HSMx-A10x-xxxxx

PLCC-2, Surface Mount LED Indicator

Description

This family of SMT LEDs is packaged in the industry standard PLCC-2 package. These SMT LEDs have high reliability performance and are designed to work under a wide range of environmental conditions. This high reliability feature makes them ideally suited to be used under harsh interior automotive as well as interior signs application conditions.

To facilitate easy pick and place assembly, the LEDs are packed in EIA-compliant tape and reel. Every reel will be shipped in single intensity and color bin, except red color, to provide close uniformity.

These LEDs are compatible with IR solder reflow process. Due to the high reliability feature of these products, they can also be mounted using through-the-wave soldering process.

The super wide viewing angle at 120° makes these LEDs ideally suited for panel, push button, or general backlighting in automotive interior, office equipment, industrial equipment, and home appliances. The flat top emitting surface makes it easy for these LEDs to mate with light pipes. With the built-in reflector pushing up the intensity of the light output, these LEDs are also suitable to be used as LED pixels in interior electronic signs.

Features

- Industry standard PLCC-2 package
- High reliability LED package
- High brightness using AllnGaP and InGaN dice technologies
- Available in full selection of colors
- Super wide viewing angle at 120
- Available in 8 mm carrier tape on 7 inch reel (2000 pieces)
- Compatible with both IR and TTW soldering process

Applications

- Interior automotive
- Instrument panel backlighting
- Central console backlighting
- Switch/push button backlighting
- Electronic signs and signals
- Interior full color sign
- Variable message sign
- Office automation, home appliances, industrial equipment
- Front panel backlighting
- Push button backlighting
- Display backlighting

CAUTION! HSMN, M, and E-A10x-xxxxx LEDs are Class 2 ESD sensitive. Please observe appropriate precautions during handling and processing. Refer to Broadcom Application Note AN-1142 for additional details.

Package Dimensions

TOP MOUNT

REVERSE MOUNT

NOTE: ALL DIMENSIONS IN MILLIMETERS.

Device Selection Guide

Red

Part Number	Min IV (mcd)	Typ. IV (mcd)	Max. IV (mcd)	Test Current (mA)	Dice Technology
HSMS-A100-J00J1	4.50	15.00	-	20	GaP
HSMS-A100-L00J1	11.20	15.00	-	20	GaP
HSMS-A100-J80J2	5.60	-	14.00	10	GaP
HSMH-A100-L00J1	11.20	15.00	-	20	AIGaAs
HSMH-A100-N00J1	28.50	50.00	-	20	AlGaAs
HSMC-A100-Q00J1	71.50	100.00	-	20	AllnGaP
HSMC-A100-R00J1	112.50	140.00	-	20	AllnGaP
HSMC-A101-S00J1	180.00	220.00	-	20	AllnGaP
HSMZ-A100-T00J1	285.00	350.00	-	20	AllnGaP
HSMC-A100-N00H1	28.50	-	-	20	AllnGaP
HSMC-A100-Q70J1	90.00	-	180.0	20	AllnGaP
HSMC-A101-S30J1	180.00	-	-	-	255.0
AllnGaP					
HSMC-A101-S40J1	180.00	112.50	-	-	20
HSMZ-A100-R00J1	355.00		-	20	AllnGaP
HSMZ-A100-T70J1				AllnGaP	

Red Orange

Part Number	Min IV (mcd)	Typ. IV (mcd)	Max. IV (mcd)	Test Current (mA)	Dice Technology
HSMJ-A100-Q00J1	71.50	100.00	-	20	AllnGaP
HSMJ-A101-S00J1	180.00	200.00	-	20	AllnGaP
HSMJ-A100-T40J1	285.00	-	715.00	20	AllnGaP
HSMV-A100-T00J1	285.00	350.00	-	20	AllnGaP
HSMJ-A100-R40J1	112.50	-	285.00	20	AllnGaP

