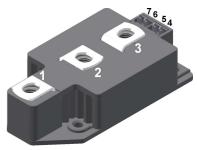
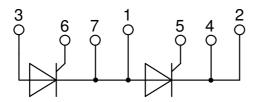

Thyristor Module


PHASE OUT

Phase leg

Part number


MCC220-08io1

Backside: isolated

F1 E72873

Features / Advantages:

- Thyristor for line frequency
- Planar passivated chip
- Long-term stability
- Direct Copper Bonded Al2O3-ceramic

Applications:

- Line rectifying 50/60 Hz
- Softstart AC motor control
- DC Motor control
- Power converter
- AC power control
- Lighting and temperature control

Package: Y2

- Isolation Voltage: 4800 V~
- Industry standard outline
- RoHS compliant
- Soldering pins for PCB mounting
- Base plate: DCB ceramic
- · Reduced weight
- Advanced power cycling

Recommended replacement: MCC310-08io1

Terms Conditions of usage:

The data contained in this product data sheet is exclusively intended for technically trained staff. The user will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to his application. The specifications of our components may not be considered as an assurance of component characteristics. The information in the valid application- and assembly notes must be considered. Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of your product, please contact your local sales office.

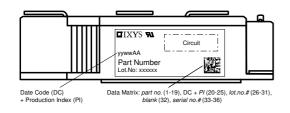
Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact your local sales office.

Should you intend to use the product in aviation, in health or life endangering or life support applications, please notify. For any such application we urgently recommend

to perform joint risk and quality assessments;
the conclusion of quality agreements;

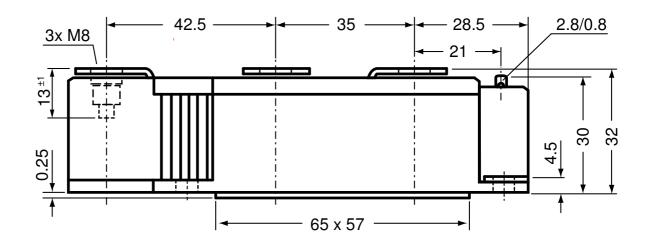
- to establish joint measures of an ongoing product survey, and that we may make delivery dependent on the realization of any such measures.

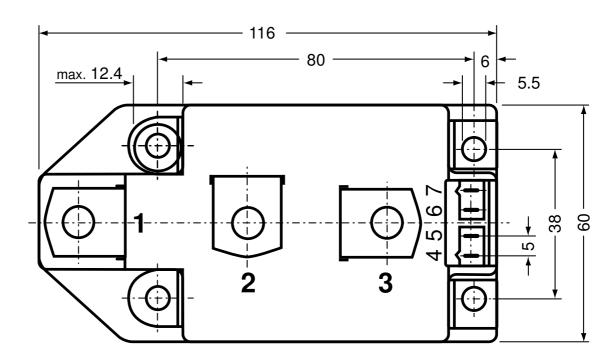
IXYS reserves the right to change limits, conditions and dimensions.

