# 0 to 16V, Hot-Swap Controller with 10-Bit Current, Voltage Monitor, and 4 LED Drivers 

## General Description

The MAX5978 hot-swap controller provides complete protection for systems with a supply voltage from 0 to 16 V. The device includes four programmable LED outputs.
The IC provides two programmable levels of overcurrent circuit-breaker protection: a fast-trip threshold for a fast turn-off, and a lower slow-trip threshold for a delayed turn-off. The maximum overcurrent circuitbreaker threshold range is set with a trilevel logic input (IRNG), or by programming through the $\mathrm{I}^{2} \mathrm{C}$ interface.
The IC is an advanced hot-swap controller that monitors voltage and current with an internal 10-bit ADC, which is continuously multiplexed to convert the output voltage and current at 10ksps. Each 10-bit sample is stored in an internal circular buffer so that 50 past samples of each signal can be read back through the $\mathrm{I}^{2} \mathrm{C}$ interface at any time or after a fault condition.

The device includes five user-programmable digital comparators to implement overcurrent warning and two levels of overvoltage/undervoltage detection. When measured values violate the programmable limits, an external $\overline{A L E R T}$ output is asserted. In addition to the $\overline{\text { ALERT }}$ signal, the IC can be programmed to deassert the powergood signal and/or turn off the external MOSFET.
The IC features four I/Os that can be independently configured as general-purpose input/outputs (GPIOs) or as open-drain LED drivers with programmable blinking. These four I/Os can be configured for any mix of LED driver or GPIO function.
The device is available in a 32 -pin thin QFN-EP package and operates over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ extended temperature range.

## Ordering Information

| PART | TEMP RANGE | PIN-PACKAGE |
| :---: | :---: | :---: |
| MAX5978ETJ + | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 32 TQFN-EP* |

+Denotes a lead(Pb)-free/RoHS-compliant package.
*EP = Exposed pad.

- Hot-Swap Controller Operates from 0 to 16V
- 10-Bit ADC Monitors Load Voltage and Current
- Circular Buffers Store 5ms of Current and Voltage Measurements
- Internal Charge Pump Generates n-Channel MOSFET Gate Drive
- Internal 500mA Gate Pulldown Current for Fast Shutdown
- VariableSpeed/Bilevel ${ }^{\text {TM }}$ Circuit-Breaker Protection
- Precision-Voltage Enable Input
- Alert Output Indicates Fault and Warning Conditions
- Open-Drain Power-Good Output with Programmable Polarity
- Open-Drain Fault Output
- Four Open-Drain General-Purpose Outputs Sink 25mA to Directly Drive LEDs
- Programmable LED Flashing Function
- Latched-Off Fault Management
- 400kHz I2C Interface
- Small, 5mm x 5mm, 32-Pin TQFN-EP Package

Applications
Blade Servers
DC Power Metering
Disk Drives/DASD/Storage Systems
Soft-Switch for ASICs, FPGAs, and Microcontrollers

Network Switches/Routers

VariableSpeed/Bilevel is a trademark of Maxim Integrated Products, Inc.

# 0 to 16V, Hot-Swap Controller with 10-Bit Current, Voltage Monitor, and 4 LED Drivers 

## ABSOLUTE MAXIMUM RATINGS



| 2-Pin TQFN (derate $34.5 \mathrm{~mW} / /^{\circ} \mathrm{C}$ above $\left.+70^{\circ} \mathrm{C}\right) \ldots . .2759 \mathrm{~m}$ |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

GATE, MON, GND Current ............................................ 750 mA
*As per JEDEC51 Standard (Multilayer Board).
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V} I \mathrm{~N}=2.7 \mathrm{~V}\right.$ to $16 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V} I \mathrm{~N}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) ( Note 2 )

| PARAMETER | SYMBOL | CONDITIONS |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Input Voltage Range | VIN |  |  | 2.7 |  | 16 | V |
| Hot-Swap Voltage Range |  |  |  | 0 |  | 16 | V |
| Supply Current | IIN |  |  |  | 2.5 | 4 | mA |
| Internal LDO Output Voltage | REG | IREG $=0$ to | mA, V IN $=2.7 \mathrm{~V}$ to 16 V | 2.49 | 2.53 | 2.6 | V |
| Undervoltage Lockout | UVLO | $\mathrm{V}_{\text {IN }}$ rising |  |  |  | 2.6 | V |
| Undervoltage-Lockout Hysteresis | UVLOHYS |  |  |  | 100 |  | mV |
| CURRENT-MONITORING FUNCTION |  |  |  |  |  |  |  |
| MON, SENSE Input Voltage Range |  |  |  | 0 |  | 16 | V |
| SENSE Input Current |  | $V_{\text {SENSE }} \mathrm{V}_{\text {MON }}=16 \mathrm{~V}$ |  |  | 32 | 75 | $\mu \mathrm{A}$ |
| MON Input Current |  | $V_{\text {SENSE }}, V_{\text {MON }}=16 \mathrm{~V}$ |  |  | 180 | 280 | $\mu \mathrm{A}$ |
| Current Measurement LSB <br> Voltage |  | 25 mV range |  | 24.34 |  |  | $\mu \mathrm{V}$ |
|  |  | 50 mV range |  | 48.39 |  |  |  |
|  |  | 100 mV range |  | 96.77 |  |  |  |
| Current Measurement Error (25mV Range) |  | $\mathrm{V}_{\text {MON }}=0 \mathrm{~V}$ | VSENSE $-\mathrm{V}_{\text {MON }}=5 \mathrm{mV}$ | -6.57 |  | +6.22 | \%FS |
|  |  |  | VSENSE - VMON $=20 \mathrm{mV}$ | -6.71 |  | +6.82 |  |
|  |  | $\begin{aligned} & \text { VMON }= \\ & 2.5 \mathrm{~V} \text { to } 16 \mathrm{~V} \end{aligned}$ | VSENSE $-\mathrm{V}_{\text {MON }}=5 \mathrm{mV}$ | -9.71 |  | +8.92 |  |
|  |  |  | VSENSE - VMON $=20 \mathrm{mV}$ | -10.24 |  | +9.36 |  |
| Current Measurement Error <br> (50mV Range) |  | $\mathrm{V}_{\mathrm{MON}}=0 \mathrm{~V}$ | VSENSE $-\mathrm{V}_{\text {MON }}=10 \mathrm{mV}$ | -4.24 |  | +3.78 | \%FS |
|  |  |  | VSENSE - VMON $=40 \mathrm{mV}$ | -4.53 |  | +5.36 |  |
|  |  | $\begin{aligned} & \text { VMON }= \\ & 2.5 \mathrm{~V} \text { to } 16 \mathrm{~V} \end{aligned}$ | VSENSE - VMON $=10 \mathrm{mV}$ | -4.50 |  | +4.00 |  |
|  |  |  | $V_{\text {SENSE }}-\mathrm{V}_{\text {MON }}=40 \mathrm{mV}$ | -4.20 |  | +4.50 |  |

## 0 to 16V, Hot-Swap Controller with 10-Bit Current, Voltage Monitor, and 4 LED Drivers

## ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V} I \mathrm{~N}=2.7 \mathrm{~V}\right.$ to $16 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V} I \mathrm{~N}=3.3 \mathrm{~V}$ and $\mathrm{TA}=+25^{\circ} \mathrm{C}$.) (Note 2)

| PARAMETER | SYMBOL | CONDITIONS |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Current Measurement Error (100mV Range) |  | $V_{M O N}=0 V$ | VSENSE $-\mathrm{V}_{\text {MON }}=20 \mathrm{mV}$ | -2.70 |  | +2.43 | \%FS |
|  |  |  | VSENSE $-\mathrm{V}_{\text {MON }}=80 \mathrm{mV}$ | -3.63 |  | +4.56 |  |
|  |  | $\begin{aligned} & \text { VMON }= \\ & 2.5 \mathrm{~V} \text { to } 16 \mathrm{~V} \end{aligned}$ | VSENSE $-\mathrm{V}_{\text {MON }}=20 \mathrm{mV}$ | -3.14 |  | +3.19 |  |
|  |  |  | VSENSE - VMON $=80 \mathrm{mV}$ | -3.80 |  | +3.93 |  |
| Fast Current-Limit Threshold Error (25mV Range) |  | $\mathrm{V}_{\mathrm{MON}}=0 \mathrm{~V}$ | Circuit breaker, DAC = 102 | -2.106 |  | +0.888 | mV |
|  |  |  | Circuit breaker, DAC $=255$ | -2.986 |  | +0.641 |  |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{MON}}= \\ & 2.5 \mathrm{~V} \text { to } 16 \mathrm{~V} \end{aligned}$ | Circuit breaker, DAC $=102$ | -3.000 |  | +1.000 |  |
|  |  |  | Circuit breaker, DAC $=255$ | -3.500 |  | +1.500 |  |
| Fast Current-Limit Threshold Error (50mV Range) |  | $\mathrm{V}_{\mathrm{MON}}=0 \mathrm{~V}$ | Circuit breaker, DAC = 102 | -3.1188 |  | +0.926 | mV |
|  |  |  | Circuit breaker, DAC $=255$ | -4.873 |  | +0.3421 |  |
|  |  | $\begin{aligned} & \text { VMON }= \\ & 2.5 \mathrm{~V} \text { to } 16 \mathrm{~V} \end{aligned}$ | Circuit breaker, DAC $=102$ | -3.2668 |  | +0.9228 |  |
|  |  |  | Circuit breaker, DAC $=255$ | -4.7 |  | +1.0212 |  |
| Fast Current-Limit Threshold Error (100mV Range) |  | $\mathrm{V}_{\text {MON }}=0 \mathrm{~V}$ | Circuit breaker, DAC $=102$ | -4.7987 |  | +1.1812 | mV |
|  |  |  | Circuit breaker, DAC $=255$ | -8.9236 |  | +0.202 |  |
|  |  | $\begin{aligned} & \text { VMON = } \\ & 2.5 \mathrm{~V} \text { to } 16 \mathrm{~V} \end{aligned}$ | Circuit breaker, DAC = 102 | -4.9991 |  | +0.6374 |  |
|  |  |  | Circuit breaker, DAC $=255$ | -8.262 |  | +1 |  |
| Slow Current-Limit Threshold Error (25mV Range) |  | VMON $=0 \mathrm{~V}$ | Circuit breaker, DAC $=102$ | -1.7965 |  | +1.5496 | mV |
|  |  |  | Circuit breaker, DAC $=255$ | -1.86 |  | +1.5916 |  |
|  |  | $\begin{aligned} & \text { VMON }= \\ & 2.5 \mathrm{~V} \text { to } 16 \mathrm{~V} \end{aligned}$ | Circuit breaker, DAC $=102$ | -2.149 |  | +1.9868 |  |
|  |  |  | Circuit breaker, DAC $=255$ | -2.2285 |  | +1.9982 |  |
| Slow Current-Limit Threshold Error (50mV Range) |  | VMON $=0 \mathrm{~V}$ | Circuit breaker, DAC $=102$ | -2.3992 |  | +1.8723 | mV |
|  |  |  | Circuit breaker, DAC $=255$ | -2.5146 |  | +2.1711 |  |
|  |  | $\begin{aligned} & \text { VMON = } \\ & 2.5 \mathrm{~V} \text { to } 16 \mathrm{~V} \end{aligned}$ | Circuit breaker, DAC = 102 | -2.4716 |  | +2.181 |  |
|  |  |  | Circuit breaker, DAC $=255$ | -2.7421 |  | +2.1152 |  |
| Slow Current-Limit Threshold Error (100mV Range) |  | $\mathrm{V}_{\mathrm{MON}}=0 \mathrm{~V}$ | Circuit breaker, DAC $=102$ | -3.3412 |  | +2.989 | mV |
|  |  |  | Circuit breaker, DAC $=255$ | -3.8762 |  | +3.6789 |  |
|  |  | $\begin{aligned} & \text { VMON }= \\ & 2.5 \mathrm{~V} \text { to } 16 \mathrm{~V} \end{aligned}$ | Circuit breaker, DAC $=102$ | -3.2084 |  | +2.7798 |  |
|  |  |  | Circuit breaker, DAC $=255$ | -3.8424 |  | +2.6483 |  |
| Fast Circuit-Breaker Response Time | tFCB | Overdrive = | 10\% of current-sense range |  | 2 |  | $\mu \mathrm{s}$ |
| Slow Current-Limit Response Time | tSCB | Overdrive $=4 \%$ of current-sense range |  |  | 2.4 |  | ms |
|  |  | Overdrive $=8 \%$ of current-sense range |  |  | 1.2 |  |  |
|  |  | Overdrive $=16 \%$ of current-sense range |  |  | 0.8 |  |  |
| THREE-STATE INPUTS |  |  |  |  |  |  |  |
| A1, A0, IRNG, MODE, PROT Low Current | IIN_LOW | Input voltage $=0.4 \mathrm{~V}$ |  | -40 |  |  | $\mu \mathrm{A}$ |
| A1, A0, IRNG, MODE, PROT High Current | IIN_HIGH | Input voltage $=$ VREG -0.2 V |  |  |  | 40 | $\mu \mathrm{A}$ |
| A1, A0, IRNG, MODE, PROT Open Current | IfLOAT | Maximum source/sink current for open state |  | -4 |  | +4 | $\mu \mathrm{A}$ |
| A1, A0, IRNG, MODE, PROT Low Voltage |  | Relative to AGND |  |  |  | 0.4 | V |