Orange

Part Number	Min IV (mcd)	Typ. IV (mcd)	Max. IV (mcd)	Test Current (mA)	Dice Technology
HSMD-A100-J00J1	4.50	15.00	-	20	GaP
HSMD-A100-L00J1	11.20	15.00	-	20	GaP
HSMD-A100-K4PJ2	7.20	-	18.00	10	GaP
HSML-A100-Q00J1	71.50	100.00	-	20	AllnGaP
HSML-A101-S00J1	180.00	220.00	-	20	AllnGaP

Yellow/Amber

Part Number	Min IV (mcd)	Typ. IV (mcd)	Max. IV (mcd)	Test Current (mA)	Dice Technology
HSMY-A100-J00J1	4.50	12.00	-	20	GaP
HSMY-A100-L00J1	11.20	12.00	-	20	GaP
HSMA-A100-Q00J1	71.50	100.00	-	20	AllnGaP
HSMA-A101-S00J1	180.00	220.00	-	20	AllnGaP
HSMU-A100-S00J1	180.00	320.00	-	20	AllnGaP
HSMA-A101-R8WJ1	140.00	-	355.00	20	AllnGaP
HSMA-A100-Q00H1	71.50	-	-	20	AllnGaP
HSMA-A100-R40J1	112.50	-	285.00	20	AllnGaP
HSMA-A100-R45J1	12.50	-	285.00	20	AllnGaP
HSMA-A101-S3WJ1	180.00	-	355.00	20	AllnGaP

Yellow Green

Part Number	Min IV (mcd)	Typ. IV (mcd)	Max. IV (mcd)	Test Current (mA)	Dice Technology
HSMG-A100-J02J1	4.50	18.00	-	20	GaP
HSMG-A100-K72J2	9.00	-	18.00	10	GaP
HSME-A100-M02J1	18.00	70.00	-	20	AllnGaP
HSME-A100-N82J1	35.50	-	90.00	20	AllnGaP

Emerald Green

Part Number	Min IV (mcd)	Typ. IV (mcd)	Max. IV (mcd)	Test Current (mA)	Dice Technology
HSMG-A100-H01J1	2.80	8.00	-	20	GaP
HSME-A100-L01J1	11.20	40.00	-	20	AllnGaP
HSME-A100-M3PJ1	18.00	-	35.50	20	AllnGaP
HSMG-A100-K42J2	7.20	-	18	20	GaP
HSMG-A100-L02J1	11.20	-	-	20	GaP

Green

Part Number	Min IV (mcd)	Typ. IV (mcd)	Max. IV (mcd)	Test Current (mA)	Dice Technology
HSMM-A101-R00J1	112.50	200.00	-	20	InGaN
HSMM-A100-S00J1	180.00	350.00	-	20	InGaN
HSMM-A100-U4PJ1	450.00	-	1125.00	20	InGaN
HSMM-A101-R00H1	112.50	-	-	20	InGaN

Blue

Part Number	Min IV (mcd)	Typ. IV (mcd)	Max. IV (mcd)	Test Current (mA)	Dice Technology
HSMN-A101-N00J1	28.50	50.00	-	20	InGaN
HSMN-A100-P00J1	45.00	70.00	-	20	InGaN
HSMN-A100-S4YJ1	180.00	-	450.00	20	InGaN
HSMN-A100-R8YJ1	140.00	-	355.00	20	$\ln G a N$
HSMN-A100-R00J1	112.50	-	-	20	$\ln G a N$

Part Numbering System

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}} \mathbf{=} \mathbf{2 5}^{\circ} \mathrm{C}$)

Parameters	HSMS/D/Y/G	HSMH	HSMC/J/L/A	HSME	HSMZ/V/U	HSMM/N
DC Forward Current ${ }^{\text {a }}$	30 mA	30 mA	30 mA , c	$20 \mathrm{~mA}{ }^{\text {c }}$	30 mA , c	30 mA
Peak Forward Current ${ }^{\text {d }}$	100 mA					
Power Dissipation	63 mW	60 mW	63 mW	48 mW	63 mW	114 mA
Reverse Voltage	5 V					
Junction Temperature	$110^{\circ} \mathrm{C}$					
Operating Temperature	$-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$					
Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$					

a. Derate linearly as shown in Figure 4.
b. Drive current between 10 mA and 30 mA is recommended for best long term performance.
c. Operation at current below 5 mA is not recommended.
d. Duty factor $=10 \%$, Frequency $=1 \mathrm{kHz}$.

