
IGBT SIP Module (Ultrafast IGBT)

IMS-2

PRIMARY CHARACTERISTICS					
OUTPUT CURRENT IN A TYPICAL 20 kHz MOTOR DRIVE					
V _{CES} 600 V					
I _{RMS} per phase (2.1 kW total) with T _C = 90 °C	7.1 A _{RMS}				
TJ	125 °C				
Supply voltage	360 V _{DC}				
Power factor	0.8				
Modulation depth (see fig. 1)	115 %				
V _{CE(on)} (typical) at I _C = 6.8 A, 25 °C	1.7 V				
Speed	8 kHz to 30 kHz				
Package	SIP				
Circuit configuration	Three phase inverter				

FEATURES

• Switching-loss rating includes all "tail" losses

ROHS

- HEXFRED® soft ultrafast diodes
- Optimized for medium speed, see fig. 1 for current vs. frequency curve
- UL approved file E78996
- Designed and qualified for industrial level
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

DESCRIPTION

The IGBT technology is the key to Vishay's Semiconductors advanced line of IMS (Insulated Metal Substrate) power modules. These modules are more efficient than comparable bipolar transistor modules, while at the same time having the simpler gate-drive requirements of the familiar power MOSFET. This superior technology has now been coupled to a state of the art materials system that maximizes power throughput with low thermal resistance. This package is highly suited to motor drive applications and where space is at a premium.

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	TEST CONDITIONS	MAX.	UNITS	
Collector to emitter voltage	V _{CES}		600	V	
Continuous collector comment cont ICRT	I-	T _C = 25 °C	13		
Continuous collector current, each IGBT	Ic	T _C = 100 °C	6.8		
Pulsed collector current	I _{CM} ⁽¹⁾		40	A	
Clamped inductive load current	I _{LM} (2)		40	A	
Diode continuous forward current	I _F	T _C = 100 °C	6.1		
Diode maximum forward current	I _{FM}		40		
Gate to emitter voltage	V_{GE}		± 20	V	
Isolation voltage	V _{ISOL}	Any terminal to case, t = 1 min	2500	V _{RMS}	
Maniana and discipation and IODT	P _D	T _C = 25 °C	36	W	
Maximum power dissipation, each IGBT	FD	T _C = 100 °C	14	7 vv	
Operating junction and storage temperature range	T _J , T _{Stg}		-40 to +150	°C	
Soldering temperature		For 10 s, (0.063" (1.6 mm) from case)	300		
Mounting torque		6-32 or M3 screw		lbf ⋅ in	
Modifiling torque		0-02 OI IVIO 3016W	(0.55 to 0.8)	(N · m)	

Notes

 $^{^{(1)}}$ Repetitive rating; $V_{GE} = 20 \text{ V}$, pulse width limited by maximum junction temperature (see fig. 20)

 $^{^{(2)}}$ V_{CC} = 80 % (V_{CES}), V_{GE} = 20 V, L = 10 $\mu H,~R_{G}$ = 23 Ω (see fig. 19)

THERMAL AND MECHANICAL SPECIFICATIONS						
PARAMETER	SYMBOL	TYP.	MAX.	UNITS		
Junction-to-case, each IGBT, one IGBT in conduction	R _{thJC} (IGBT)	-	3.5			
Junction-to-case, each diode, one diode in conduction	R _{thJC} (DIODE)	-	5.5	°C/W		
Case to sink, flat, greased surface	R _{thCS} (MODULE)	0.10	-			
Weight of module		20	-	g		
Weight of module		0.7	-	OZ.		

ELECTRICAL SPECIFICATIONS (T _J = 25 °C unless otherwise specified)							
PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNITS
Collector to emitter breakdown voltage	V _{(BR)CES} (1)	$V_{GE} = 0 \text{ V}, I_{C} = 250 \mu\text{A}$		600	-	-	V
Temperature coeff. of breakdown voltage	$\Delta V_{(BR)CES}/\Delta T_J$	V _{GE} = 0 V, I _C = 1.0 mA		-	0.63	-	V/°C
		I _C = 6.8 A		-	1.70	2.2	
Collector to emitter saturation voltage	V _{CE(on)}	I _C = 13 A	$V_{GE} = 15 \text{ V}$ See fig. 2, 5		2.00	-	v
		I _C = 6.8 A, T _J = 150 °C	See fig. 2, 5	-	1.70	-	1 V
Gate threshold voltage	$V_{GE(th)}$	V _{CE} = V _{GE} , I _C = 250 μA		3.0	-	6.0	
Temperature coeff. of threshold voltage	$\Delta V_{GE(th)}/\Delta T_{J}$			-	- 11	-	mV/°C
Forward transconductance	g _{fe} (2)	$V_{CE} = 100 \text{ V}, I_{C} = 6.8 \text{ A}$		4.0	6.0	-	S
7	1	$V_{GE} = 0 \text{ V}, V_{CE} = 600 \text{ V}$		-	-	250	
Zero gate voltage collector current	I _{CES}	V _{GE} = 0 V, V _{CE} = 600 V, T _J = 150 °C		-	-	2500	μA
Diode forward voltage drop	V _{FM}	I _C = 12 A	Soo fig. 12	-	1.4	1.7	V
		I _C = 12 A, T _J = 150 °C	See fig. 13	-	1.3	1.6	V
Gate to emitter leakage current	I _{GES}	V _{GE} = ± 20 V		-	-	± 100	nA