## 0 to 16V, Hot-Swap Controller with 10-Bit Current, Voltage Monitor, and 4 LED Drivers

## ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V} I \mathrm{~N}=2.7 \mathrm{~V}\right.$ to $16 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V} \mathbb{N}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

| PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A1, A0, IRNG, MODE, PROT High Voltage |  | Relative to VREG | -0.24 |  |  | V |
| TWO-STATE INPUTS |  |  |  |  |  |  |
| HWEN, POL Input Logic Low Voltage |  |  |  |  | 0.4 | V |
| HWEN, POL Input Logic High Voltage |  |  | Vreg - 0.4 |  |  | V |
| HWEN, POL Input Current |  |  | -1 |  | +1 | $\mu \mathrm{A}$ |
| ON Input Voltage | Von |  | 0.582 | 0.592 | 0.602 | V |
| ON Input Hysteresis | VONHYS |  |  | 4 |  | \% |
| ON Input Current |  |  | -100 |  | +100 | nA |
| TIMING |  |  |  |  |  |  |
| MON-to-PG Delay |  | Register configurable (see Tables 30a and 30b) |  | 50 |  | ms |
|  |  |  |  | 100 |  |  |
|  |  |  |  | 200 |  |  |
|  |  |  |  | 400 |  |  |
| CHARGE PUMP (GATE) |  |  |  |  |  |  |
| Charge-Pump Output Voltage |  | Relative to VMON, IGATE $=0 \mathrm{~V}$ | 4.5 | 5.3 | 5.5 | V |
| Charge-Pump Output Source Current |  |  | 4 | 5 | 6 | $\mu \mathrm{A}$ |
| GATE Discharge Current |  | VGATE - VMON $=2 \mathrm{~V}$ |  | 500 |  | mA |
| OUTPUT ( $\overline{\text { FAULT, PG, }} \overline{\text { ALERT }}$ ) |  |  |  |  |  |  |
| Output-Voltage Low |  | ISINK $=3.2 \mathrm{~mA}$ |  |  | 0.2 | V |
| Output Leakage Current |  |  |  |  | 1 | $\mu \mathrm{A}$ |
| LED INPUT/OUTPUT |  |  |  |  |  |  |
| LED_ Input Threshold Low Level | VIL |  |  |  | 0.4 | V |
| LED_ Input Threshold High Level | $\mathrm{V}_{\mathrm{IH}}$ |  | 1.4 |  |  | V |
| LED_ Output Low | VOH | ILED_ $=25 \mathrm{~mA}$ |  |  | 0.7 | V |
| LED_Input Leakage Current (Open Drain) | IGPIO_IX | $V_{\text {LED_ }}=16 \mathrm{~V}$ | -1 |  | +1 | $\mu \mathrm{A}$ |
| LED_ Weak Pullup Current | IPU_WEAK | $\mathrm{V}_{\text {LED }}=\mathrm{V}_{\text {IN }}-0.65 \mathrm{~V}$ | 2 |  |  | $\mu \mathrm{A}$ |
| ADC PERFORMANCE |  |  |  |  |  |  |
| Resolution |  |  |  | 10 |  | Bits |
| Maximum Integral Nonlinearity | INL |  |  | 1 |  | LSB |
| ADC Total Monitoring Cycle Time |  |  | 95 | 100 | 110 | $\mu \mathrm{s}$ |

## 0 to 16V, Hot-Swap Controller with 10-Bit Current, Voltage Monitor, and 4 LED Drivers

## ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V} I \mathrm{~N}=2.7 \mathrm{~V}\right.$ to $16 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V} I \mathrm{~N}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

| PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MON LSB Voltage |  | 16 V range | 15.23 | 15.49 | 15.69 | mV |
|  |  | 8 V range | 7.655 | 7.743 | 7.811 |  |
|  |  | 4 V range | 3.811 | 3.875 | 3.933 |  |
|  |  | 2 V range | 1.899 | 1.934 | 1.966 |  |
| MON Code 000H to 001H Transition Voltage |  | 16 V range | 10 | 25 | 41 | mV |
|  |  | 8 V range | 4.7 | 12 | 21 |  |
|  |  | 4 V range | 2 | 6 | 12 |  |
|  |  | 2 V range | 0.5 | 3 | 5.5 |  |
| $1^{2} \mathrm{C}$ INTERFACE |  |  |  |  |  |  |
| Serial-Clock Frequency | fsCL |  |  |  | 400 | kHz |
| Bus Free Time Between STOP and START Conditions | tBUF |  | 1.3 |  |  | $\mu \mathrm{s}$ |
| START Condition Setup Time | tSU:STA |  | 0.6 |  |  | $\mu \mathrm{s}$ |
| START Condition Hold Time | thD:STA |  | 0.6 |  |  | $\mu \mathrm{s}$ |
| STOP Condition Setup Time | tSU:STO |  | 0.6 |  |  | $\mu \mathrm{s}$ |
| Clock High Period | thigh |  | 0.6 |  |  | $\mu \mathrm{s}$ |
| Clock Low Period | tlow |  | 1.3 |  |  | $\mu \mathrm{s}$ |
| Data Setup Time | tSU:DAT |  | 100 |  |  | ns |
| Data Hold Time | thD:DAT | Transmit | 100 |  |  | ns |
|  |  | Receive | 300 |  | 900 |  |
| Output Fall Time | tof | CBUS $=10 \mathrm{pF}$ to 400pF |  |  | 250 | ns |
| Pulse Width of Spike Suppressed | tSP |  |  | 50 |  | ns |
| SDA, SCL Input High Voltage | $\mathrm{V}_{\mathrm{IH}}$ |  | 1.8 |  |  | V |
| SDA, SCL Input Low Voltage | VIL |  |  |  | 0.8 | V |
| SDA, SCL Input Hysteresis | VHYST |  |  | 0.22 |  | V |
| SDA, SCL Input Current |  |  | -1 |  | +1 | $\mu \mathrm{A}$ |
| SDA, SCL Input Capacitance |  |  |  | 15 |  | pF |
| SDA Output Voltage | VOL | ISINK $=4 \mathrm{~mA}$ |  |  | 0.4 | V |

Note 2: All devices $100 \%$ production tested at $\mathrm{TA}=+25^{\circ} \mathrm{C}$. Limits over the temperature range are guaranteed by design.