Optical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Color	Part Number	Dice Technology	Peak Wavelength $\lambda_{\text {PEAK }}(\mathrm{nm})$ Typ.	Dominant Wavelength ${ }^{\text {a }}$ $\lambda_{D}(\mathrm{~nm})$ Typ.	Viewing Angle $\begin{gathered} 2 \theta_{1 / 2}{ }^{b} \\ \text { (Degrees) } \\ \text { Typ. } \end{gathered}$	Luminous Efficacy $\eta_{v}{ }^{\text {c }}$ ($\mathrm{I}_{\mathrm{m}} / \mathrm{W}$) Typ.	Luminous Intensity/Total Flux $I_{v}(\mathrm{mcd}) /$ $\Phi_{\mathrm{v}}(\mathrm{mlm})$ Typ.
Red	HSMS-A100	GaP	635	626	120	120	0.45
	HSMH-A100	AIGaAs	645	637	120	63	0.45
	HSMC-A10x	AllnGaP	635	626	120	150	0.45
	HSMZ-A100	AllnGaP	635	626	120	155	0.45
Red	HSMJ-A10x	AllnGaP	621	615	120	240	0.45
Orange	HSMV-A100	AllnGaP	623	617	120	263	0.45
Orange	HSMD-A100	GaP	600	602	120	380	0.45
	HSML-A10x	AllnGaP	609	605	120	320	0.45
Amber	HSMY-A100	GaP	583	585	120	520	0.45
	HSMA-A10x	AllnGaP	592	590	120	480	0.45
	HSMU-A100	AllnGaP	594	592	120	500	0.45
Yellow Green	HSMG-A100	GaP	565	569	120	590	0.45
	HSME-A100	AllnGaP	575	570	120	560	0.45
Emerald Green	HSMG-A100	GaP	558	560	120	650	0.45
	HSME-A100	AllnGaP	566	560	120	610	0.45
Green	HSMM-A10x	InGaN	523	525	120	500	0.45
Blue	HSMN-A10x	InGaN	468	470	120	75	0.45

a. The dominant wavelength, λ_{D}, is derived from the CIE Chromaticity Diagram and represents the color of the device.
b. $\theta_{1 / 2}$ is the off -axis angle where the luminous intensity is $1 / 2$ the peak intensity.
c. Radiant intensity, le in watts/steradian, may be calculated from the equation $l e=I_{V} / \eta_{v}$, where I_{V} is the luminous intensity in candelas and η_{v} is the luminous efficacy in lumens/watt.

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Part Number	Forward Voltage V_{F} (Volts) at $\mathrm{I}_{\mathbf{F}}=\mathbf{2 0} \mathrm{mA}$		Reverse Voltage $\mathbf{V}_{\mathbf{R}}$ at $100 \mu \mathrm{~A}$ Min.	Reverse Voltage $\mathbf{V}_{\mathbf{R}}$ at $10 \mu \mathrm{~A}$ Min.	Thermal Resistance $R \theta_{\mathrm{JP}}\left({ }^{\circ} \mathrm{CW}\right)$
	Typ.	Max.			
HSMS/D/Y/G	2.2	2.6	5		180
HSMH	1.9	2.6	5		180
HSMC/J/L/A/E	1.9	2.4	5		280
HSMZ/V/U	1.9	2.4	5		280
HSMM/N	3.4	4.05		5	280

Figure 1: Relative Intensity vs. Wavelength

Figure 2: Forward Current vs. Forward Voltage

Figure 4: Maximum Forward Current vs. Ambient Temperature, Derated Based on $\mathrm{T}_{\mathrm{J}} \mathrm{MAX}=110^{\circ} \mathrm{C}, \mathrm{R} \theta_{\mathrm{JA}}=500^{\circ} \mathrm{C} / \mathrm{W}$