Notes

PARAMETER	SYMBOL	= 25 °C unless otherwise specified) TEST CONDITIONS		MIN.	TYP.	MAX.	UNITS		
Total gate charge (turn-on)	Qa	•				53	79	OMITO	
Gate to emitter charge (turn-on)	Q _{ge}		$I_C = 6.8 \text{ A}$ $V_{CC} = 400 \text{ V}$ See fig. 8		_	7.7	12	nC	
Gate to collector charge (turn-on)	Q _{ge}				-	21	31	110	
Turn-on delay time	t _{d(on)}				_	43	-		
Rise time	t _r	1	T _{.1} = 25 °C		-	14	_	ns	
Turn-off delay time	t _{d(off)}	Ic	= 6.8 A, V _{CC} =		_	95	140		
Fall time	t _f		$V_{GE} = 15 \text{ V}, R_G = 23 \Omega$		-	83	190	1	
Turn-on switching loss	E _{on}	Energy losses include "tail" and diode reverse recovery. See fig. 9, 10, 11, 18			-	0.17	-		
Turn-off switching loss	E _{off}				-	0.15	-	mJ	
Total switching loss	E _{ts}		-	0.32	0.45	1			
Turn-on delay time	t _{d(on)}	T _J = 150 °C I _C = 6.8 A, V _{CC} = 480 V			-	41	-	- ns	
Rise time	t _r				-	16	-		
Turn-off delay time	t _{d(off)}	V_{GE} = 15 V, R_{G} = 23 Ω Energy losses include "tail" and diode reverse recovery See fig. 9, 10, 11, 18 V_{GE} = 0 V V_{CC} = 30 V f = 1.0 MHz See fig. 7		-	110	-			
Fall time	t _f			-	230	-			
Total switching loss	E _{ts}			-	0.52	-	mJ		
Input capacitance	C _{ies}			-	1100	-			
Output capacitance	C _{oes}			-	73	-	pF		
Reverse transfer capacitance	C _{res}			-	14	-] '		
Biodo o constant de la constant de l		T _J = 25 °C	See fig. 14	ee fig. 14	-	42	60		
Diode reverse recovery time	t _{rr}	T _J = 125 °C			-	83	120	ns	
Diada analysis and an area and an area		T _J = 25 °C	25 °C See fig. 15	0545		-	3.5	6.0	^
Diode peak reverse recovery charge	I _{rr}	T _J = 125 °C		$I_F = 12 \text{ A}$ $V_R = 200 \text{ V}$	-	5.6	10	A	
Diode reverse recovery charge	Q_{rr}	$T_J = 25 ^{\circ}C$		Coo fig. 16	dl/dt = 200 A/µs	1	80	180	nC
blode reverse recovery charge	Q _{rr}	T _J = 125 °C		j. 10	1	220	600	ПС	
Diode peak rate of fall of recovery	dl _{(rec)M} /dt	T _J = 25 °C			-	180	-	A/µs	
during t _b	GI(rec)IVI/ GI	T _J = 125 °C	See lig. 17		-	116	-	7ν μ3	

⁽¹⁾ Pulse width \leq 80 μ s, duty factor \leq 0.1 % (2) Pulse width 5.0 μ s; single shot

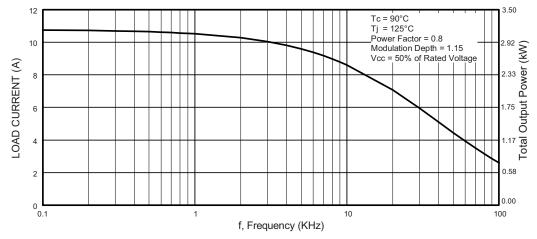


Fig. 1 - Typical Load Current vs. Frequency (Load Current = I_{RMS} of Fundamental)