## 0 to 16V, Hot-Swap Controller with 10-Bit Current, Voltage Monitor, and 4 LED Drivers

Typical Operating Characteristics
$\left(\mathrm{V} I \mathrm{~N}=3.3 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$



GATE-DRIVE CURRENT
vs. (VGATE - VMON)






GATE-DRIVE DISCHARGE CURRENT vs. (VGATE - VMON)


ON THRESHOLD VOLTAGE vs. TEMPERATURE


## 0 to 16V, Hot-Swap Controller with 10-Bit Current, Voltage Monitor, and 4 LED Drivers

$\left(\mathrm{V} I \mathrm{~N}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)


TURN-OFF WAVEFORM (FAST-COMPARATOR FAULT/SHORT-CIRCUIT RESPONSE)



VOLTAGE ADC ACCURACY vs. MON VOLTAGE


## 0 to 16V, Hot-Swap Controller with 10-Bit Current, Voltage Monitor, and 4 LED Drivers

$\qquad$ Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{\mathbb{I}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$




# 0 to 16V, Hot-Swap Controller with 10-Bit Current, Voltage Monitor, and 4 LED Drivers 

TOP VIEW


Pin Description

| PIN | NAME | FUNCTION |
| :---: | :---: | :---: |
| 1 | IRNG | Three-State Current-Sense Range Selection Input. Set the circuit-breaker threshold range by connecting to DGND, DREG, or leave unconnected. |
| 2 | IN | Power-Supply Input. Connect to a voltage from 2.7V to 16V. Bypass IN to AGND with a $1 \mu \mathrm{~F}$ ceramic capacitor. |
| 3 | AGND | Analog Ground. Connect all GND and DGND to AGND externally using a star connection. |
| 4 | REG | Internal Regulator Output. Bypass REG to ground with a $1 \mu \mathrm{~F}$ ceramic capacitor. Connect only to DREG and logic-input pullup resistors. Do not use to power external circuitry. |
| 5 | BIAS | BIAS Input. Connect BIAS to REG. |
| 6 | A1 | Three-State ${ }^{2} \mathrm{C}$ Address Input 1 |
| 7 | A0 | Three-State ${ }^{2} \mathrm{C}$ Address Input 0 |
| 8 | PROT | Protection Behavior Input. Three-state input sets one of three different response options for undervoltage and overvoltage events. |
| 9 | SENSE | Current-Sense Input. Connect SENSE to the source of an external MOSFET and to one end of Rsense. |
| 10 | MON | Voltage-Monitoring Input |
| 11 | GATE | Gate-Drive Output. Connect to the gate of an external n-channel MOSFET. |
| 12 | GND | Gate-Discharge Current Ground Return. Connect all GND and DGND to AGND externally using a star connection. |
| 13 | LED1 | LED1 Driver |
| 14 | LED2 | LED2 Driver |

## 0 to 16V, Hot-Swap Controller with 10-Bit Current, Voltage Monitor, and 4 LED Drivers

| PIN | NAME | FUNCTION |
| :---: | :---: | :--- |
| 15 | POL | Polarity Select Input. Connect POL to DREG for an active-high power-good (PG) output, or con- <br> nect POL to GND for active-low PG output. |
| 16 | DREG | Logic Power-Supply Input. Connect to REG externally through a 10, resistor and bypass to <br> DGND with a 1 $\mu$ F ceramic capacitor. |
| 17 | ON | Precision Turn-On Input |
| 18 | $\overline{\text { FAULT }}$ | Active-Low Open-Drain Fault Output. FAULT asserts low if an overcurrent event occurs. |
| 19 | SDA | I $^{2}$ C Serial Data Input/Output |
| 20 | SCL | I2C Serial Clock Input |
| 21 | $\overline{\text { ALERT }}$ | Open-Drain Alert Output. $\overline{\text { ALERT goes low during a fault to notify the system of an impending }}$ <br> failure. |
| 22 | PG | Open-Drain Power-Good Output |
| $23,26,27$, | I.C. | Internally Connected. Connect to ground. |
| 31,32 | HWEN | Hardware Enable Input. Connect to REG or DGND. State is read upon power-up as VIN crosses <br> the UVLO threshold and sets enable register bits with this value. After UVLO, this input becomes <br> inactive until power is cycled. |
| 24 | DGND | Digital Ground. Connect all GND and DGND to AGND externally using a star connection. |
| 25 | LED4 | LED Driver 4 |
| 28 | LED3 | LED Driver 3 |
| 29 | GND | Ground |
| 30 | EP | Exposed Pad. EP is internally grounded. Connect EP to the ground plane using a star connection. |
| - |  |  |

# 0 to 16V, Hot-Swap Controller with 10-Bit Current, Voltage Monitor, and 4 LED Drivers 

Typical Operating Circuit


## 0 to 16V, Hot-Swap Controller with 10-Bit Current, Voltage Monitor, and 4 LED Drivers

Functional Diagram


# 0 to 16V, Hot-Swap Controller with 10-Bit Current, Voltage Monitor, and 4 LED Drivers 

## Detailed Description

The MAX5978 includes a set of registers that are accessed through the ${ }^{2} \mathrm{C}$ interface. Some of the registers are read only and some of the registers are read and write registers that can be updated to configure the device for a specific operation. See Tables 1a and 1b for the register maps.

## Hot-Swap Channel On-Off Control

 Depending on the configuration of the EN1 and EN2 bits, when VIN is above the VUVLO threshold and the ON input reaches its internal threshold, the device turns on the external n-channel MOSFET for the hot-swap channel, allowing power to flow to the load. The channel is enabled depending on the output of a majority function.EN1, EN2, and ON are the inputs to the majority function and the channel is enabled when two or more of these inputs are 1:
$($ Channel enabled $)=($ EN1 $\times$ EN2 $)+($ EN1 $\times$ ON $)+$ (EN2 $\times$ ON)
Inputs ON and EN2 can be set externally; the initial state of the EN2 bit in register chxen is set by the state of the HWEN input when VIN rises above VUVLO. The ON input connects to an internal precision analog comparators with a 0.6 V threshold. Whenever VoN is above 0.6 V , the ON bit in register status 1 [0] is set to 1 . Inputs EN1 and EN2 can be set using the ${ }^{2}$ 2 interface; the EN1 bit has a default value of 0 . This makes it possible to enable or disable the hot-swap channel with or without using the ${ }^{2} \mathrm{C}$ C interface (see Tables 2, 3a, and 3b).

Table 1a. Register Address Map (Channel Specific)

| REGISTER NAME | DESCRIPTION | REGISTER NUMBER | RESET <br> VALUE | READ/ WRITE |
| :---: | :---: | :---: | :---: | :---: |
| adc_cs_msb | High 8 bits ([9:2]) of latest current-signal ADC result | 0x00 | 0x00 | R |
| adc_cs_Isb | Low 2 bits ([1:0]) of latest current-signal ADC result | $0 \times 01$ | 0x00 | R |
| adc_mon_msb | High 8 bits ([9:2]) of latest voltage-signal ADC result | 0x02 | 0x00 | R |
| adc_mon_Isb | Low 2 bits ([1:0]) of latest voltage-signal ADC result | $0 \times 03$ | 0x00 | R |
| min_cs_msb | High 8 bits ([9:2]) of current-signal minimum value | $0 \times 08$ | 0xFF | R |
| min_cs_Isb | Low 2 bits ([1:0]) of current-signal minimum value | 0x09 | $0 \times 03$ | R |
| max_cs_msb | High 8 bits ([9:2]) of current-signal maximum value | 0x0A | 0x00 | R |
| max_cs_Isb | Low 2 bits ([1:0]) of current-signal maximum value | 0x0B | 0x00 | R |
| min_mon_msb | High 8 bits ([9:2]) of voltage-signal minimum value | 0x0C | 0xFF | R |
| min_mon_Isb | Low 2 bits ([1:0]) of voltage-signal minimum value | 0x0D | 0x03 | R |
| max_mon_msb | High 8 bits ([9:2]) of voltage-signal maximum value | 0x0E | 0x00 | R |
| max_mon_Isb | Low 2 bits ([1:0]) of voltage-signal maximum value | 0x0F | 0x00 | R |
| uv1th_msb | High 8 bits ([9:2]) of undervoltage warning (UV1) threshold | 0x1A | 0x00 | R/W |
| uv1th_Isb | Low 2 bits ([1:0]) of undervoltage warning (UV1) threshold | $0 \times 1 \mathrm{~B}$ | 0x00 | R/W |
| uv2th_msb | High 8 bits ([9:2]) of undervoltage critical (UV2) threshold | $0 \times 1 \mathrm{C}$ | 0x00 | R/W |
| uv2th_Isb | Low 2 bits ([1:0]) of undervoltage critical (UV2) threshold | 0x1D | 0x00 | R/W |
| ov1thr_msb | High 8 bits ([9:2]) of overvoltage warning (OV1) threshold | 0x1E | 0xFF | R/W |
| ov1thr_Isb | Low 2 bits ([1:0]) of overvoltage warning (OV1) threshold | 0x1F | 0x03 | R/W |
| ov2thr_msb | High 8 bits ([9:2]) of overvoltage critical (OV2) threshold | 0x20 | 0xFF | R/W |
| ov2thr_Isb | Low 2 bits ([1:0]) of overvoltage critical (OV2) threshold | $0 \times 21$ | 0x03 | R/W |
| oithr_msb | High 8 bits ([9:2]) of overcurrent warning threshold | $0 \times 22$ | 0xFF | R/W |
| oithr_Isb | Low 2 bits ([1:0]) of overcurrent warning threshold | 0x23 | 0x03 | R/W |
| dac_fast | Fast-comparator threshold DAC setting | 0x2E | 0xBF | R/W |
| cbuf_ba_v | Base address for block read of 50-sample voltage-signal data buffer | 0x46 | - | R |
| cbuf_ba_i | Base address for block read of 50-sample current-signal data buffer | 0x47 | - | R |

## 0 to 16V, Hot-Swap Controller with 10-Bit Current, Voltage Monitor, and 4 LED Drivers

## MAX5978

Table 1b. Register Address Map (General)

| REGISTER <br> NAME | DESCRIPTION | ADDRESS (HEX CODE) | RESET <br> VALUE | READ/ WRITE |
| :---: | :---: | :---: | :---: | :---: |
| mon_range | MON input range setting | $0 \times 18$ | 0x00 | R/W |
| cbuf_chx_store | Selective enabling of circular buffer | $0 \times 19$ | 0x0F | R/W |
| ifast2slow | Current threshold fast-to-slow ratio setting | $0 \times 30$ | 0x0F | R/W |
| status0 | Slow-trip and fast-trip comparators status register | $0 \times 31$ | 0x00 | R |
| status1 | PROT, MODE, and ON inputs status register | 0x32 | - | R |
| status2 | Fast-trip threshold maximum range setting bits, from IRNG threestate input | $0 \times 33$ | - | R/W |
| status3 | LATCH, POL, $\overline{\text { ALERT, and PG status register }}$ | $0 \times 34$ | - | R |
| fault0 | Status register for undervoltage detection (warning or critical) | $0 \times 35$ | 0x00 | R/C |
| fault1 | Status register for overvoltage detection (warning or critical) | $0 \times 36$ | 0x00 | R/C |
| fault2 | Status register for overcurrent detection (warning) | $0 \times 37$ | 0x00 | R/C |
| pgdly | Delay setting between MON measurement and PG assertion | $0 \times 38$ | 0x00 | R/W |
| fokey | Load register with 0xA5 to enable force-on function | 0x39 | 0x00 | R/W |
| foset | Register that enables force-on function | 0x3A | 0x00 | R/W |
| chxen | Channel enable bits | 0x3B | - | R/W |
| dgl_i | OC deglitch enable bits | 0x3C | $0 \times 00$ | R/W |
| dgl_uv | UV deglitch enable bits | 0x3D | 0x00 | R/W |
| dgl_ov | OV deglitch enable bits | 0x3E | 0x00 | R/W |
| cbufrd_hibyonly | Circular buffers readout mode: 8 bit or 10 bit | 0x3F | 0x0F | R/W |
| cbuf_dly_stop | Circular buffer stop delay; number of samples recorded to the circular buffer after channel shutdown | 0x40 | $0 \times 19$ | R/W |
| peak_log_rst | Reset control bits for peak-detection registers | $0 \times 41$ | 0x00 | R/W |
| peak_log_hold | Hold control bits for peak-detection registers | $0 \times 42$ | 0x00 | R/W |
| LED_flash | LED flash/GPIO enable register | $0 \times 43$ | 0x0F | R/W |
| LED_ph_pu | LED phase/weak pullup enable register | $0 \times 44$ | 0x00 | R/W |
| LED_state | LED pins voltage state register (LED pins set open) | 0x45 | - | R |