Figure 6: Dominant Wavelength vs. Forward Current (InGaN Devices)

Figure 3: Relative Intensity vs. Forward Current

Figure 5: Maximum Forward Current vs. Solder Point Temperature, Derated Based on $\mathrm{T}_{\mathrm{J}} \mathrm{MAX}=110^{\circ} \mathrm{C}, \mathrm{R} \theta_{\mathrm{JA}}=180$ ${ }^{\circ} \mathrm{C} / \mathrm{W}$ or $280^{\circ} \mathrm{C} / \mathrm{W}$

Figure 7: Forward Voltage Shift vs. Temperature

Figure 8: Radiation Pattern

NOTE: For detailed information on reflow soldering of Broadcom surface mount LEDs, refer to Broadcom Application Note AN 1060, Surface Mounting SMT LED Indicator Components.

Reflow soldering must not be done more than twice. Observe necessary precautions of handling moisture sensitive device as stated in the following section.

Figure 9: Recommended Soldering Pad Pattern

\square SOLDER RESIST

Figure 10: Tape Leader and Trailer Dimensions

Figure 11: Tape Dimensions

Figure 12: Reel Dimensions

Figure 13: Reeling Orientation

Intensity Bin Select ($\mathrm{X}_{5} \mathrm{X}_{6}$)

Individual reel will contain parts from one half bin only.

X_{5}	Min. IV Bin
X_{6}	
0	Full Distribution
2	2 half bins starting from $\mathrm{X}_{5} 1$
3	3 half bins starting from $\mathrm{X}_{5} 1$
4	4 half bins starting from $\mathrm{X}_{5} 1$
5	5 half bins starting from $\mathrm{X}_{5} 1$
6	2 half bins starting from $\mathrm{X}_{5} 2$
7	3 half bins starting from $\mathrm{X}_{5} 2$
8	4 half bins starting from $\mathrm{X}_{5} 2$
9	5 half bins starting from $\mathrm{X}_{5} 2$

Intensity Bin Limits

Bin ID	Min. (mcd)	Max. (mcd)
G1	1.80	2.24
G2	2.24	2.80
H1	2.80	3.55
H2	3.55	4.50
J1	4.50	5.60
J2	5.60	7.20
K1	7.20	9.00
K2	9.00	11.20
L1	11.20	14.00
L2	14.00	18.00
M1	18.00	22.40
M2	22.40	28.50
N1	28.50	35.50
N2	35.50	45.00
P1	45.00	56.00
P2	56.00	71.50
Q1	71.50	90.00
Q2	90.00	112.50
R1	112.50	140.00
R2	140.00	180.00
S1	180.00	224.00
S2	224.00	285.00
T1	285.00	355.00
T2	355.00	450.00
U1	450.00	560.00
U2	560.00	715.00
V1	715.00	900.00
V2	900.00	1125.00
W1	1125.00	1400.00
W2	1400.00	2240.00
X1	1800.00	
X2	2240.00	

Tolerance of each bin limit $= \pm 12 \%$

Color Bin Select (X_{7})

Individual reel will contain parts from one full bin only.

X $_{\mathbf{7}}$	
0	Full distribution
Z	A and B only
Y	B and C only
W	C and D only
V	D and E only
U	E and F only
T	F and G only
S	G and H only
Q	A, B, and C only
P	B, C, and D only
N	C, D, and E only
M	D, E, and F only
L	E, F, and G only
K	F, G, and H only
1	A, B, C, and D only
2	E, F, G, and H only
3	B, C, D, and E only
4	C, D, E, and F only
5	A, B, C, D, and E only
6	B, C, D, E, and F only

