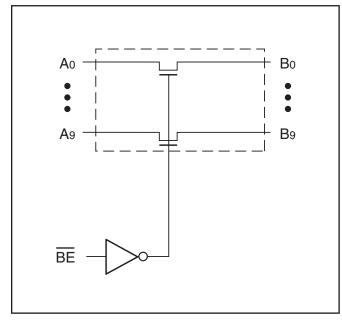
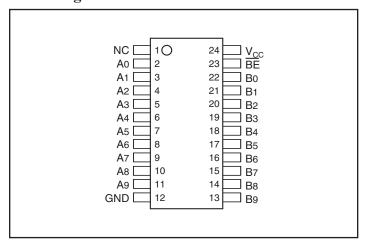


10-Bit, 2-Port Bus Switch


Features:

- · Near-Zero propagation delay
- 5Ω switches connect inputs to outputs
- Direct bus connection when switches are ON
- Ultra Low Quiescent Power (0.2µA typical)
 Ideally suited for notebook applications
- Packaging (Pb-free & Green available):
 24-pin, 150-mil wide plastic QSOP (Q)


Description:

Pericom Semiconductor's PI5C3861 is a 10-bit, 2-port bus switch designed with a low On-Resistance (5Ω) allowing inputs to be connected directly to outputs. The bus switch creates no additional propagation delay or additional ground bounce noise. The switches are turned ON by the Bus Enable ($\overline{\rm BE}$) input signal.

Block Diagram

Pin Configuration

Truth Table⁽¹⁾

Function	BE	A0-9
Disconnect	Н	Hi-Z
Connect	L	B0-9

Note:

 H = High Voltage Level, L = Low Voltage Level, Hi-Z = High Impedance

Pin Description

Pin Name	Description
BE	Bus Enable Input (Active LOW)
A0-9	Bus A
B0-9	Bus B
GND	Ground
V _{CC}	Power
NC	No Connect

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	
Ambient Temperature with Power Applied	40°C to +85°C
Supply Voltage to Ground Potential	-0.5V to +7.0V
DC Input Voltage	-0.5V to +7.0V
DC Output Current	120 mA
Power Dissipation	0.5W

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Electrical Characteristics (Over the Operating Range, $T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$, $V_{CC} = 5\text{V} \pm 5\%$)

Parameters	Description	Test Conditions ⁽¹⁾	Min.	Typ ⁽²⁾	Max.	Units	
V _{IH}	Input HIGH Voltage	Guaranteed Logic HIGH Level	2.0			V	
V_{IL}	Input LOW Voltage	Guaranteed Logic LOW Level	-0.5		0.8	V	
I_{IH}	Input HIGH Current	$V_{CC} = Max., V_{IN} = V_{CC}$			±1		
I_{IL}	Input LOW Current	$V_{CC} = Max., V_{IN} = GND$			±1	μА	
I _{OZ}	High Impedance Output Current	$0 \le A, B \le V_{CC}$			±1		
V _{IK}	Clamp Diode Voltage	$V_{CC} = Min., I_{IN} = -18mA$		-0.7	-1.2	V	
I_{OS}	SHORT CIRCUIT CURRENT ⁽³⁾	$A(B) = 0V, B(A) = V_{CC}$	100			мА	
V_{H}	Input Hysteresis at Control Pins			150		mV	
D	Switch On-Resistance ⁽⁴⁾	$V_{CC} = Min., V_{IN} = 0.0V, I_{ON} = 48mA$		5	7	Ω	
R _{ON}	Switch On-Resistance	$V_{CC} = Min., V_{IN} = 2.4V, I_{ON} = 15mA$		10	15	52	

Notes:

- 1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at $V_{CC} = 5.0V$, $T_A = 25^{\circ}C$ ambient and maximum loading.
- 3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.
- 4. Measured by the voltage drop between A and B pin at indicated current through the switch. On-Resistance is determined by the lower of the voltages on the two (A,B) pins.

Capacitance ($T_A = 25$ °C, f = 1 MHz)

Parameters ⁽¹⁾	Description	Test Conditions	Тур.	Max.	Units
C_{IN}	Input Capacitance			6	
C_{OFF}	A/B Capacitance, Switch Off	$V_{IN} = 0V$		6	pF
C _{ON}	A/B Capacitance, Switch On			8	

Notes:

1. This parameter is determined by device characterization but is not production tested.

Power Supply Characteristics

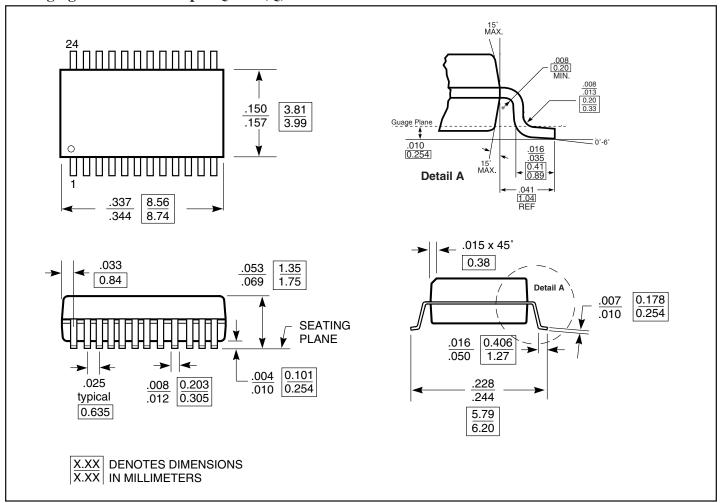
Parameters	Description	Test Conditions ⁽¹⁾		Min.	Typ ⁽²⁾	Max.	Units
I_{CC}	Quiescent Power Supply Current	$V_{CC} = Max.$	$V_{IN} = GND \text{ or } V_{CC}$		0.1	10	μΑ
ΔI_{CC}	Supply Current per Input @ TTL HIGH	$V_{CC} = Max.$	$V_{IN} = 3.4V^{(3)}$			2.5	mA
I _{CCD}	Supply Current per Input per MHz ⁽⁴⁾	$V_{CC} = Max.,$ A and B Pins Open $\overline{BE} =$ Control Input Toggling 50% Duty Cycle				0.25	mA/ MHz

Notes:

- 1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device.
- 2. Typical values are at $V_{CC} = 5.0V$, +25°C ambient.
- 3. Per TTL driven input ($V_{IN} = 3.4V$, control inputs only); A and B pins do not contribute to I_{CC} .
- 4. This current applies to the control inputs only and represent the current required to switch internal capacitance at the specified frequency. The A and B inputs generate no significant AC or DC currents as they transition. This parameter is not tested, but is guaranteed by design.

Switching Characteristics over Operating Range

Parameters	Description	Conditions	Co	Unit	
			Min.	Max.	
t _{PLH} t _{PHL}	Propagation Delay ^(1,2) Ax to Bx, Bx to Ax			0.25	
t _{PZH} t _{PZL}	Bus Enable Time BE to Ax or Bx	$C_{L} = 50 \text{pF}$ $R_{L} = 500 \Omega$	1.5	6.5	ns
t _{PHZ} t _{PLZ}	Bus Disable Time BE to Ax or Bx		1.5	5.5	


Notes:

- 1. This parameter is guaranteed but not tested on Propagation Delays.
- 2. The bus switch contributes no propagational delay other than the RC delay of the On-Resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25ns for 50pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagational delay to the system. Propagational delay of the bus switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

07-0125 3 PS7021H 05/02/07

Packaging Mechanical: 24-pin QSOP (Q)

Ordering Information

Ordering Code	Package Code	Package Description
PI5C3861Q	Q	24-pin 150-mil wide plastic QSOP
PI5C3861QE	Q	Pb-free & Green, 24-pin 150-mil wide plastic QSOP

Notes:

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- E = Pb-free & Green
- Adding an X suffix = Tape/Reel

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Digital Bus Switch ICs category:

Click to view products by Diodes Incorporated manufacturer:

Other Similar products are found below:

MT8986AE1 MT90812AP1 MT90869AG2 CA91L8260B-100CEV TC7MPB9307FT(EL) MT8986AP1 72V8985JG8 732757E

ZL50020QCG1 ZL50012QCG1 PI3C32X384BE PI5C3861QEX ZL50023GAG2 MT8986AL1 MT8981DP1 PI3VT3245-ALE

ZL50016GAG2 TC7MBL3257CFT(EL) PI3CH800QE MT90823AB1 ZL50075GAG2 PI5C32X245BEX PI5C3126QEX PI5C3125QEX PI3VT3245-AQE PI3CH800QEX PI3C3384QE PI3C3305UEX PI3B3861QEX PI3B3861QE PI3B32X245BEX PI3B3245QEX PI3B3245QE PI3CH800ZHEX PI3CH1000LE PI3CH400ZBEX 728981JG8 TC7MBL3257CFK(EL) 728985JG8 PI3CH401LE

PI3CH401LEX FST3126DR2G QS34X245Q3G8 QS3VH125S1G8 TC7WBL3305CFK(5L,F 74CB3Q3125DBQRE4 74FST6800PGG8 74CB3Q3244DBQRE4 74CBTLV3125PGG8 TC7MBL3125CFT(EL)