Table 2. chxen Register Format


# 0 to 16V, Hot-Swap Controller with 10-Bit Current, Voltage Monitor, and 4 LED Drivers 

Table 3a. Register Function

| REGISTER ADDRESS | BIT RANGE | DESCRIPTION |
| :---: | :---: | :---: |
| $0 \times 32$ | [1:0] | ON input state |
|  |  | 1 = ON above 600 mV channel enable threshold |
|  |  | $0=$ ON below 600 mV channel enable threshold |
|  |  | Bit 0: ON input state |
|  |  | Bit 1: unused |
|  | [4] | Unused |
|  | [7:6] | Voltage critical behavior (PROT input) |
|  |  | $00=$ Assert $\overline{\text { ALERT }}$ upon UV/OV critical (same as UV/OV warning behavior) |
|  |  | 01 = Assert $\overline{\text { ALERT }}$ and deassert PG upon UV/OV critical |
|  |  | $10=$ Assert $\overline{\text { ALERT }}$, deassert PG, and shut down channel upon UV/OV critical |
|  |  | 11 = (Not possible) |

Table 3b. status1 Register Format


Figure 1 shows the detailed logic operation of the hotswap enable signals EN1, EN2, and ON, as well as the effect of various fault conditions.
An input undervoltage threshold control for enabling the hot-swap channel can be implemented by placing a resistive divider between the drain of the hot-swap MOSFET and ground, with the midpoint connected to ON . The turn-on threshold voltage for the channel is then:

$$
V_{E N}=0.6 \mathrm{~V} \times(\mathrm{R} 1+\mathrm{R} 2) / R 2
$$

The maximum rating for the ON input is 6 V ; do not exceed this value.

## Startup

When all conditions for channel turn-on are met, the external n-channel MOSFET switch is fully enhanced with a typical gate-to-source voltage of 5 V to ensure a low drain-to-source resistance. The charge pump at the GATE driver sources $5 \mu \mathrm{~A}$ to control the output voltage turn-on voltage slew rate. An external capacitor can be added from GATE to GND to further reduce the
voltage slew rate. Placing a $1 \mathrm{k} \Omega$ resistor in series with this capacitance prevents the added capacitance from increasing the gate turn-off time. Total inrush current is the load current summed with the product of the gatevoltage slew rate $\mathrm{dV} / \mathrm{dt}$ and the load capacitance.
To determine the output dV/dt during startup, divide the GATE pullup current IG(UP) by the gate-to-ground capacitance. The voltage at the source of the external MOSFET follows the gate voltage, so the load dV/dt is the same as the gate $d V / d t$. Inrush current is the product of the $\mathrm{dV} / \mathrm{dt}$ and the load capacitance. The time to start up tsU is the hot-swap voltage VS divided by the output dV/dt.
Be sure to choose an external MOSFET that can handle the power dissipated during startup. The inrush current is roughly constant during startup and the voltage drop across the MOSFET (drain to source) decreases linearly as the load capacitance charges. The resulting power dissipation is, therefore, roughly equivalent to a single pulse of magnitude (Vs x inrush current)/2 and

# 0 to 16V, Hot-Swap Controller with 10-Bit Current, Voltage Monitor, and 4 LED Drivers 



Figure 1. Channel On-Off Control Logic Functional Schematic
duration tSU. Refer to the thermal resistance charts in the MOSFET data sheet to determine the junction temperature rise during startup, and ensure that this does not exceed the maximum junction temperature for worstcase ambient conditions.

## Circuit-Breaker Protection

As the channel is turned on and during normal operation, two analog comparators are used to detect an overcurrent condition by sensing the voltage across an external resistor connected between SENSE and MON. If the voltage across the sense resistor is less than the slow-trip and fast-trip circuit-breaker thresholds, the GATE output remains high. If either of the thresholds is exceeded due to an overcurrent condition, the gate of the MOSFET is pulled down to MON by an internal 500 mA current source.
The higher of the two comparator thresholds, the fast trip, is set by an internal 8-bit DAC (see Table 7), within one of three configurable full-scale current-sense
ranges: $25 \mathrm{mV}, 50 \mathrm{mV}$, or 100 mV (see Tables 6 a and 6b). The 8-bit fast-trip threshold DAC can be programmed from $40 \%$ to $100 \%$ of the selected full-scale currentsense range. The slow-trip threshold follows the fast-trip threshold as one of four programmable ratios, set by the ifast2slow register (see Tables 4a and 4b).
The fast-trip threshold is always higher than the slow-trip threshold, and the fast-trip comparator responds very quickly to protect the system against sudden, severe overcurrent events. The slower response of the slowtrip comparator varies depending upon the amount of overdrive beyond the slow-trip threshold. If the overdrive is small and short lived, the comparator will not shut down the affected channel. As the overcurrent event increases in magnitude, the response time of the slowtrip comparator decreases. This scheme provides good noise rejection and spurious overcurrent transients near the slow-trip threshold, while aggressively protecting the system against larger overcurrent events that occur as a result of a load fault.

# 0 to 16V, Hot-Swap Controller with 10-Bit Current, Voltage Monitor, and 4 LED Drivers 

Table 4a. ifast2slow Register Format


Table 4b. Setting Fast-Trip to Slow-Trip Threshold Ratio

| FS1 | FS0 | FAST-TRIP TO SLOW-TRIP RATIO (\%) |
| :---: | :---: | :---: |
| 0 | 0 | 125 |
| 0 | 1 | 150 |
| 1 | 0 | 175 |
| 1 | 1 | 200 |

## Setting Circuit-Breaker Thresholds

To select and set the device slow-trip and fast-trip comparator thresholds, use the following procedure:

1) Select one of four ratios between the fast-trip threshold and the slow-trip threshold: $200 \%, 175 \%, 150 \%$, or $125 \%$. A system that experiences brief but large transient load currents should use a higher ratio, whereas a system that operates continuously at higher average load currents might benefit from a smaller ratio to ensure adequate protection. The ratio is set by writing to the ifast2slow register. (The default setting on power-up is $200 \%$.)
2) Determine the slow-trip threshold $V_{T H, S T}$ based on the anticipated maximum continuous load current during normal operation, and the value of the current-sense resistor. The slow-trip threshold should include some margin (possibly $20 \%$ ) above the maximum load current to prevent spurious circuit-breaker shutdown and to accommodate passive component tolerances:

$$
\text { VTH,ST = RSENSE } \times \text { ILOAD,MAX x 120\% }
$$

3) Calculate the necessary fast-trip threshold $\mathrm{V}_{\mathrm{TH}, \mathrm{FT}}$ based on the ratio set in step 1:

$$
V_{T H, F T}=V_{T H}, S T \times \text { (ifast2slow ratio) }
$$

4) Select one of the three maximum current-sense ranges: $25 \mathrm{mV}, 50 \mathrm{mV}$, or 100 mV . The current-sense
range is initially set upon power-up by the state of the IRNG input, but can be altered at any time by writing to the status2 register. For maximum accuracy and best measurement resolution, select the lowest current-sense range that is larger than the $\mathrm{VTH}_{\mathrm{T}, \mathrm{FT}}$ value calculated in step 3 .
5) Program the fast-trip and slow-trip thresholds by writing an 8 -bit value to the dac_fast register. This 8 -bit value is determined from the desired $V_{T H, S T}$ value that was calculated in step 2, the threshold ratio from step 1, and the current-sense range from step 4:

## DAC $=V_{T H}$,ST $\times 255 \times$ (ifast2slow ratio)/

(IRNG current-sense range)
The device provides a great deal of system flexibility because the current-sense range, DAC setting, and threshold ratio can be changed "on the fly" for systems that must protect a wide range of interchangeable load devices, or for systems that control the allocation of power to smart loads. Table 5 shows the specified ranges for the fast-trip and slow-trip thresholds for all combinations of current-sense range and threshold ratio.
When an overcurrent event causes the device to shut down the power channel, the open-drain FAULT output alerts the system. Figure 2 shows the operation and faultmanagement flowchart.