Color Bin Limits

Color	Min. (nm)	Max. (nm)
Blue		
A	460.0	465.0
B	465.0	470.0
C	470.0	475.0
Green	475.0	480.0
A	515.0	520.0
C	520.0	525.0
D	525.0	530.0
Emerald Green	530.0	535.0
B	552.5	555.5
C	555.5	558.5
D	558.5	561.5
Yellow Green	561.5	564.5
E	564.5	567.5
F	567.5	570.5
G	570.5	573.5
H	573.5	576.5
A		

Amber

A	582.0	584.5
B	584.5	587.0
C	587.0	589.5
D	589.5	592.0
E	592.0	594.5
F	594.5	597.0

Orange

A	597.0	600.0
B	600.0	603.0
C	603.0	606.0
D	606.0	609.0
E	609.0	612.0

Red Orange

A	611.0	616.0
B	616.0	620.0

Red

Full distribution

Packaging Option ($\mathrm{X}_{8} \mathrm{X}_{9}$)

Option	Test Current	Package Type	Reel Size
J1	20 mA	Top Mount	7 inches
J 4	20 mA	Top Mount	13 inches
H1	20 mA	Reverse Mount	7 inches
H4	20 mA	Reverse Mount	13 inches
J2	10 mA	Top Mount	7 inches
J5	10 mA	Top Mount	13 inches
H2	10 mA	Reverse Mount	7 inches
H5	10 mA	Reverse Mount	13 inches
L2	2 mA	Top Mount	7 inches

Precautionary Notes

Soldering

- Do not perform reflow soldering more than twice. Observe necessary precautions of handling moisturesensitive device as stated in the following section.
- Do not apply any pressure or force on the LED during reflow and after reflow when the LED is still hot.
- Use reflow soldering to solder the LED. Use hand soldering only for rework if unavoidable, but it must be strictly controlled to following conditions:
- Soldering iron tip temperature $=315^{\circ} \mathrm{C}$ max.
- Soldering duration $=3$ s max.
- Number of cycles = 1 only
- Power of soldering iron $=50 \mathrm{~W}$ max.
- Do not touch the LED package body with the soldering iron except for the soldering terminals, as it may cause damage to the LED.
- Confirm beforehand whether the functionality and performance of the LED is affected by soldering with hand soldering.

Figure 14: Recommended Pb-Free Reflow Soldering Profile

Figure 15: Recommended Board Reflow Direction

Handling Precautions

For automated pick and place, Broadcom has tested a nozzle size with OD 1.5 mm to work with this LED. However, due to the possibility of variations in other parameters such as pick and place machine maker/model, and other settings of the machine, verify that the selected nozzle will not cause damage to the LED.

Handling of Moisture-Sensitive Devices

This product has a Moisture Sensitive Level 2a rating per JEDEC J-STD-020. Refer to Broadcom Application Note AN5305, Handling of Moisture Sensitive Surface Mount Devices for additional details and a review of proper handling procedures.

- Before use:
- An unopened moisture barrier bag (MBB) can be stored at $<40^{\circ} \mathrm{C} / 90 \% \mathrm{RH}$ for 12 months. If the actual shelf life has exceeded 12 months and the Humidity Indicator Card (HIC) indicates that baking is not required, then it is safe to reflow the LEDs per the original MSL rating.
- Do not open the MBB prior to assembly (for example, for IQC). If unavoidable, MBB must be properly resealed with fresh desiccant and HIC. The exposed duration must be taken in as floor life.
- Control after opening the MBB:
- Read the HIC immediately upon opening of MBB.
- Keep the LEDs at $<30^{\circ} / 60 \% \mathrm{RH}$ at all times, and complete all high temperature-related processes, including soldering, curing or rework within 672 hours.
- Control for unfinished reel:

Store unused LEDs in a sealed MBB with desiccant or a desiccator at $<5 \% \mathrm{RH}$.

- Control of assembled boards:

If the PCB soldered with the LEDs is to be subjected to other high-temperature processes, store the PCB in a sealed MBB with desiccant or desiccator at $<5 \%$ RH to ensure that all LEDs have not exceeded their floor life of 168 hours.