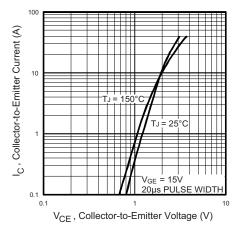


Fig. 2 - Typical Output Characteristics

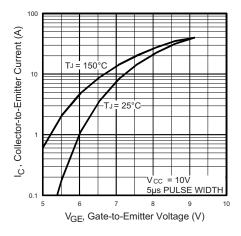


Fig. 3 - Typical Transfer Characteristics

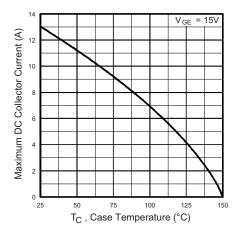


Fig. 4 - Maximum Collector Current vs. Case Temperature

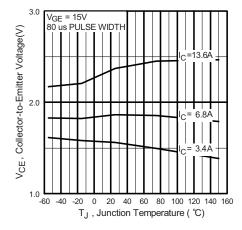


Fig. 5 - Typical Collector to Emitter Voltage vs. Junction Temperature

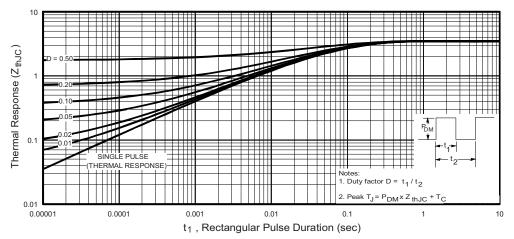


Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction to Case

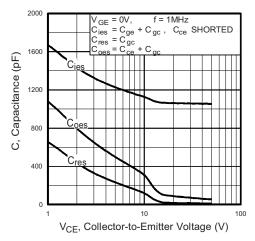


Fig. 7 - Typical Capacitance vs. Collector to Emitter Voltage

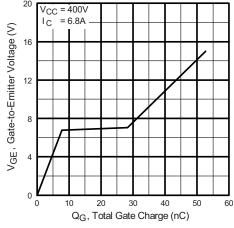


Fig. 8 - Typical Gate Charge vs. Gate to Emitter Voltage

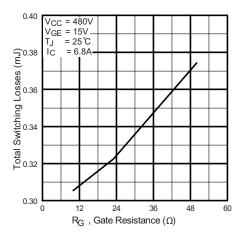


Fig. 9 - Typical Switching Losses vs. Gate Resistance

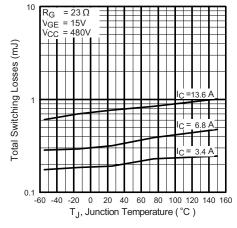


Fig. 10 - Typical Switching Losses vs. Junction Temperature

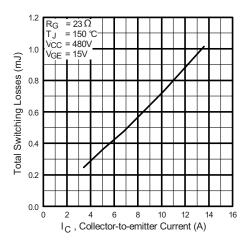


Fig. 11 - Typical Switching Losses vs. Collector to Emitter Current

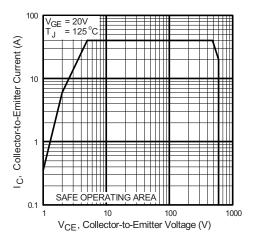


Fig. 12 - Turn-Off SOA

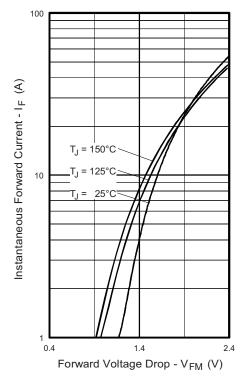


Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current

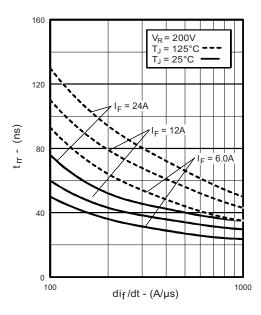


Fig. 14 - Typical Reverse Recovery Time vs. dI_F/dt

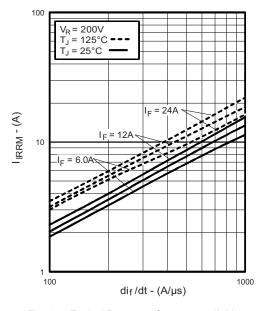


Fig. 15 - Typical Recovery Current vs. dI_F/dt

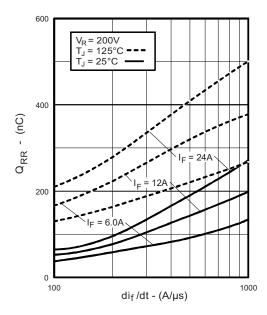


Fig. 16 - Typical Stored Charge vs. dl_F/dt

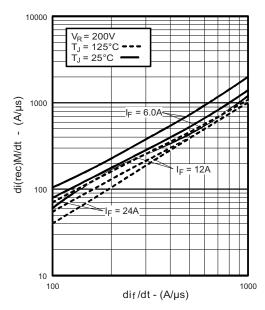


Fig. 17 - Typical $dl_{(rec)M}/dt$ vs dl_F/dt



Fig. 18a - Test Circuit for Measurements of I_{LM} , E_{on} , $E_{off(diode)}$, t_{rr} , Q_{rr} , I_{rr} , $t_{d(on)}$, t_r , $t_{d(off)}$, t_f

