Panasonic ideas for life

RoHS compliant

Electrical life: Min. 2×10^{5} 1a 10A, 1a1b 8A small polarized power relays

FEATURES

1. Compact size:

1 Form A (10A 250V AC),
1 Form A 1 Form B (8A 250V AC)
2. Latching types available
3. Compliant with IEC EN61010-1. Reinforced insulation with 6 mm distance between input and output.
4. Electrical life of Min. 2×10^{5} times (1 Form A type) realized with inductive load ($\cos \varphi=0.4, L / R=7 \mathrm{~ms}$, 5A 250V AC)
5. Sockets are available.

Product name		Part No.
1 Form A	Single side stable type	DK1a-PS
	2 coil latching type	DK1a-PSL2
1 Form A	Single side stable type	DK2a-PS
1 Form B	2 coil latching type	DK2a-PSL2

Please see "DK relay socket" for details.

TYPICAL APPLICATIONS

1. Control for industrial machines (machine tools, robotics)
2. Output relays for temperature controllers, PLCs, timers, sensors.
3. Measuring equipment
4. Security equipment

ORDERING INFORMATION

ADY							

Note: Certified by UL, CSA and TÜV

TYPES

Contact arrangement	Nominal coil voltage	Single side stable	2 coil latching
		Part No.	Part No.
1 Form A	3V DC	ADY10003	ADY12003
	5V DC	ADY10005	ADY12005
	6V DC	ADY10006	ADY12006
	12 V DC	ADY10012	ADY12012
	24V DC	ADY10024	ADY12024
$\begin{aligned} & 1 \text { Form } A \\ & 1 \text { Form B } \end{aligned}$	3V DC	ADY30003	ADY32003
	5V DC	ADY30005	ADY32005
	6V DC	ADY30006	ADY32006
	12 V DC	ADY30012	ADY32012
	24V DC	ADY30024	ADY32024

[^0]* For sockets, see page 140.

RATING

1. Coil data
1) Single side stable

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ \left.[\pm 10 \%] \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
3V DC	$70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage (Initial)	66.6 mA	45Ω	200 mW	$130 \% \mathrm{~V}$ of nominal voltage
5 V DC			40 mA	125Ω		
6 V DC			33.3 mA	180Ω		
12 V DC			16.6 mA	720Ω		
24V DC			8.3 mA	2,880 2		

2) 2 coil latching

Nominal coil voltage	Set voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%] \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) }} \end{gathered}$		$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$		Nominal operating power		Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
			Set coil	Reset coil	Set coil	Reset coil	Set coil	Reset coil	
3V DC	$70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	66.6 mA	66.6 mA	45Ω	45Ω	200mW	200 mW	$130 \% \mathrm{~V}$ of nominal voltage
5V DC			40 mA	40 mA	125Ω	125Ω			
6 V DC			33.3 mA	33.3 mA	180Ω	180Ω			
12 V DC			16.6 mA	16.6 mA	720Ω	720Ω			
24V DC			8.3 mA	8.3 mA	2,880 2	2,880			