- Baking is required if:
- The HIC indicator indicates a change in color for 10% and 5%, as stated on the HIC.
- The LEDs are exposed to conditions of $>30^{\circ} \mathrm{C} / 60 \%$ RH at any time.
- The LED's floor life exceeded 168 hours.

The recommended baking condition is: $60 \pm 5^{\circ} \mathrm{C}$ for 20 hours.
Baking can only be done once.

- Storage:

The soldering terminals of these Broadcom LEDs are silver plated. If the LEDs are exposed in ambient environment for too long, the silver plating might be oxidized, thus affecting its solderability performance. As such, keep unused LEDs in a sealed MBB with desiccant or in a desiccator at $<5 \% \mathrm{RH}$.

Application Precautions

- The drive current of the LED must not exceed the maximum allowable limit across temperature as stated in the data sheet. Constant current driving is recommended to ensure consistent performance.
- Circuit design must cater to the whole range of forward voltage $\left(V_{F}\right)$ of the LEDs to ensure the intended drive current can always be achieved.
- The LED exhibits slightly different characteristics at different drive currents, which may result in a larger variation of performance (meaning: intensity, wavelength, and forward voltage). Set the application current as close as possible to the test current to minimize these variations.
- The LED is not intended for reverse bias. Use other appropriate components for such purposes. When driving the LED in matrix form, ensure that the reverse bias voltage does not exceed the allowable limit of the LED.
- Do not use the LED in the vicinity of material with sulfur content or in environments of high gaseous sulfur compounds and corrosive elements. Examples of material that might contain sulfur are rubber gaskets, room- temperature vulcanizing (RTV) silicone rubber, rubber gloves, and so on. Prolonged exposure to such environments may affect the optical characteristics and product life.
- White LEDs must not be exposed to acidic environments and must not be used in the vicinity of any compound that may have acidic outgas, such as, but not limited to, acrylate adhesive. These environments have an adverse effect on LED performance.
- This LED is designed to have enhanced gas corrosion resistance. Its performance has been tested according to the conditions below:
- IEC 60068-2-43: $25^{\circ} \mathrm{C} / 75 \% \mathrm{RH}, \mathrm{H} 2 \mathrm{~S} 15 \mathrm{ppm}, 21$ days
- IEC 60068-2-42: $25^{\circ} \mathrm{C} / 75 \% \mathrm{RH}$, SO2 $25 \mathrm{ppm}, 21$ days
- IEC 60068-2-60: 25º$/ 75 \%$ RH, SO2 200 ppb, NO2 $200 \mathrm{ppb}, \mathrm{H} 2 \mathrm{~S} 10 \mathrm{ppb}, \mathrm{Cl} 210 \mathrm{ppb}, 21$ days.
- As actual application might not be exactly similar to the test conditions, do verify that the LED will not be damaged by prolonged exposure in the intended environment.
- Avoid rapid change in ambient temperature, especially in high-humidity environments, because they cause condensation on the LED.
- If the LED is intended to be used in harsh or outdoor environment, protect the LED against damages caused by rain water, water, dust, oil, corrosive gases, external mechanical stresses, and so on.

Thermal Management

The optical, electrical, and reliability characteristics of the LED are affected by temperature. Keep the junction temperature (T_{J}) of the LED below the allowable limit at all times. T_{J} can be calculated as follows:
$\mathrm{T}_{J}=\mathrm{T}_{\mathrm{A}}+\mathrm{R}_{\theta \mathrm{JJ}-\mathrm{A}} \times \mathrm{I}_{\mathrm{F}} \times \mathrm{V}_{\mathrm{Fmax}}$
where;

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}=\text { ambient temperature }\left({ }^{\circ} \mathrm{C}\right) \\
& \mathrm{R}_{\theta \mathrm{J}-\mathrm{A}}=\text { thermal resistance from LED junction to ambient } \\
& \left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \\
& \mathrm{I}_{\mathrm{F}}=\text { forward current }(\mathrm{A}) \\
& \mathrm{V}_{\mathrm{Fmax}}=\text { maximum forward voltage }(\mathrm{V})
\end{aligned}
$$

The complication of using this formula lies in T_{A} and $R_{\theta J-A}$. Actual T_{A} is sometimes subjective and hard to determine. $R_{\theta J-\mathrm{A}}$ varies from system to system depending on design and is usually not known.

