

DATA SHEET

GENERAL PURPOSE CHIP RESISTORS

RC0402

5%, 1%

RoHS compliant

YAGEO Phicomp

8

SCOPE

This specification describes RC0402 series chip resistors with lead-free terminations made by thick film process.

APPLICATIONS

• All general purpose application

FEATURES

- RoHS compliant
 - Products with lead free terminations meet RoHS requirements
 - Pb-glass contained in electrodes
 - Resistor element and glass are exempted by RoHS
- Reducing environmentally hazardous wastes
- High component and equipment reliability
- Saving of PCB space
- None forbidden-materials used in products/production
- Halogen Free Epoxy

ORDERING INFORMATION - GLOBAL PART NUMBER & 12NC

Both part numbers are identified by the series, size, tolerance, packing type, temperature coefficient, taping reel and resistance value.

YAGEO BRAND ordering code

GLOBAL PART NUMBER (PREFERRED)

RC0402 X R = XX XXXX L (1) (2) (3) (4) (5) (6)

(I) TOLERANCE

 $F = \pm 1\%$

 $J = \pm 5\%$ (for Jumper ordering, use code of J)

(2) PACKAGING TYPE

R = Paper / PE taping reel

(3) TEMPERATURE COEFFICIENT OF RESISTANCE

-= Base on spec

(4) TAPING REEL

07 = 7 inch dia. Reel

10 = 10 inch dia. Reel

13 = 13 inch dia. Reel

(5) RESISTANCE VALUE

There are $2\sim4$ digits indicated the resistor value. Letter R/K/M is decimal point, no need to mention the last zero after R/K/M, e.g. I K2, not I K20.

Detailed resistance rules show in table of "Resistance rule of global part number".

(6) OPTIONAL CODE

L = optional symbol (Note)

Resistance rule of global part number

Resistance code ru	le Example
DI	DI = Dummy
0R	0R = Jumper
XRXX (1 to 9.76 Ω)	IR = I Ω IR5 = I.5 Ω 9R76 = 9.76 Ω
XXRX (10 to 97.6 Ω)	10R = 10 Ω 97R6 = 97.6 Ω
XXXR (100 to 976 Ω)	100R = 100 Ω
XKXX (1 to 9.76 K Ω)	IK = I,000 Ω 9K76 = 9760 Ω
XMXX (1 to 9.76 MΩ)	IM = 1,000,000 Ω 9M76= 9,760,000 Ω

ORDERING EXAMPLE

The ordering code of a RC0402 chip resistor, value 56 Ω with $\pm 1\%$ tolerance, supplied in 7-inch tape reel is: RC0402FR-0756R(L).

NOTE

- All our RSMD products meet RoHS compliant. "LFP" of the internal 2D reel label mentions "Lead Free Process"
- On customized label, "LFP" or specific symbol printed and the optional "L" at the end of GLOBAL PART NUMBER / I 2NC can be added (both are on customer request)

3 8

PHYCOMP BRAND ordering codes

Both GLOBAL PART NUMBER (preferred) and I2NC (traditional) codes are acceptable to order Phycomp brand products.

GLOBAL PART NUMBER (PREFERRED)

XXX XXXXX L

For detailed information of GLOBAL PART NUMBER and ordering example, please refer to page 2.

I2NC CODE 2322

(1)		(2) (3) (4)			
	START		RESISTANCE	PAPER	R / PE TAPE ON REE	L (units) (2)
0402	IN (I)	(%)	RANGE	10,000	20,000/not preferred	50,000
RC31	2322	±5%	I to 22 $M\Omega$	705 70xxx		705 87xxx
RC32	2322	±1%	I to I0 $M\Omega$	706 7xxx		706 8xxx
Jumper	2322	-	0 Ω	705 91001		705 91007

- (1) The resistors have a 12-digit ordering code starting with 2322.
- (2) The subsequent 4 or 5 digits indicate the resistor tolerance and packaging.
- (3) The remaining 4 or 3 digits represent the resistance value with the last digit indicating the multiplier as shown in the table of "Last digit of 12NC".
- (4) "L" is optional symbol (Note).

ORDERING EXAMPLE

The ordering code of a RC32 resistor, value 56 Ω with ±1% tolerance, supplied in tape of 10,000 units per reel is: 232270675609(L) or RC0402FR-0756R(L).