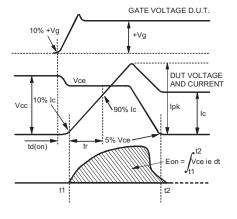


Fig. 18c - Test Waveforms for Circuit of Fig. 18a, Defining E_{on} , $t_{d(on)}$, t_{r}

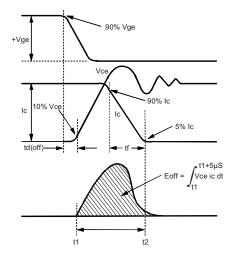


Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining $E_{\text{off}},\,t_{\text{d(off)}},\,t_{\text{f}}$

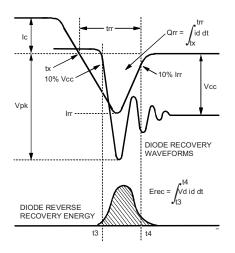


Fig. 18d - Test Waveforms for Circuit of Fig. 18a, Defining E_{rec} , t_{rr} , Q_{rr} , I_{rr}

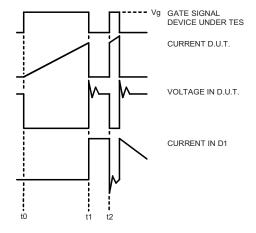
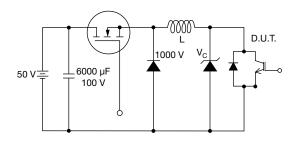



Fig. 18e - Macro Waveforms for Figure 18a's Test Circuit

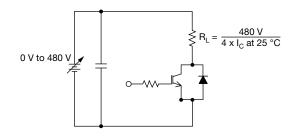
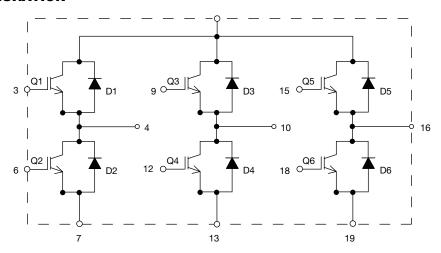



Fig. 19 - Clamped Inductive Load Test Circuit

Fig. 20 - Pulsed Collector Current Test Circuit

CIRCUIT CONFIGURATION

LINKS TO RELATED DOCUMENTS				
Dimensions	www.vishay.com/doc?95066			

IMS-2 (SIP)

DIMENSIONS in millimeters (inches)

IMS-2 Package Outline (13 Pins)

Notes

- $^{(1)}$ Tolerance uless otherwise specified \pm 0.254 mm (0.010")
- (2) Controlling dimension: inch
- (3) Terminal numbers are shown for reference only

Document Number: 95066 Revision: 30-Jul-07

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for IGBT Transistors category:

Click to view products by Vishay manufacturer:

Other Similar products are found below:

 748152A
 FGH60T65SHD_F155
 APT100GT60B2RG
 APT13GP120BG
 APT20GN60BG
 APT20GT60BRDQ1G
 APT25GN120B2DQ2G

 APT35GA90BD15
 APT36GA60BD15
 APT40GP60B2DQ2G
 APT40GP90B2DQ2G
 APT50GN120B2G
 APT50GT60BRG

 APT64GA90B2D30
 APT70GR120J
 NGTB10N60FG
 NGTB30N60L2WG
 NGTG25N120FL2WG
 IGP30N60H3XKSA1

 IGW40N60H3FKSA1
 STGB15H60DF
 STGFW20V60DF
 STGFW30V60DF
 STGFW40V60F
 STGWA25H120DF2
 FGB3236_F085

 APT25GN120BG
 APT25GR120S
 APT30GN60BDQ2G
 APT30GN60BG
 APT30GP60BG
 APT30GS60BRDQ2G
 APT30N60BC6

 APT35GP120JDQ2
 APT36GA60B
 APT45GR65B2DU30
 APT50GP60B2DQ2G
 APT68GA60B
 APT70GR65B
 APT70GR65B2SCD30

 GT50JR22(STA1ES)
 TIG058E8-TL-H
 IDW40E65D2
 NGTB50N60L2WG
 STGB10H60DF
 STGB20V60F
 STGB40V60F
 STGFW80V60F

 IGW40N120H3FKSA1
 RJH60D7BDPQ-E0#T2
 RJH60D7BDPQ-E0#T2
 RPT20GN60BC
 APT20GR60BC
 APT20GR60BC
 APT30GR60BC
 APT30GR65B2CD30