dt \le 150A/\mu s$, $VDD \le 200V$, $TJ \le 150^{\circ}C$
- ④ Pulse width ≤ 300 μ s; Duty Cycle ≤ 2%

Case Outline and Dimensions — TO-257AA



NOTES:

- 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE TO-257AA.

LEGEND
D - DRAIN
S - SOURCE
G - GATE

International Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice. 04/01

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for infineon manufacturer:

Other Similar products are found below:

TLE6209R BTS442E2E3062ABUMA1 EVALLEDILD6150TOBO1 EVALM113023645ATOBO1 EVALM11302TOBO1 FD1000R33HE3K FD300R06KE3 FF1200R17KE3_B2 FF300R06KE3HOSA1 FF600R12ME4P FF600R17ME4_B11 FP25R12KT4 FP25R12KT4_B11
FS150R12KE3G FS600R07A2E3_B31 FZ1600R17HP4_B2 FZ1800R17KF4 FZ2400R17HE4_B9 FZ600R65KE3 DD261N22K
DF1000R17IE4 BAT 165 E6327 BC 857A E6327 BC 857C E6327 BC858CWH6327 BCR 108 E6327 BCR 133W H6327 BCR 141W
H6327 BCR 198 E6327 BCR401R BCR401U BCX 71G E6327 BDP950H6327XTSA1 BFN 24 E6327 BFN 27 E6327
BSC018NE2LSIATMA1 BSM50GB60DLC BSR802NL6327HTSA1 BSS806NEH6327XTSA1 BSZ036NE2LSATMA1
BSZ086P03NS3EGATMA BTM7811KAUMA1 BUZ30AH3045AATMA1 IPD50N04S4-08 IPW60R190E6FKSA1 IRPLHID2A
KIT_TC1791_SK KIT_XMC45_AE4_002 KIT_XMC4x_COM_ETH-001 EVALM10565DTOBO1