## 0 to 16V, Hot-Swap Controller with 10-Bit Current, Voltage Monitor, and 4 LED Drivers

Table 5. Specified Current-Sense and Circuit-Breaker Threshold Ranges

| IRNG INPUT | DAC OUTPUT RANGE (DEFAULT = FULL SCALE) (mV) | FAST-TRIP THRESHOLD RANGE (mV) | ```GAIN (2 BIT) (VFAST/ Vslow) ifast2slow (DEFAULT = 11)``` | SLOW-TRIP THRESHOLD RANGE (mV) |
| :---: | :---: | :---: | :---: | :---: |
| Low | 10 to 25 | 10 to 25 | 00 (125\%) | 8.00 to 20.00 |
|  |  |  | 01 (150\%) | 6.67 to 16.67 |
|  |  |  | 10 (175\%) | 5.71 to 14.29 |
|  |  |  | 11 (200\%) | 5.00 to 12.50 |
| High | 20 to 50 | 20 to 50 | 00 (125\%) | 16.00 to 40.00 |
|  |  |  | 01 (150\%) | 13.33 to 33.33 |
|  |  |  | 10 (175\%) | 11.48 to 28.57 |
|  |  |  | 11 (200\%) | 10.00 to 25.00 |
| Unconnected | 40 to 100 | 40 to 100 | 00 (125\%) | 32.00 to 80.00 |
|  |  |  | 01 (150\%) | 26.67 to 66.67 |
|  |  |  | 10 (175\%) | 22.86 to 57.14 |
|  |  |  | 11 (200\%) | 20.00 to 50.00 |

Table 6a. IRNG Input Status Register Format


Table 6b. Setting Current-Sense Range

| IRNG PIN STATE | IRNG1 | IRNGO | MAXIMUM CURRENT-SENSE SIGNAL (mV) |
| :---: | :---: | :---: | :---: |
| Low | 1 | 0 | 25 |
| High | 0 | 1 | 50 |
| Open | 0 | 0 | 100 |

Table 7. dac_ch_ Register Format

| Description: <br> Register Title: <br> Register Addresses: |  | Fast-comparator threshold DAC setting dac_fast <br> $0 \times 2 \mathrm{E}$ |  |  |  | R/W | R/W |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| R/W | R/W |  |  |  | R/W |  |  | R/W | R/W | R/W | RESET VALUE |
| DAC[7] | DAC[6] | DAC[5] | DAC[4] | DAC[3] | DAC[2] | DAC[1] | DAC[0] | 0xBF |
| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | - |

## 0 to 16V, Hot-Swap Controller with 10-Bit Current, Voltage Monitor, and 4 LED Drivers



Figure 2. Operation and Fault-Management Flowchart for Hot-Swap Channel

## 0 to 16V, Hot-Swap Controller with 10-Bit Current, Voltage Monitor, and 4 LED Drivers

Digital Current Monitoring
The current-sense signal is sampled by the internal 10 -bit, 10 ksps ADC, and the most recent results are stored in registers for retrieval through the I ${ }^{2} \mathrm{C}$ interface. The current conversion values are 10 bits wide, with the 8 high-order bits written to one 8 -bit register and the 2 low-order bits written to the next-higher 8-bit register address (Tables 8 and 9). This allows use of just the high-order byte in applications where 10-bit precision is not required. This split 8-bit/2-bit storage scheme is used
throughout the device for ADC conversion results and digital comparator thresholds.
Once the PG output is asserted, the current-sense samples are continuously compared to the programmable overcurrent warning register value. If the measured current value exceeds the warning level, the ALERT output is asserted. The device response to this digital comparator is not altered by the setting of the PROT input (Tables 10 and 11).

Table 8. ADC Current-Conversion Results Register Format (High-Order Bits)


Table 9. ADC Current-Conversion Results Register Format (Low-Order Bits)


Table 10. Overcurrent Warning Threshold Register Format (High-Order Bits)

| Description: <br> Register Title: <br> Register Addresses: |  | Overcurrent warning threshold high-order bits [9:2] oithr_msb <br> $0 \times 22$ |  |  |  | R/W | R/W | RESET VALUE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
| R/W | R/W | R/W | R/W | R/W | R/W |  |  |  |
| oi_9 | oi_8 | oi_7 | oi_6 | oi_5 | oi_4 | oi_3 | oi_2 | 0xFF |
| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | - |

Table 11. Overcurrent Warning Threshold Register Format (Low-Order Bits)


# 0 to 16V, Hot-Swap Controller with 10-Bit Current, Voltage Monitor, and 4 LED Drivers 

## Minimum and Maximum Value Detection for Current-Measurement Values

Current-sense measurement values from the ADC are continuously compared with the contents of minimumand maximum-value registers, and if the most recent measurement exceeds the stored maximum, or is less than the stored minimum, the corresponding register
is updated with the new value. These "peak-detection" registers are read/write accessible through the $I^{2} \mathrm{C}$ interface (Tables 12-15). The minimum-value registers are reset to 0xFF and the maximum-value registers are reset to $0 \times 00$. These reset values are loaded upon startup of the channel or at any time as commanded by register peak_log_rst (Table 35).

Table 12. ADC Minimum Current-Conversion Register Format (High-Order Bits)

| Descriptio <br> Register T <br> Register |  | Minimum current-conversion result high-order bits [9:2] min_cs_msb $0 \times 08$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R | R | R | R | R | R | R | R | RESET VALUE |
| imin_9 | imin_8 | imin_7 | imin_6 | imin_5 | imin_4 | imin_3 | imin_2 | 0xFF |
| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | - |

Table 13. ADC Minimum Current-Conversion Register Format (Low-Order Bits)


Table 14. ADC Maximum Current-Conversion Register Format (High-Order Bits)

| Description: <br> Register Title: <br> Register Addresses: |  | Maximum current-conversion result high-order bits [9:2] |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | max_cs_msb |  |  |  |  |  |  |
|  |  | 0x0A |  |  |  |  |  |  |
| R | R | R | R | R | R | R | R | RESET VALUE |
| imax_9 | imax_8 | imax_7 | imax_6 | imax_5 | imax_4 | imax_3 | imax_2 | 0x00 |
| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | - |

Table 15. ADC Maximum Current-Conversion Register Format (Low-Order Bits)

| Description: <br> Register Title: <br> Register Addresses: |  | Maximum current-conversion result low-order bits [1:0] max_cs_Isb |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |
|  |  | 0x0B |  |  |  |  |  |  |
| R | R | R | R | R | R | R | R | RESET VALUE |
| - | - | - | - | - | - | imax_1 | imax_0 | 0x00 |
| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | - |

## 0 to 16V, Hot-Swap Controller with 10-Bit Current, Voltage Monitor, and 4 LED Drivers

## Digital Voltage Monitoring and Power-Good Output

The voltage at the load (MON input) is sampled by the internal ADC. The MON full-scale voltage can be set to $16 \mathrm{~V}, 8 \mathrm{~V}, 4 \mathrm{~V}$, or 2 V by writing to register mon_range. The default range is 16 V (Tables 16 and 17).
The most recent voltage-conversion results can be read from the adc_mon_msb and adc_mon_lsb registers (see Tables 18 and 19).

## Digital Undervoltage- and Overvoltage-

 Detection ThresholdsThe most recent voltage values are continuously compared to four programmable limits, comprising two undervoltage (UV) levels (see Tables 20 to 23) and two overvoltage (OV) levels (see Tables 24 to 27).
If PG is asserted and the voltage is outside the warning limits, the ALERT output is asserted low. Depending on the status of the prot[] bits in register status1[7:6], the

Table 16. ADC Voltage Monitor Settings Register Format


## Table 17. ADC Full-Scale Voltage Setting

| MON_rng1 | MON_rng0 | ADC FULL-SCALE VOLTAGE (V) |
| :---: | :---: | :---: |
| 0 | 0 | 16 |
| 0 | 1 | 8 |
| 1 | 0 | 4 |
| 1 | 1 | 2 |

Table 18. ADC Voltage-Conversion Result Register Format (High-Order Bits)

| Description: <br> Register Title: <br> Register Addresses: |  | Most recent voltage-conversion result, high-order bits [9:2] adc_mon_msb 0×02 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | RESET |
| R | R | R | R | R | R | R | R | VALUE |
| vnew_9 | vnew_8 | vnew_7 | vnew_6 | vnew_5 | vnew_4 | vnew_3 | vnew_2 | 0×00 |
| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | - |

Table 19. ADC Voltage-Conversion Result Register Format (Low-Order Bits)

| Description: <br> Register Title: <br> Register Addresses: |  | ```Most recent voltage-conversion result, low-order bits [1:0] adc_mon_Isb 0x03``` |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
| R | R | R | R | R | R | R | R | RESET VALUE |
| - | - | - | - | - | - | vnew_1 | vnew_0 | 0x00 |
| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | - |

# 0 to 16V, Hot-Swap Controller with 10-Bit Current, Voltage Monitor, and 4 LED Drivers 

device can also deassert the PG output or turn off the external MOSFET when the voltage is outside the critical limits (see Figure 3). Table 28 shows the behavior for the three possible states of the PROT input. Note that the PROT input does not affect the device response to the UV or OV warning digital comparators; it only determines the system response to the critical digital comparators (see Tables 3a, 3b, and 28).

In a typical application, the UV1 and OV1 thresholds would be set closer to the nominal output voltage, and the UV2 and OV2 thresholds would be set further from nominal. This provides a "progressive" response to a voltage excursion. However, the thresholds can be configured in any arrangement or combination as desired to suit a given application.


Figure 3. Graphical Representation of Typical UV and OV Thresholds Configuration
Table 20. Undervoltage Warning Threshold Register Format (High-Order Bits)

| Description: <br> Register Title: <br> Register Addresses: |  | Undervoltage warning threshold high-order bits [9:2] uv1th_msb$0 \times 1 \mathrm{~A}$ |  |  |  | R/W | R/W | RESET <br> VALUE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
| R/W | R/W | R/W | R/W | R/W | R/W |  |  |  |
| uv1_9 | uv1_8 | uv1_7 | uv1_6 | uv1_5 | uv1_4 | uv1_3 | uv1_2 | 0x00 |
| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | - |

Table 21. Undervoltage Warning Threshold Register Format (Low-Order Bits)


## 0 to 16V, Hot-Swap Controller with 10-Bit Current, Voltage Monitor, and 4 LED Drivers

Table 22. Undervoltage Critical Threshold Register Format (High-Order Bits)

| Description: <br> Register Title: <br> Register Addresses: |  | Undervoltage critical threshold high-order bits [9:2] uv2th_msb$0 \times 1 \mathrm{C}$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R/W | VALUE |
| uv2_9 | uv2_8 | uv2_7 | uv2_6 | uv2_5 | uv2_4 | uv2_3 | uv2_2 | 0×00 |
| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | - |

Table 23. Undervoltage Critical Threshold Register Format (Low-Order Bits)


Table 24. Overvoltage Warning Threshold Register Format (High-Order Bits)


Table 25. Overvoltage Warning Threshold Register Format (Low-Order Bits)

| Description: <br> Register Title: <br> Register Addresses: |  | Overvoltage warning threshold low-order bits [1:0] ov1thr_Isb <br> $0 \times 1 F$ |  |  |  | R/W | R/W |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R | R | R | R | R | R |  |  | VALUE |
| - | - | - | - | - | - | ov1_1 | ov1_0 | $0 \times 03$ |
| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | - |

Table 26. Overvoltage Critical Threshold Register Format (High-Order Bits)

| Description: <br> Register Title: <br> Register Addresses: |  | Overvoltage critical threshold high-order bits [9:2] ov2thr_msb 0x20 |  |  |  | R/W | R/W | RESET VALUE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
| R/W | R/W | R/W | R/W | R/W | R/W |  |  |  |
| ov2_9 | ov2_8 | ov2_7 | ov2_6 | ov2_5 | ov2_4 | ov2_3 | ov2_2 | 0xFF |
| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | - |