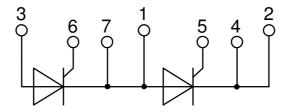

Data according to IEC 60747 and per semiconductor unless otherwise specified

Thyristo	r				Ratings	5	1
Symbol	Definition	Conditions		min.	typ.	max.	Uni
V _{RSM/DSM}	max. non-repetitive reverse/forwa	rd blocking voltage	$T_{VJ} = 25^{\circ}C$			900	١
V _{RRM/DRM}	max. repetitive reverse/forward ble	ocking voltage	$T_{VJ} = 25^{\circ}C$			800	١
I _{R/D}	reverse current, drain current	$V_{R/D} = 800 \text{ V}$	$T_{VJ} = 25^{\circ}C$			1	m/
		$V_{R/D} = 800 \text{ V}$	$T_{VJ} = 140^{\circ}C$			40	m/
V _T	forward voltage drop	$I_T = 200 A$	$T_{VJ} = 25^{\circ}C$			1.24	١
		$I_{T} = 400 \text{ A}$				1.39	١
		$I_T = 200 A$	T _{VJ} = 125°C			1.14	١
		$I_T = 400 \text{ A}$				1.33	١
I _{TAV}	average forward current	$T_c = 85^{\circ}C$	$T_{VJ} = 140$ °C			250	ļ
T(RMS)	RMS forward current	180° sine				400	ŀ
V_{T0}	threshold voltage	ss calculation only	$T_{VJ} = 140$ °C			0.90	١
r _T	slope resistance	ss calculation only				1	mΩ
R _{thJC}	thermal resistance junction to cas	e				0.14	K/W
R_{thCH}	thermal resistance case to heatsing	nk			0.040		K/W
P_{tot}	total power dissipation		$T_{C} = 25^{\circ}C$			820	٧
I _{TSM}	max. forward surge current	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			8.50	k/
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			9.18	k/
		t = 10 ms; (50 Hz), sine	T _{vJ} = 140°C			7.23	k/
		t = 8.3 ms; (60 Hz), sine	$V_R = 0 V$,		7.81	k/
l²t	value for fusing	t = 10 ms; (50 Hz), sine	T _{VJ} = 45°C	J	T T	361.3	kA2
		t = 8,3 ms; (60 Hz), sine	V _R = 0 V			350.6	kA2
		t = 10 ms; (50 Hz), sine	T _{VJ} = 140°C		Ļ	261.0	kA2
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			253.4	kA2s
C _J	junction capacitance	$V_R = 400 \text{V}$ $f = 1 \text{MHz}$	$T_{VJ} = 25^{\circ}C$		438		рF
P _{GM}	max. gate power dissipation	t _P = 30 μs	$T_{\rm C} = 140^{\circ} \rm C$			120	W
		$t_{P} = 500 \mu s$				60	W
P_{GAV}	average gate power dissipation					20	W
(di/dt) _{cr}	critical rate of rise of current	$T_{vJ} = 140 {}^{\circ}\text{C}; f = 50 \text{Hz}$ re	epetitive, $I_T = 750 \text{ A}$			100	A/μs
	$t_P = 200 \mu s; di_G/dt = 1 A/\mu s;$						<u> </u>
		$I_{G} = 1 \text{ A}; V = \frac{2}{3} V_{DRM}$ no	on-repet., $I_{T} = 250 \text{ A}$			500	A/μs
(dv/dt) _{cr}	critical rate of rise of voltage	$V = \frac{2}{3} V_{DRM}$	T _{VJ} = 140°C			1000	V/µs
		R _{GK} = ∞; method 1 (linear volta	ge rise)				
V _{GT}	gate trigger voltage	$V_D = 6 \text{ V}$	$T_{VJ} = 25^{\circ}C$			2	١
.		_	$T_{VJ} = -40$ °C			3	١
I _{GT}	gate trigger current	$V_D = 6 V$	$T_{VJ} = 25^{\circ}C$			150	m/
u.			$T_{VJ} = -40$ °C			200	m/
V_{GD}	gate non-trigger voltage	$V_D = \frac{2}{3} V_{DBM}$	T _{vJ} = 140°C			0.25	١
I _{GD}	gate non-trigger current	5 Silw				10	m/
I _L	latching current	t _p = 30 μs	T _{vJ} = 25°C			200	m/
	3 - 1 - 1	$I_{\rm G} = 0.45 \text{A}; \text{di}_{\rm G}/\text{dt} = 0.45 \text{A}/\mu \text{s}$					
I _H	holding current	$V_D = 6 \text{ V } R_{GK} = \infty$	T _{vJ} = 25°C			150	m/
	gate controlled delay time	$V_{D} = \frac{1}{2} V_{DRM}$	$T_{VJ} = 25 ^{\circ}\text{C}$			2	į .
t _{gd}	gate controlled delay tille						με
	turn-off time	<u> </u>			200		
tq	turr-on time	$V_R = 100 \text{ V}; I_T = 250 \text{ A}; V = \frac{2}{3}$			200		μ
		$di/dt = 10 A/\mu s dv/dt = 50 V$	/μs τ _p = 200 μs				1

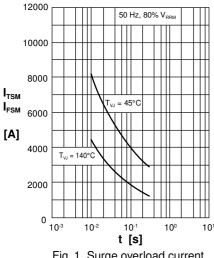
Package Y2			Ratings				
Symbol	Definition	Conditions		min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal				600	Α
T _{VJ}	virtual junction temperature			-40		140	°C
T _{op}	operation temperature		-40		125	°C	
T _{stg}	storage temperature		-40		125	°C	
Weight					255		g
M _D	mounting torque			2.5		5	Nm
$\mathbf{M}_{\scriptscriptstyleT}$	terminal torque			12		15	Nm
d _{Spp/App}	creepage distance on surface striking	a diatanaa thraugh air	terminal to terminal	13.0			mm
d _{Spb/Apb}	creepage distance on surface striking	y distance unough an	terminal to backside	13.0			mm
V _{ISOL}	isolation voltage	t = 1 second		4800			٧
1002	t = 1 minute		50/60 Hz, RMS; IISOL ≤ 1 mA	4000			٧




Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	MCC220-08io1	MCC220-08io1	Box	2	423440


Equiva	alent Circuits for	Simulation	* on die level	$T_{VJ} = 140 ^{\circ}\text{C}$
$I \rightarrow V_0$	R _o	Thyristor		
V _{0 max}	threshold voltage	0.9		V
$R_{0 \text{ max}}$	slope resistance *	0.5		$m\Omega$

Outlines Y2



Thyristor

 $V_{R} = 0 V$ $V_{R} = 0 V$ $T_{VJ} = 45^{\circ}C$ $T_{VJ} = 140^{\circ}C$ $T_{VJ} = 140^{\circ}C$ $T_{VJ} = 140^{\circ}C$