Another way of calculating T_{J} is by using the solder point temperature, TS as follows:
$\mathrm{T}_{J}=\mathrm{T}_{\mathrm{S}}+\mathrm{R}_{\theta \mathrm{J}-\mathrm{S}} \times \mathrm{I}_{\mathrm{F}} \times \mathrm{V}_{\mathrm{Fmax}}$
where;
$\mathrm{T}_{\mathrm{S}}=$ LED solder point temperature as shown in the following figure (${ }^{\circ} \mathrm{C}$)
$\mathrm{R}_{\theta \mathrm{J}-\mathrm{S}}=$ thermal resistance from junction to solder point (${ }^{\circ} \mathrm{C} / \mathrm{W}$)
$\mathrm{I}_{\mathrm{F}}=$ forward current (A)
$\mathrm{V}_{\text {Fmax }}=$ maximum forward voltage (V)
Figure 16: Solder Point Temperatures on PCB

T_{S} can be easily measured by mounting a thermocouple on the soldering joint as shown in preceding figure, while $\mathrm{R}_{\theta \mathrm{JJ}-\mathrm{S}}$ is provided in the data sheet. Verify the T_{S} of the LED in the final product to ensure that the LEDs are operating within all maximum ratings stated in the data sheet.

Eye Safety Precautions

LEDs may pose optical hazards when in operation. Do not look directly at operating LEDs because it might be harmful to the eyes. For safety reasons, use appropriate shielding or personal protective equipment.

Disclaimer

Broadcom's products and software are not specifically designed, manufactured, or authorized for sale as parts, components, or assemblies for the planning, construction, maintenance, or direct operation of a nuclear facility or for use in medical devices or applications. The customer is solely responsible, and waives all rights to make claims against Broadcom or its suppliers, for all loss, damage, expense, or liability in connection with such use.

Broadcom, the pulse logo, Connecting everything, Avago Technologies, Avago, and the A logo are among the trademarks of Broadcom and/or its affiliates in the United States, certain other countries, and/or the EU.

Copyright © 2017-2018 Broadcom. All Rights Reserved.
The term "Broadcom" refers to Broadcom Limited and/or its subsidiaries. For more information, please visit www.broadcom.com.

Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design. Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does not assume any liability arising out of the application or use of this information, nor the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Standard LEDs - SMD category:
Click to view products by Broadcom manufacturer:
Other Similar products are found below :
LTST-C19GD2WT LTST-N683GBEW 597-3006-607F 597-3403-607F LTW-K140SZR40 LTW-M140ZVS 598-8110-100F 598-8170-100F 598-8610-202F 7012 X 7 AAAF5060QBFSEEZGS 12-22SURSYGC/S530-A3/E2/TR8 1383SURT/S530-A3/TR1(R) APT1608QGW EASV1803BA0 SML310BATT86 SML-512VWT86A SML-LX0606SISUGC/A SML-LXL1307SRC-TR SML-LXR851SIUPGUBC LT1ED53A 17-21/G6C-FM1N2B/3T FAT801-S SSL-LXA227IC-TR31A AM27ZGC03 APB3025SGNC APHK1608VGCA APT2012QGW CLMVC-FKA-CA1E1L81BB7C3C3 CLYBA-FKA-CFHHKL9BBB7A363 CMD11504UR LTW-020ZDCG LTW-21TS5 LTW-K140SZR30 HSMY-C177 UYGT801-S KVH1C100MF6R 42-21SYGC/S530-E1/TR8 YGFR411-H 597-2311-402F 597-2712-602F 5973212407NF 597-3302-607F 597-5202-407F 598-8330-117F SAW8WA2A-L35M40-CA SML013WBDW1 SML-LX0402IC-TR CLMVC-FKACLBDGL7LBB79353 VLMKG3400-GS08