2. Specifications

Characteristics	Item		Specifications	
Contact	Arrangement		1 Form A	1 Form A 1 Form B
	Contact resistance (Initial)		Max. $30 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)	
	Contact material		Au-flashed AgSnO_{2} type	
Rating	Nominal switching capacity	Resistive load	10A 250V AC, 10A 30V DC	8 A 250 V AC, 8A 30V DC
		Inductive load $(\cos \phi=0.4, \mathrm{~L} / \mathrm{R}=7 \mathrm{~ms})$	5A 250V AC	3.5 A 250 V AC
	Max. switching capacity (Reference value)	Resistive load	2,500V A, 300W	2,000V A, 240W
		Inductive load $(\cos \phi=0.4, \mathrm{~L} / \mathrm{R}=7 \mathrm{~ms})$	1,250V A	875 V A
	Max. switching voltage		380 V AC, 125V DC	
	Max. switching current		10 A	8 A
	Min. switching capacity (Reference value)* ${ }^{\star}$		5 V 10 mA	
	Nominal operating power		200 mW	
Electrical characteristics	Insulation resistance (Initial)		Min. 1,000M Ω (at 500 V DC) Measurement at same location as "Breakdown voltage" section.	
	Breakdown voltage (Initial)	Between open contacts	1,000 Vrms for 1 min . (Detection current: 10 mA)	
		Between contact and coil	$4,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA)	
	Surge breakdown voltage*2 (Initial)	Between contact and coil	10,000 V	
	Temperature rise (coil) (at70 ${ }^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$)		Max. $40^{\circ} \mathrm{C}$ (By resistive method, nominal voltage applied to the coil; max. switching current)	
	Operate time [Set time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 10 ms [10 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.)	
	Release time [Reset time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. $8 \mathrm{~ms}[10 \mathrm{~ms}]$ (Nominal coil voltage applied to the coil, excluding contact bounce time.) (without diode)	
Mechanical characteristics	Shock resistance	Functional	Min. $98 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$.)	
		Destructive	Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)	
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 1.5 mm (Detection time: $10 \mu \mathrm{~s}$.)	
		Destructive	10 to 55 Hz at double amplitude of 3 mm	
Expected life	Mechanical		Min. 5×10^{7} (at 300 times $/ \mathrm{min}$.)	
	Electrical		Min. 2×10^{5} : 1 Form A inductive load (at 20 times $/ \mathrm{min}$.) (at rated load); Min. 105: 1 Form A resistive load, 1 Form A 1 Form B resistive load,1 Form A 1 Form B inductive load (at 20 times $/ \mathrm{min}$.) (at rated load)	
Conditions	Conditions for operation, transport and storage*3		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+158^{\circ} \mathrm{F}$; Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)	
	Max. operating speed (at rated load)		20 times $/ \mathrm{min}$.	
Unit weight			Approx. 6 g .21 oz	

Notes: *1. This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
*2. Wave is standard shock voltage of $\pm 1.2 \times 50 \mu \mathrm{~s}$ according to JEC-212-1981
*3. The upper limit of the ambient temperature is the maximum temperature that can satisfy the coil temperature rise value. Refer to Usage, transport and storage conditions in NOTES.

REFERENCE DATA

1-(1). Maximum switching capacity (1 Form A)
Tested sample: ADY10024

1-(2). Maximum switching capacity
(1 Form A 1 Form B)
Tested sample: ADY30024

3-(1). Ambient temperature characteristics (1 Form A)
Tested sample: ADY10024, 6 pcs.
Ambient temperature: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $158^{\circ} \mathrm{F}$

2-(1). Coil temperature rise
(1 Form A)
Tested sample: ADY10024, 6 pcs.
Ambient temperature: $20^{\circ} \mathrm{C}, 68^{\circ} \mathrm{F}$

3-(2). Ambient temperature characteristics (1 Form A 1 Form B)
Tested sample: ADY30024, 6 pcs.
Ambient temperature: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $158^{\circ} \mathrm{F}$

DIMENSIONS (mm inch)

1. 1 Form A type

CAD Data

Single side stable type

2 coil latching type

General tolerance: $\pm 0.3 \pm .012$

CAD Data mark can be downloaded from: http://industrial.panasonic.com/ac/e

PC board pattern
(BOTTOM VIEW)
Single side stable type

2 coil latching type

Tolerance: $\pm 0.1 \pm .004$

Schematic (BOTTOM VIEW)
Single side stable

(Deenergized condition)

2 coil latching type

(Reset condition)
Since this is a polarized relay, the connection to the coil should be done according to the above schematic.

2. 1 Form A 1 Form B type

CAD Data

External dimensions
Single side stable type

2 coil latching type

General tolerance: $\pm 0.3+.012$

PC board pattern (BOTTOM VIEW)
Single side stable type

2 coil latching type

Tolerance: $\pm 0.1 \pm .004$

(Deenergized condition)

2 coil latching type

Since this is a polarized relay, the connection to the coil should be done according to the above schematic.