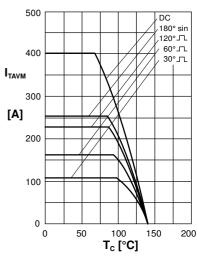
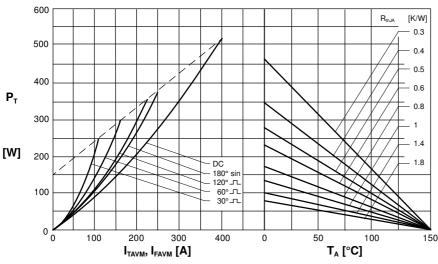



Fig. 1 Surge overload current $I_{T(F)SM}$: crest value, t: duration

Fig. 2 I²t versus time (1-10 ms)

Fig. 3 Max. forward current at case temperature

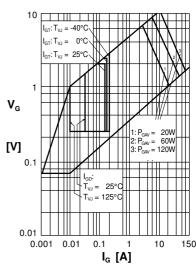
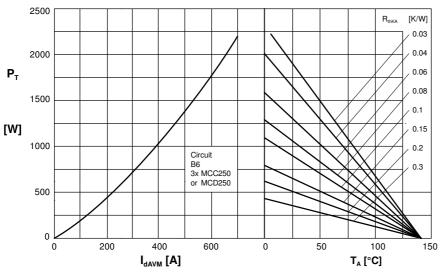



Fig. 4 Power dissipation versus onstate current and ambient temperature (per thyristor/diode)

Fig. 5 Gate trigger characteristics

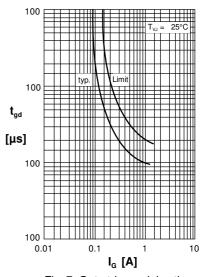


Fig. 6 Three phase rectifier bridge: Power dissipation versus direct output current and ambient temperature

Fig. 7 Gate trigger delay time

Thyristor

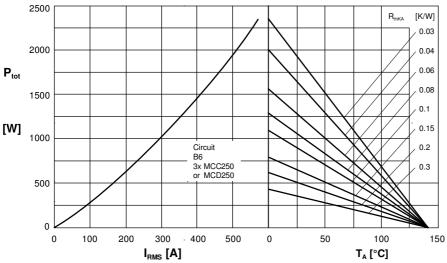


Fig. 7 Three phase AC-controller: Power dissipation versus RMS output current and ambient temperature

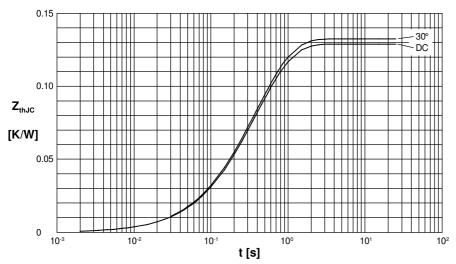


Fig. 8 Transient thermal impedance junction to case (per thyristor/diode)

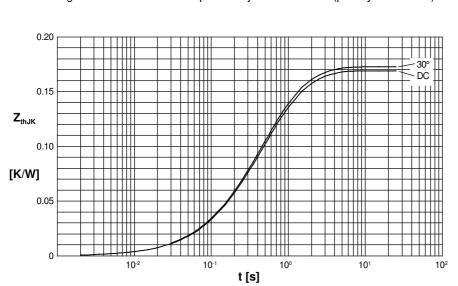


Fig. 9 Transient thermal impedance junction to heatsink (per thyristor/diode)

R_{thJC} for various conduction angles d:

d	R _{thJC} [K/W]
DC	0.139
180°C	0.141
120°C	0.142
60°C	0.142
30°C	0.143

Constants for Z_{thJC} calculation:

i	R_{thi} [K/W]	t _i [s]
1	0.0037	0.0099
2	0.0177	0.168
3	0.1175	0.456

 R_{thJK} for various conduction angles d:

d	R _{thJK} [K/W]
DC	0.179
180°C	0.181
120°C	0.182
60°C	0.183
30°C	0.183

Constants for Z_{thJK} calculation:

i	R_{thi} [K/W]	t _i [s]
1	0.0033	0.0099
2	0.0159	0.168
3	0.1053	0.456
1	0.04	1 36

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Discrete Semiconductor Modules category:

Click to view products by IXYS manufacturer:

Other Similar products are found below:

```
07.471.1280.0 2320160 2320173 25.161.3453.0 25.163.0653.1 25.163.2453.0 25.163.4253.0 25.179.2253.0 25.190.2053.0 25.194.3253.0 25.194.3453.0 25.320.2053.1 25.320.4853.1 25.320.5253.1 25.325.1253.1 25.325.3653.1 25.326.3253.1 25.326.3553.1 25.326.4253.1 25.330.0953.1 25.330.1653.1 25.330.3953.1 25.330.4753.1 25.330.5253.1 25.332.4353.1 25.334.3253.1 25.334.3353.1 25.350.1653.0 25.350.2053.0 25.350.2453.0 25.352.1453.0 25.352.1653.0 25.352.2453.0 25.352.4753.1 25.352.5453.1 25.352.5453.1 25.522.3253.0 25.522.3253.0 25.640.5053.0 25.640.5053.0 2810939 2813583 2866527 2868606 2907719 2950103 APL502J APL602J APT10025JVFR APT10043JVR
```