## 0 to 16V, Hot-Swap Controller with 10-Bit Current, Voltage Monitor, and 4 LED Drivers

Table 27. Overvoltage Critical Threshold Register Format (Low-Order Bits)

Description:
Register Title:
Register Addresses:

Overvoltage critical threshold low-order bits [1:0]
ov2thr_lsb
$0 \times 21$
$\begin{array}{llll} & & \text { RESET } \\ \text { R/W R/W } & \text { R/W } & \text { VALUE }\end{array}$ $0 \times 03$

Table 28. PROT Input and prot[] Bits

| PROT INPUT <br> STATE | prot[1] | prot[0] | UV/OV WARNING <br> ACTION | UV/OV CRITICAL ACTION |
| :---: | :---: | :---: | :---: | :--- |
| Low | 0 | 0 | Assert $\overline{\text { ALERT }}$ | Assert $\overline{\text { ALERT, clear PG, shut down channel }}$ |
| High | 0 | 1 | Assert $\overline{\text { ALERT }}$ | Assert $\overline{\text { ALERT, clear PG }}$ |
| Unconnected | 1 | 0 | Assert $\overline{\text { ALERT }}$ | Assert $\overline{\text { ALERT }}$ |

## Table 29. status3 Register Format



Table 30a. Power-Good Assertion Delay-Time Register Format


Table 30b. Power-Good Assertion Delay

| pgdly1 | pgdly0 | PG ASSERTION DELAY (ms) |
| :---: | :---: | :---: |
| 0 | 0 | 50 |
| 0 | 1 | 100 |
| 1 | 0 | 200 |
| 1 | 1 | 400 |

## Power-Good Detection and PG Output

The PG output is asserted when the voltage at MON is between the undervoltage and overvoltage critical limits. The status of the power-good signal is maintained in register status3[0]. A value of 1 in the pg[] bit indicates
a power-good condition, regardless of the POL setting, which only affects the PG output pin polarity. The opendrain PG output can be configured for active-high or active-low status indication by the state of the POL input (see Table 29).
The POL input sets the value of status3[5], which is a read-only bit; the state of the POL input can be changed at any time during operation and the polarity of the PG output changes accordingly.
The assertion of the PG output is delayed by a userselectable time delay of $50 \mathrm{~ms}, 100 \mathrm{~ms}, 200 \mathrm{~ms}$, or 400 ms (see Tables 30a and 30b).

## 0 to 16V, Hot-Swap Controller with 10-Bit Current, Voltage Monitor, and 4 LED Drivers

Minimum and Maximum Value Detection for Voltage-Measurement Values
All voltage-measurement values are compared with the contents of minimum- and maximum-value registers, and if the most recent measurement exceeds the stored maximum or is less than the stored minimum, the corresponding register is updated with the new value. These
peak-detection registers are read accessible through the ${ }^{12} \mathrm{C}$ interface (see Tables 31 to 34). The minimum-value registers are reset to 0xFF, and the maximum-value registers are reset to 0x00. These reset values are loaded upon startup or at any time as commanded by register peak_log_rst (see Table 35).

Table 31. ADC Minimum Voltage Conversion Register Format (High-Order Bits)

| Description: <br> Register Title: <br> Register Addresses: |  | Minimum voltage conversion result, high-order bits [9:2] min_mon_msb$0 \times 0 \mathrm{C}$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
| R | R | R | R | R | R | R | R | RESET VALUE |
| vmin_9 | vmin_8 | vmin_7 | vmin_6 | vmin_5 | vmin_4 | vmin_3 | vmin_2 | 0xFF |
| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | - |

Table 32. ADC Minimum Voltage-Conversion Register Format (Low-Order Bits)


Table 33. ADC Maximum Voltage-Conversion Register Format (High-Order Bits)

| Description: <br> Register Title: <br> Register Addresses: |  | Maximum voltage-conversion result, high-order bits [9:2] max_mon_msb 0x0E |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
| R | R | R | R | R | R | R | R | RESET VALUE |
| vmax_9 | vmax_8 | vmax_7 | vmax_6 | vmax_5 | vmax_4 | vmax_3 | vmax_2 | 0x00 |
| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | - |

Table 34. ADC Maximum Voltage-Conversion Register Format (Low-Order Bits)


# 0 to 16V, Hot-Swap Controller with 10-Bit Current, Voltage Monitor, and 4 LED Drivers 

## Using the Voltage and Current PeakDetection Registers

The voltage and current minimum- and maximum-value records in register locations $0 \times 08$ through $0 \times 17$ can be reset by writing a 1 to the appropriate location in register peak_log_rst (see Table 35). The minimum-value registers are reset to 0xFF, and the maximum-value registers are reset to $0 \times 000$.
As long as a bit in peak_log_rst is 1, the corresponding peak-detection registers are disabled and are "cleared" to their power-up reset values. The voltage and current
minimum- and maximum-detection register contents can be "held" by setting bits in register peak_log_hold (see Table 36). Writing a 1 to a location in peak_log_hold locks the register contents for the corresponding signal and stops the min/max detection and logging; writing a 0 enables the detection and logging. Note that the peakdetection registers cannot be cleared while they are held by register peak_log_hold.
The combination of these two control registers allows the user to monitor voltage and current peak-to-peak values during a particular time period.

Table 35. Peak-Detection Reset-Control Register Format


Table 36. Peak-Detection Hold-Control Register Format


# 0 to 16V, Hot-Swap Controller with 10-Bit Current, Voltage Monitor, and 4 LED Drivers 

Table 37. Ol Warning Comparators Deglitch Enable Register Format

|  |
| :--- |

Deglitch enable register for overcurrent warning digital comparators
Description:
dgl_i
$\begin{array}{ll}\text { Register Title: } & \text { dgl_i } \\ \text { Register Address: } & 0 \times 3 C\end{array}$

| R | R | R | R | R | R | R/W | R/W | RESET VALUE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | - | - | Unused | dgl_i | 0x00 |
| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | - |

Table 38. UV Warning and Critical Comparators Deglitch Enable Register Format

| Description: <br> Register Title: <br> Register Address: |  | Deglitch enable register for undervoltage warning and critical digital comparators$\begin{aligned} & \text { dgl_uv } \\ & \text { 0x3D } \end{aligned}$ |  |  |  |  |  | RESET VALUE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
| R | R | R | R | R/W | R/W | R/W | R/W |  |
| - | - | - | - | Unused | Unused | dgl_uv2 | dgl_uv1 | 0x00 |
| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | - |

Table 39. OV Warning and Critical Comparators Deglitch Enable Register Format


## Deglitching of Digital Comparators

The five digital comparators (undervoltage/overvoltage warning and critical, overcurrent warning) all have a user-selectable deglitching feature that requires two consecutive positive compares before the device takes action as determined by the particular compare and the setting of the PROT input.
The deglitching functions are enabled or disabled by registers dgl_i, dgl_uv, and dgl_ov (Tables 37, 38, and 39). Writing a 1 to the appropriate bit location in these registers enables the deglitch function for the corresponding digital comparator.

## Circular Buffer

The device features two 10-bit "circular buffers" (in volatile memory) that contain a history of the 50 most-recent voltage and current digital-conversion results. These circular buffers can be read back through the $\mathrm{I}^{2} \mathrm{C}$ interface.

The recording of new data to the buffer for a given signal is stopped under any of the following conditions:

- The hot-swap channel is shut down because of a fault condition.
- A read of the circular buffer base address is performed through the $\mathrm{I}^{2} \mathrm{C}$ interface.
- The hot-swap channel is turned off by a combination of the EN1, EN2, or ON signals.
The buffers allow the user to recall the voltage and current waveforms for analysis and troubleshooting. The buffer contents are accessed through the $1^{2} \mathrm{C}$ interface at two fixed addresses in the device register address space (see Table 40).
Each buffer can also be stopped under user control by register cbuf_chx_store (see Table 41).


# 0 to 16V, Hot-Swap Controller with 10-Bit Current, Voltage Monitor, and 4 LED Drivers 

The contents of a buffer can be retrieved as a block read of either fifty 10-bit values (spanning 2 bytes each) or of 50 high-order bytes, depending on the per-signal bit settings of register cbufrd_hibyonly (see Table 42).
If the circular buffer contents are retrieved as 10-bit data, the first byte read-out is the high-order 8 bits of the 10-bit sample, and the second byte read-out contains the 2 least-significant bits (LSBs) of the sample. This is repeated for each of the 50 samples in the buffer. Thus, 2 bytes must be read for each 10-bit sample retrieved. Conversely, if the buffer contents are retrieved as 8 -bit data, then each byte read-out contains the 8 MSBs of each successive sample. It is important to remember that in 10-bit mode, 100 bytes must be read to extract the entire buffer contents, but in 8 -bit mode, only 50 bytes must be read.
The circular buffer system has a user-programmable "stop delay" that specifies a certain number of sample cycles to continue recording to the buffer after a shutdown occurs. This delay value is stored in register cbuf_dly_stop[5:0] (see Table 43).

The default (reset) value of the buffer stop delay is 25 samples, which means that an equal number of samples are stored in the buffer preceding and following the moment of the shutdown event. The buffer stop delay is analogous to an oscilloscope trigger delay because it allows the device to record what happened both immediately before and after a shutdown. In other words, when the contents of a circular buffer are read out of the device, the shutdown event is by default located in the middle of the recorded data. The balance of data before and after an event can be altered by writing a different value (between 0 and 50) to the buffer stop-delay register.

## Latched-Off Fault Management

In the event of an overcurrent, undervoltage, or overvoltage condition that results in the shutdown of the hotswap channel, the device remains latched off.
To restart the latched-off channel, the user must either cycle power to the IN input, or toggle the ON pin, EN1 bit, or the EN2 bit.