SAFETY STANDARDS

Item	UL/C-UL (Recognized)		CSA (Certified)		TÜV (Certified)	
	File No.	Contact rating	File No.	Contact rating	File No.	Rating
1 Form A	E43028	$\begin{aligned} & \text { 10A 250V AC } \\ & 1 / 3 \mathrm{HP} 125,250 \mathrm{~V} \mathrm{AC} \\ & 10 \mathrm{~A} 30 \mathrm{~V} \text { DC } \\ & \hline \end{aligned}$	LR26550 etc.	$\begin{array}{\|l} \hline 10 \mathrm{~A} 250 \mathrm{~V} \text { AC } \\ 1 / 3 \mathrm{HP} \text { 125, } 250 \mathrm{~V} \mathrm{AC} \\ 10 \mathrm{~A} 30 \mathrm{~V} \text { DC } \\ \hline \end{array}$	$\begin{aligned} & \text { B } 0406 \\ & 13461038 \end{aligned}$	$\begin{aligned} & \text { 10A } 250 \mathrm{~V} \text { AC }(\cos \phi=1.0) \\ & 10 \mathrm{~A} 30 \mathrm{~V} \text { DC }(0 \mathrm{~ms}) \end{aligned}$
1 Form A 1 Form B	E43028	8A 250V AC 1/4HP 125, 250V AC 8A 30V DC	LR26550 etc.	$\begin{aligned} & \text { 8A } 250 \mathrm{~V} \text { AC } \\ & 1 / 4 \mathrm{HP} 125,250 \mathrm{~V} \text { AC } \\ & 8 \mathrm{~A} 30 \mathrm{~V} \text { DC } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { B } 0406 \\ & 13461038 \end{aligned}$	$\begin{aligned} & 8 \mathrm{~A} 250 \mathrm{~V} \text { AC }(\cos \phi=1.0) \\ & 8 \mathrm{~A} 30 \mathrm{VC}(0 \mathrm{~ms}) \end{aligned}$

NOTES

1. Soldering should be done under the following conditions:
$250^{\circ} \mathrm{C} 482^{\circ} \mathrm{F}$ within 10 s
$300^{\circ} \mathrm{C} 572^{\circ} \mathrm{F}$ within 5 s
$350^{\circ} \mathrm{C} 662^{\circ} \mathrm{F}$ within 3s
Soldering depth: 2/3 terminal pitch

2. External magnetic field

Since DY relays are highly sensitive polarized relays, their characteristics will be affected by a strong external magnetic field. Avoid using the relay under that condition.
3. When using, please be aware that the A contact and B contact sides of 1 Form A and 1 Form B types may go on simultaneously at operate time and release time.

For Cautions for Use.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for General Purpose Relays category:
Click to view products by Panasonic manufacturer:
Other Similar products are found below :

```
APF30318 JVN1AF-4.5V-F PCN-105D3MHZ 5JO-10000S-SIL 5JO-1000CD-SIL 5JO-400CD-SIL LY2S-AC220/240 LYQ20DC12
6031007G 6131406HQ 6-1393099-3 6-1393099-8 6-1393122-4 6-1393123-2 6-1393767-1 6-1393843-7 6-1415012-1 6-1419102-2 6-
1423698-4 6-1608051-6 6-1608067-0 6-1616170-6 6-1616248-2 6-1616282-3 6-1616348-2 6-1616350-1 6-1616350-8 6-1616358-7 6-
1616359-9 6-1616360-9 6-1616931-6 6-1617039-1 6-1617052-1 6-1617090-2 6-1617090-5 6-1617347-5 6-1617353-3 6-1617801-8 6-
1617802-2 6-1618107-9 6-1618248-4 M83536/1-027M CX-4014 MAHC-5494 MAVCD-5419-6 703XCX-120A 7-1393100-5 7-1393111-7
7-1393144-5 7-1393767-8
```


[^0]: Standard packing: Carton: 50 pcs.; Case: 500 pcs.