Last digit of 12NC Resistance decade (3)	Last digit
0.01 to 0.0976 Ω	0
0.1 to 0.976 Ω	7
I to 9.76 Ω	8
10 to 97.6 Ω	9
100 to 976 Ω	1
I to 9.76 KΩ	2
10 to 97.6 KΩ	3
100 to 976 KΩ	4
I to 9.76 MΩ	5
10 to 97.6 MΩ	6

Example:	0.02 \Q	=	0200 or 200
	0.3 Ω	=	3007 or 307
	ΙΩ	=	1008 or 108
	33 KΩ	=	3303 or 333
	Ι0 ΜΩ	=	1006 or 106

NOTE

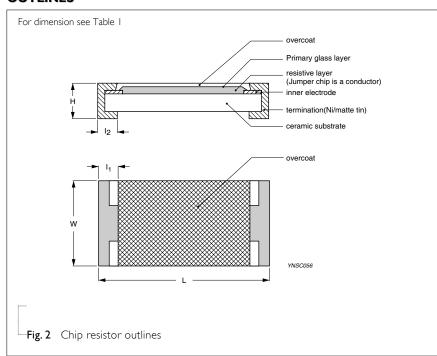
- 1. All our RSMD products are RoHS compliant. "LFP" of the internal 2D reel label mentions "Lead Free Process"
- 2. On customized label, "LFP" or specific symbol printed and the optional "L" at the end of GLOBAL PART NUMBER / I2NC can be added (both are on customer request)

8

MARKING

RC0402

For further marking information, please see special data sheet "Chip resistors marking".


CONSTRUCTION

The resistor is constructed on top of a high-grade ceramic body. Internal metal electrodes are added on each end to make the contacts to the thick film resistive element. The composition of the resistive element is a noble metal imbedded into a glass and covered by a second glass to prevent environment influences. The resistor is laser trimmed to the rated resistance value. The resistor is covered with a protective epoxy coat, finally the two external terminations (matte tin on Nibarrier) are added. See fig.2

DIMENSIONS

Table I	
TYPE	RC0402
L (mm)	1.00 ±0.05
W (mm)	0.50 ±0.05
H (mm)	0.32 ±0.05
I _I (mm)	0.20 ±0.10
I ₂ (mm)	0.25 ±0.10

OUTLINES

ELECTRICAL CHARACTERISTICS

Table 2

CHARACTERISTICS	RC0402 I/16 W	
Operating Temperature Range	-55	5 °C to +155 °C
Maximum Working Voltage		50 V
Maximum Overload Voltage		100 V
Dielectric Withstanding Voltage		100 V
	5% (E24)	I Ω to 22 M Ω
Resistance Range	1% (E24/E96)	I Ω to I0 M Ω
	Zero Ohm J	umper < 0.05 Ω
	$I \Omega \le R \le I0 \Omega$	±200 ppm/°C
Temperature Coefficient	$10 \text{ M}\Omega < R \le 22 \text{ M}\Omega$	±200 ppm/°C
	$10 \Omega < R \le 10 M\Omega$	±100 ppm/°C
Jumper Criteria	Rated Current	1.0 A
	Maximum Current	2.0 A

FOOTPRINT AND SOLDERING PROFILES

For recommended footprint and soldering profiles, please see the special data sheet "Chip resistors mounting".

PACKING STYLE AND PACKAGING QUANTITY

Table 3 Packing style and packaging quantity

PRODUCT TYPE	PACKING STYLE	REEL DIMENSION	QUANTITY PER REEL
RC0402	Paper Taping Reel (R)	7" (178 mm)	10,000 units
		10" (254 mm)	20,000 units
		13" (330 mm)	50,000 units

NOTE

FUNCTIONAL DESCRIPTION

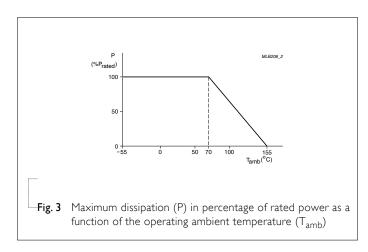
POWER RATING

RC0402 rated power at 70°C is I/I6 W

RATED VOLTAGE

The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:

$$V = \sqrt{(P \times R)}$$


or max. working voltage whichever is less

Where

V=Continuous rated DC or AC (rms) working voltage (V)

P=Rated power (W)

R=Resistance value (Ω)

^{1.} For paper tape and reel specification/dimensions, please see the special data sheet "Packing" document.