Table 40. Circular Buffer Read Addresses

| ADDRESS | NAME |  |
| :---: | :---: | :--- |
| $0 \times 46$ | cbuf_ba_v | Base address for voltage buffer block read |
| $0 \times 47$ | cbuf_ba_i | Base address for current buffer block read |

## Table 41. Circular Buffer Control Register Format



## Table 42. Circular Buffer Resolution Register Format



## 0 to 16V, Hot-Swap Controller with 10-Bit Current, Voltage Monitor, and 4 LED Drivers

Table 43. Circular Buffer Stop-Delay Register Format


Table 44. Force-On Control Register Format

| Description: <br> Register Title: <br> Register Address: |  | Force-on control register foset$0 \times 3 \mathrm{~A}$ |  | R | R | R/W |  | RESET VALUE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| R | R |  |  | R |  |  | R |  | R/W |
| 0 | 0 |  |  | 0 | 0 | 0 | 0 | Unused | fo | 0x00 |
| Bit 7 | Bit 6 | Bit 5 | Bit 4 |  | Bit 3 | Bit 2 | Bit 1 | Bit 0 | - |

Table 45. Force-On Key Register Format

| Description: <br> Register Title: <br> Register Address: |  | Force-on key register (must contain 0xA5 to unlock force-on feature) fokey <br> 0x39 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
| R/W | RESET VALUE |
| fokey[7] | fokey[6] | fokey[5] | fokey[4] | fokey[3] | fokey[2] | fokey[1] | fokey[0] | 0x00 |
| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | - |

## Force-On Function

When the force-on bit is set to 1 in register foset[0] (see Table 44), the channel is enabled regardless of the ON pin voltage or the EN1 and EN2 bits in register chxen. In forced-on operation, all functions operate normally with the notable exception that the channel does not shut down due to any fault conditions that may arise.
There is a force-on key register fokey that must be set to $0 \times A 5$ in order for the force-on function to become active (see Table 45). If this register contains any value other
than 0xA5, writing 1 to the force-on bits in register foset has no effect. This provides protection against accidental force-on operation that might otherwise be caused by an erroneous $\mathrm{I}^{2} \mathrm{C}$ write.

Fault Logging and Indications The device provides detailed information about any fault conditions that have occurred. The FAULT output specifically indicates a circuit-breaker shutdown event, while the ALERT output is asserted whenever a problem has occurred that requires attention or interaction.

# 0 to 16V, Hot-Swap Controller with 10-Bit Current, Voltage Monitor, and 4 LED Drivers 

Fault Dependency
If a fault event occurs (digital UV warning/critical, digital OV warning/critical, or digital overcurrent warning), the fault is logged by setting a corresponding bit in registers fault0, fault1, or fault2 (see Tables 46, 47, and 48).
Likewise, circuit-breaker shutdown events are logged in register status0[7:0] (see Table 49).

IFAULTS indicates the overcurrent status from slow comparator. IFAULTF indicates overcurrent status from fast comparator. The status of FAULT reflects the OR operation of IFAULTS and IFAULTF.
These fault register bits latch upon a fault condition, and must be reset manually by restarting as described in the Latched-Off Fault Management section.

## Table 46. Undervoltage Status Register Format



## Table 47. Overvoltage Status Register Format



## Table 48. Overcurrent Warning Status Register Format



Table 49. Circuit-Breaker Event Logging Register Format

AVAXIAI

# 0 to 16V, Hot-Swap Controller with 10-Bit Current, Voltage Monitor, and 4 LED Drivers 

## FAULT Output

When an overcurrent event (fast trip or slow trip) causes the device to shut down the hot-swap channel, an opendrain $\overline{\text { FAULT }}$ output is asserted low. Note that the $\overline{F A U L T}$ output is not asserted for shutdowns caused by critical undervoltage or overvoltage events.
The $\overline{\text { FAULT }}$ output is cleared when the channel is disabled by pulling ON low or by clearing the bits in register chxen.

## ALERT Output

$\overline{\text { ALERT }}$ is an open-drain output that is asserted low any time that a fault or other condition requiring attention has occurred. The state of the ALERT output is also indicated by status3[4].
The $\overline{\text { ALERT }}$ output is the logical NOR of registers $0 \times 31$, $0 \times 35,0 \times 36$, and $0 \times 37$, so when the ALERT output goes low, the system microcontroller should query these registers through the $\mathrm{I}^{2} \mathrm{C}$ interface to determine the cause of the ALERT assertion.

## LED Set Registers

The device has four open-drain LED drivers/user-programmable GPIOs. When programmed as LED drivers, each driver can sink up to 25 mA of current. Table 50 shows the register that enables the drivers as either LED drivers or GPIOs.
When any of the LED_ Set bit in the register is set to 1 , the corresponding open-drain LED driver is turned off. The LED_Flash bits enable each corresponding LED driver to flash on and off at 1 Hz frequency regardless of the condition of the corresponding LED_ Set bit.
Bits $7-4$ in Table 51 set the LED flashing drivers to be either in-phase or out-of-phase with the internal 1 Hz clock. Bits 3-0 enable the $4 \mu \mathrm{~A}$ pullup current to the corresponding output.
Table 52 shows the LED state register. The LED state register is a read-only register. When the LEDs are disabled, the pins are configured as GPIOs. Applying an external voltage below 0.4 V sets the GPIOs low and, applying an external voltage above 1.4 V , sets the GPIOs high.

## Table 50. LED_Flash/GPIO Enable Register

| Description: <br> Register Title: <br> Register Address: |  | LED_flash/GPIO enable register LED_flash$0 \times 43$ |  |  |  | R/W |  | RESET <br> VALUE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  | R/W |  |  |  | R/W | R/W |  |
| R/W | R/W |  |  |  | R/W |  | R/W |  | R/W | R/W | R/W |
| LED4 <br> Flash | LED3 <br> Flash | LED2 <br> Flash | LED1 Flash | LED4 Set | LED3 Set | LED2 Set | LED1 Set | 0x0F |
| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | - |

## Table 51. LED Phase/Weak Pullup Enable Register



# 0 to 16V, Hot-Swap Controller with 10-Bit Current, Voltage Monitor, and 4 LED Drivers 

Table 52. LED State Register



Figure 4. Serial-Interface Timing Details

I2C Serial Interface
The device features an $1^{2} \mathrm{C}$-compatible serial interface consisting of a serial data line (SDA) and a serial clock line (SCL). SDA and SCL allow bidirectional communication between the device and the master device at clock rates from 100 kHz to 400 kHz . The ${ }^{2} \mathrm{C}$ bus can have several devices (e.g., more than one device, or other $\mathrm{I}^{2} \mathrm{C}$ devices in addition to the device) attached simultaneously. The AO and A1 inputs set one of nine possible ${ }^{2} \mathrm{C}$ addresses (see Table 53).
The 2 -wire communication is fully compatible with existing 2 -wire serial interface systems; Figure 4 shows the interface timing diagram. The device is a transmit/ receive slave-only device, relying upon a master device
to generate a clock signal. The master device (typically a microcontroller) initiates data transfer on the bus and generates SCL to permit that transfer.
A master device communicates to the device by transmitting the proper address followed by command and/ or data words. Each transmit sequence is framed by a START (S) or Repeated START (SR) condition and a STOP (P) condition. Each word transmitted over the bus is 8 bits long and is always followed by an acknowledge pulse.
SCL is a logic input, while SDA is a logic input/opendrain output. SCL and SDA both require external pullup resistors to generate the logic-high voltage. Use $4.7 \mathrm{k} \Omega$ for most applications.

## 0 to 16V, Hot-Swap Controller with 10-Bit Current, Voltage Monitor, and 4 LED Drivers

Table 53. Device Slave Address Settings

| ADDRESS INPUT <br> STATE | $\mathbf{I}^{2}$ C ADDRESS BITS |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A1 | A0 | ADDR 7 | ADDR 6 | ADDR 5 | ADDR 4 | ADDR 3 | ADDR 2 | ADDR 1 | ADDR 0 |
| Low | Low | 0 | 1 | 1 | 1 | 0 | 1 | 0 | R/W |
| Low | High | 0 | 1 | 1 | 1 | 0 | 0 | 1 | R/W |
| Low | Open | 0 | 1 | 1 | 1 | 0 | 0 | 0 | R/W |
| High | Low | 0 | 1 | 1 | 0 | 1 | 1 | 0 | R/W |
| High | High | 0 | 1 | 1 | 0 | 1 | 0 | 1 | $R / W$ |
| High | Open | 0 | 1 | 1 | 0 | 1 | 0 | 0 | R/W |
| Open | Low | 0 | 1 | 1 | 0 | 0 | 1 | 0 | $R / W$ |
| Open | High | 0 | 1 | 1 | 0 | 0 | 0 | 1 | R/W |
| Open | Open | 0 | 1 | 1 | 0 | 0 | 0 | 0 | $R / W$ |



Figure 5. Bit Transfer

## Bit Transfer

Each clock pulse transfers 1 data bit. The data on SDA must remain stable while SCL is high (see Figure 5); otherwise, the device registers a START or STOP condition (see Figure 6) from the master. SDA and SCL idle high when the bus is not busy.

START and STOP Conditions
Both SCL and SDA idle high when the bus is not busy. A master device signals the beginning of a transmission with a START condition (see Figure 3) by transitioning SDA from high to low while SCL is high. The master device issues a STOP condition (see Figure 6) by transitioning SDA from low to high while SCL is high. A STOP condition frees the bus for another transmission. The bus remains active if a Repeated START condition is generated, such as in the block read protocol (see Figure 7).


Figure 6. START and STOP Conditions

## Early STOP Conditions

The device recognizes a STOP condition at any point during transmission except if a STOP condition occurs in the same high pulse as a START condition. This condition is not a legal ${ }^{12} \mathrm{C}$ format. At least one clock pulse must separate any START and STOP condition.

## Repeated START Conditions

A Repeated START (SR) condition may indicate a change of data direction on the bus. Such a change occurs when a command word is required to initiate a read operation (see Figure 4). SR may also be used when the bus master is writing to several ${ }^{2} \mathrm{C}$ devices and does not want to relinquish control of the bus. The device serial interface supports continuous write operations with or without an SR condition separating them. Continuous read operations require SR conditions because of the change in direction of data flow.

## 0 to 16V, Hot-Swap Controller with 10-Bit Current, Voltage Monitor, and 4 LED Drivers

## SEND BYTE FORMAT

| $S$ | ADDRESS | $\overline{\text { WR }}$ | ACK | DATA | ACK | $P$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 7 BITS | 0 |  | 8 BITS |  |  |

SLAVE ADDRESS- DATA BYTE-PRESETS THE
EQUIVALENT TO CHIP- INTERNAL ADDRESS POINTER.
SELECT LINE OF A
3-WIRE INTERFACE.

## RECEIVE BYTE FORMAT

| $S$ | ADDRESS | $\overline{\text { WR }}$ | ACK | DATA | $\overline{\text { ACK }}$ | $P$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 7 BITS | 1 |  | 8 BITS |  |  |

SLAVE ADDRESS- DATA BYTE-READS DATA FROM EQUIVALENT TO CHIP- THE REGISTER COMMANDED BY SELECT LINE OF A THE LAST READ BYTE OR WRITE 3-WIRE INTERFACE. BYTE TRANSMISSION. ALSO DEPENDENT ON A SEND BYTE.