Chip Resistor Surface Mount RC SERIES 0402 (RoHS Compliant)

TESTS AND REQUIREMENTS

Table 4 Test condition, procedure and requirements

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Life/ Operational Life/ Endurance	MIL-STD-202G-method 108A IEC 60115-1 4.25.1 JIS C 5202-7.10	I,000 hours at 70±5 °C applied RCWV I.5 hours on, 0.5 hour off, still air required	$\pm (2\% + 0.05 \ \Omega)$ <100 m Ω for Jumper
High Temperature Exposure/ Endurance at upper category temperature	MIL-STD-202G-method 108A IEC 60115-1 4.25.3 JIS C 5202-7.11	I,000 hours at maximum operating temperature depending on specification, unpowered No direct impingement of forced air to the parts Tolerances: I25±3 °C	\pm (1%+0.05 Ω) <50 m Ω for Jumper
Moisture Resistance	MIL-STD-202G-method 106F IEC 60115-1 4.24.2	Each temperature / humidity cycle is defined at 8 hours (method 106F), 3 cycles / 24 hours for 10d with 25 °C / 65 °C 95% R.H., without steps 7a & 7b, unpowered Parts mounted on test-boards, without condensation on parts Measurement at 24±2 hours after test conclusion	$\pm (2\% + 0.05~\Omega)$ <100 m Ω for Jumper
Thermal Shock	MIL-STD-202G-method 107G	-55/+125 °C Note: Number of cycles required is 300. Devices unmounted Maximum transfer time is 20 seconds. Dwell time is 15 minutes. Air – Air	\pm (0.5%+0.05 Ω) for 10 K Ω to 10 M Ω \pm (1%+0.05 Ω) for others <50 m Ω for Jumper
Short time overload	MIL-R-55342D-para 4.7.5 IEC60115-1 4.13	2.5 times RCWV or maximum overload voltage whichever is less for 5 sec at room temperature	±(2%+0.05 Ω) <50 mΩ for Jumper No visible damage
Board Flex/ Bending	IEC60115-1 4.33	Device mounted on PCB test board as described, only I board bending required 3 mm bending Bending time: 60±5 seconds Ohmic value checked during bending	\pm (1%+0.05 Ω) <50 mΩ for Jumper No visible damage

Chip Resistor Surface Mount RC SERIES 0402 (RoHS Compliant)

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Solderability - Wetting	IPC/JEDECJ-STD-002B test B IEC 60068-2-58	Electrical Test not required Magnification 50X SMD conditions: Ist step: method B, aging 4 hours at 155 °C dry heat 2nd step: leadfree solder bath at 245±3 °C Dipping time: 3±0.5 seconds	Well tinned (≥95% covered) No visible damage
- Leaching	IPC/JEDECJ-STD-002B test D IEC 60068-2-58	Leadfree solder, 260 °C, 30 seconds immersion time	No visible damage
- Resistance to Soldering Heat	MIL-STD-202G-method 210F IEC 60068-2-58	Condition B, no pre-heat of samples Leadfree solder, 270 °C, 10 seconds immersion time Procedure 2 for SMD: devices fluxed and cleaned with isopropanol	$\pm (1\% + 0.05 \ \Omega)$ <50 m Ω for Jumper No visible damage

Chip Resistor Surface Mount RC SERIES 0402 (RoHS Compliant)

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 3	Jul 15, 2008	-	- Change to dual brand datasheet that describe RC0402 with RoHS compliant
			- Description of "Halogen Free Epoxy" added
			- Define global part number
Version 2	Sep 03, 2004	-	- New datasheet for 0402 thick film 1% and 5% with lead-free terminations
			- Replace the 0402 part of pdf files: RC01_11_21_31_5, RC02_12_22_32_10
			- Test method and procedure updated
			- PE tape added (paper tape will be replaced by PE tape)

[&]quot;Yageo reserves all the rights for revising the content of this datasheet without further notification, as long as the products itself are unchanged. Any product change will be announced by PCN."

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Thick Film Resistors - SMD category:

Click to view products by Yageo manufacturer:

Other Similar products are found below:

CRG1206F1K58 CRL0603-FW-R700ELF M55342K06B6E19RWL RC1005F1072CS RC1005F471CS RC1005F4751CS

RCP0603W100RGED RCWP72251K47FKWB RGC1/16C3301FT RLR05C7501GPB14 RLR07C5111FSBSL ERJ-1GMF1R00C ERJ
1GMF1R20C ERJ-1GMF2R55C ERJ-1GMF8R66C 25121WF1003T4E 25121WF100JT4E 25121WF220JT4E 25121WF470KT4E

25.501.3653.0 290-1.0M-RC 292-1.0M-RC 292-4.7K-RC 304-1.0M-RC SR06X1001FTL 25121WF100KT4E 25121WF4700T4E 302
1.0M-RC CPG1206F10KC CRCW02011R00FXED CRCW060315K0FKEE CRCW06031K30FKEC CRCW060320K5FKEE

CRG0201F10K RCG0402150RFKED RCG04023K92FKED RCP2512B100RGWB RCWP110010R0FKS3 RCWP11002K00FKS3

RCWP110051R1FKS3 RCWP12061K00FKS2 3520510RJT 352075KJT M55342K11B9E53RUL RMC16-102JT RMC1JPTE TR0603MR
075K1L MM02041001FRC MMB0207-50-10R0FTR-L 5-2176094-4