WRITE WORD FORMAT

| S | ADDRESS | $\overline{\text { WR }}$ | ACK | COMMAND | ACK | DATA | ACK | DATA | ACK | P |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 7 BITS | 0 |  | 8 BITS |  | 8 BITS |  | 8 BITS |  |  |
|  | SLAVE ADDRESSEQUIVALENT TO CHIPSELECT LINE OF A 3-WIRE INTERFACE. |  |  | COMMAND BYTE- <br> MSB OF THE EEPROM REGISTER BEING WRITTEN. |  | DATA BYTE-FIRST BYTE IS THE LSB OF THE EEPROM ADDRESS. SECOND BYTE IS THE ACTUAL DATA. |  |  |  |  |

WRITE BYTE FORMAT

| $S$ | ADDRESS | $\overline{W R}$ | ACK | COMMAND | ACK | DATA | ACK | $P$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 7 BITS | 0 |  | 8 BITS |  | 8 BITS |  |  |

SLAVE ADDRESSEQUIVALENT TO CHIPSELECT LINE OF A 3-WIRE INTERFACE.

COMMAND BYTESELECTS REGISTER BEING WRITTEN

DATA BYTE-DATA GOES INTO THE REGISTER SET BY THE COMMAND BYTE IF THE COMMAND IS BELOW 50h. IF THE COMMAND IS 80h, 81h, or 82h, THE DATA BYTE PRESETS THE LSB OF AN EEPROM ADDRESS.

BLOCK WRITE FORMAT

| S | ADDRESS | $\overline{\text { WR }}$ | ACK | COMMAND | ACK | $\begin{gathered} \text { BYTE } \\ \operatorname{COUNT}=N \end{gathered}$ | ACK | DATA BYTE 1 | ACK | DATA BYTE | ACK | DATA BYTE N | ACK | P |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 7 BITS | 0 |  | 8 BITS |  |  |

$$
\begin{array}{ll}
\text { EQUIVALENT TO CHIP- } & \text { PREPARES DEVICE } \\
\text { SELECT LINE OFA } & \text { FOR BLOCK }
\end{array}
$$

$$
3 \text {-WIRE INTERFACE. }
$$

$$
\begin{aligned}
& \text { FUR BLUCK } \\
& \text { OPERATION. }
\end{aligned}
$$

BLOCK READ FORMAT

| S | ADDRESS | $\overline{\text { WR }}$ | ACK | COMMAND | ACK | SR | ADDRESS | $\overline{\text { WR }}$ | ACK | $\begin{gathered} \text { BYTE } \\ \text { COUNT }=16 \end{gathered}$ | ACK | DATA BYTE 1 | ACK | DATA BYTE | ACK | $\begin{gathered} \hline \text { DATA BYTE } \\ \mathrm{N} \end{gathered}$ | ACK | P |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 7 BITS | 0 |  | 8 BITS |  |  | 7 BITS | 1 |  | 10h |  | 8 BITS |  | 8 BITS |  | 8 BITS |  |  |

SLAVE ADDRESSEQUIVALENT TO CHIP FOR BLOCK 3-WIRE INTERFACE. OPERATION

SLAVE ADDRESS EQUIVALENT TO CHIPSELECT LINE OF A 3-WIRE INTERFACE.
$\mathrm{S}=$ START CONDITION
SHADED = SLAVE TRANSMISSION
P = STOP CONDITION $\mathrm{Sr}=$ REPEATED START CONDITION

Figure 7. SMBus/I²C Protocols

# 0 to 16V, Hot-Swap Controller with 10-Bit Current, Voltage Monitor, and 4 LED Drivers 

Acknowledge
The acknowledge bit (ACK) is the 9th bit attached to any 8 -bit data word. The receiving device always generates an ACK. The device generates an ACK when receiving an address or data by pulling SDA low during the 9th clock period (see Figure 8). When transmitting data, such as when the master device reads data back from the device, the device waits for the master device to generate an ACK. Monitoring ACK allows for detection of unsuccessful data transfers. An unsuccessful data transfer occurs if the receiving device is busy or if a system fault has occurred. In the event of an unsuccessful data transfer, the bus master should reattempt communication at a later time. The device generates a NACK after the slave address during a software reboot or when receiving an illegal memory address.

## Send Byte

The send byte protocol allows the master device to send 1 byte of data to the slave device (see Figure 7). The send byte presets a register pointer address for a subsequent read or write. The slave sends a NACK instead of an ACK if the master tries to send an address that is not allowed. If the master sends a STOP condition, the internal address pointer does not change. The send byte procedure follows:

1) The master sends a START condition.
2) The master sends the 7-bit slave address and a write bit (low).
3) The addressed slave asserts an ACK on SDA.
4) The master sends an 8-bit data byte.
5) The addressed slave asserts an ACK on SDA.
6) The master sends a STOP condition.

Write Byte
The write byte/word protocol allows the master device to write a single byte in the register bank or to write to a series of sequential register addresses. The write byte procedure follows:

1) The master sends a START condition.
2) The master sends the 7-bit slave address and a write bit (low).
3) The addressed slave asserts an ACK on SDA.
4) The master sends an 8-bit command code.
5) The addressed slave asserts an ACK on SDA.
6) The master sends an 8-bit data byte.
7) The addressed slave asserts an ACK on SDA.
8) The addressed slave increments its internal address pointer.
9) The master sends a STOP condition or repeats steps 6,7 , and 8.
To write a single byte to the register bank, only the 8-bit command code and a single 8-bit data byte are sent. The data byte is written to the register bank if the command code is valid.


Figure 8. Acknowledge

# 0 to 16V, Hot-Swap Controller with 10-Bit Current, Voltage Monitor, and 4 LED Drivers 

## Table 54. Circular Buffer Readout Sequence

| READ-OUT ORDER | 1ST OUT | 2ND OUT | $\ldots$ | 48TH OUT | 49TH OUT | 50TH OUT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Chronological Number | 1 | 2 | $\ldots$ | 48 | 49 | 0 |

The slave generates a NACK at step 5 if the command code is invalid. The command code must be in the $0 \times 00$ to $0 \times 45$ range. The internal address pointer returns to $0 \times 00$ after incrementing from the highest register address.

## Receive Byte

The receive-byte protocol allows the master device to read the register content of the device (see Figure 7). The EEPROM or register address must be preset with a send-byte protocol first. Once the read is complete, the internal pointer increases by one. Repeating the receive byte protocol reads the contents of the next address. The receive-byte procedure follows:

1) The master sends a START condition.
2) The master sends the 7 -bit slave address and a read bit (high).
3) The addressed slave asserts an ACK on SDA.
4) The slave sends 8 data bits.
5) The slave increments its internal address pointer.
6) The master asserts an ACK on SDA and repeats steps 4,5 or asserts a NACK and generates a STOP condition.
The internal address pointer returns to $0 \times 00$ after incrementing from the highest register address.

## Address Pointers

Use the send-byte protocol to set the register address pointers before read and write operations. For the configuration registers, valid address pointers range from $0 \times 00$ to $0 \times 45$, and the circular buffer addresses are $0 \times 46$ to $0 \times 49$. Register addresses outside this range result in a NACK being issued from the device.

Circular Buffer Read
The circular buffer read operation is similar to the receive-byte operation. The read operation is triggered after any one of the circular buffer base addresses is loaded. During a circular buffer read, although all is transparent from the external world, internally the autoincrement function in the I ${ }^{2} \mathrm{C}$ controller is disabled. Thus, it is possible to read one of the circular buffer blocks with a burst read without changing the virtual internal address corresponding to the base address. Once the master issues a NACK, the circular reading stops, and the default functions of the ${ }^{2} \mathrm{C}$ slave bus controller are restored.
In 8 -bit read mode, every $\mathrm{I}^{2} \mathrm{C}$ read operation shifts out a single sample from the circular buffer. In 10-bit mode, two subsequent ${ }^{12} \mathrm{C}$ read operations shift out a single 10-bit sample from the circular buffer, with the high-order byte read first, followed by a byte containing the rightshifted 2 least-significant bits. Once the master issues a NACK, the read circular buffer operation terminates and normal ${ }^{2} \mathrm{C}$ operation returns.
The data in the circular buffers is read back with the next-to-oldest sample first, followed by progressively more recent samples until the most recent sample is retrieved, followed finally by the oldest sample (see Table 54).

## Chip Information

PROCESS: BiCMOS

## Package Information

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

| PACKAGE <br> TYPE | PACKAGE <br> CODE | OUTLINE <br> NO. | LAND <br> PATTERN NO. |
| :---: | :---: | :---: | :---: |
| 32 TQFN-EP | $T 3255+4$ | $\underline{21-0140}$ | $\underline{90-0012}$ |

# 0 to 16V, Hot-Swap Controller with 10-Bit Current, Voltage Monitor, and 4 LED Drivers 

| REVISION <br> NUMBER | REVISION <br> DATE | DESCRIPTION | PAGES <br> CHANGED |
| :---: | :---: | :--- | :---: |
| 0 | $7 / 10$ | Initial release | - |

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Hot Swap Voltage Controllers category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
MP5010BDQ-LF-Z MP5022AGQV-P MP5010BDQ-LF-P MP5014GJ-P MP5018GD-P MAX5933CESA MAX5925CEUB MAX5909UEE MAX5907EEE MAX5972BETE + MAX15091AETI + MAX5956AUEE + MAX5929CEEG + MAX5929AEEG + MP5010ADQ-LF-Z STEF05LJR STEF05WPUR MAX14693ATP+T STEF12WPUR MAX5971BETI+T NCP81295MNTXG LTC4227IUFD-1\#PBF LTC4235CUFD-1\#PBF LT1641-1IS8\#TRPBF MAX5910ESA+T STEF05LPUR STEF05LAPUR MAX15093GWL+T ADM1275-3ARQZR7 TPS259807ONRGER TPS259802ONRGER LT4256-2IS8\#TRPBF TPS25944ARVCR LPTM21-1AFTG237C NCP1094GEVB TPS25942LRVCR ADM1270ACPZ-R7 UCC2921DTR ADM4210-2AUJZ-RL7 ADM1170-2AUJZ-RL7 ADM1075-2ACPZ $\underline{\text { MAX5988BETP }+ \text { MAX5981AETE }+ \text { MAX5978ETJ }+ \text { MAX5977AETP }+ \text { MAX5969DETE }+ \text { MAX5914AEMH }+ \text { MAX5903AAEUT+T }}$ $\underline{\text { MAX5982BETE }+~ M A X 5982 A E T E ~}+$

