

Film Capacitors

EMI Suppression Capacitors (MKP)

Series/Type: B32921 ... B32926

Date: May 2005

© EPCOS AG 2006. Reproduction, publication and dissemination of this data sheet, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.

Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.

Please read "Important notes" on page 9.

X2 / 305 VAC

Typical applications

- X2 class for interference suppression
- "Across the line" applications

Climatic

- Max. operating temperature: 125 °C
- Climatic category (IEC 60068-1): 40/105/56

Construction

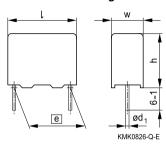
- Dielectric: polypropylene (MKP)
- Plastic case (UL 94 V-0)
- Epoxy resin sealing (UL 94 V-0)

Features

- Very small dimensions
- Self-healing properties

Terminals

- Parallel wire leads, lead-free tinned
- Standard lead lengths: 6 -1 mm
- Special lead lengths available on request


Marking

Manufacturer's logo, lot number, date code, rated capacitance (coded), cap. tolerance (code letter), rated AC voltage, series number, sub-class (X2), dielectric code (MKP), climatic category, passive flammability category, approvals.

Delivery mode

Bulk (untaped)
Taped (Ammo pack or reel)
For taping details, refer to chapter
"Taping and packing".

Dimensional drawing

Dimensions in mm

Lead spacing e ±0.4	Lead diameter d ₁	Туре
10	0.6	B32921
15	0.8	B32922
22.5	0.8	B32923
27.5	0.8	B32924
37.5	1.0	B32926

Marking examples

e = 10 mm

KMK0820-B

 Θ = 22.5, 27.5, 37.5 mm/C_R>1 μ F *e* ≥15 mm/C_R≤1 μF

KWK0034

KMK0822-S

Approvals

Marks of conformity	Standards	Certificate
3 0	EN 132400, IEC 60384-14	40005536/40010694
7.1	UL 1414 / UL 1283	E97863 / E157153
<i>1</i> ? 3	CSA C22.2 No.1 / No. 8	E97863 / E157153 (approved by UL)
(D)	CQC (GB/T 14472-1998)	CQC001007-14859

X2 / 305 VAC

Overview of available types

Lead spacing	10 mm	15 mm	22.5 mm	27.5 mm	37.5 mm
Туре	B32921	B32922	B32923	B32924	B32926
C _R (μF)					
0.010					
0.022					
0.033					
0.047					
0.068					
0.10					
0.15					
0.22					
0.33					
0.47					
0.56					
0.68					
0.82					
1.0					
1.5					
2.2					
3.3					
4.7					
5.6					
6.8					
8.2					
10					

X2 / 305 VAC

Ordering codes and packing units

Lead spacing	C _R	Max. dimensions	Ordering code	Ammo	Reel	Untaped
	-11	$w \times h \times l$	(composition see	pack		p
mm	μF	mm	below)	pcs./unit	pcs./unit	pcs./unit
10	0.010 4.0 × 9.0 × 13.0 B32921C3103+*** 1000 1700		1700	1000		
	0.022	$4.0 \times 9.0 \times 13.0$	B32921C3223+***	1000	1700	1000
	0.033	$4.0 \times 9.0 \times 13.0$	B32921C3333+***	1000	1700	1000
	0.047	$5.0 \times 11.0 \times 13.0$	B32921C3473+***	830	1300	1000
	0.047	$6.0 \times 12.0 \times 13.0$	B32921A2473+***	680	1100	1000
	0.068	$6.0 \times 12.0 \times 13.0$	B32921A2683M***	680	1100	1000
	0.068	$6.0 \times 12.0 \times 13.0$	B32921C3683+***	680	1100	1000
	0.10	$6.0 \times 12.0 \times 13.0$	B32921A2104M***	680	1100	1000
	0.10	$6.0 \times 12.0 \times 13.0$	B32921C3104M***	680	1100	1000
15	0.033	$5.0\times10.5\times18.0$	B32922C3333+***	1170	1300	1000
	0.047	$5.0\times10.5\times18.0$	B32922C3473+***	1170	1300	1000
	0.068	$6.0 \times 11.0 \times 18.0$	B32922A2683+***	960	1100	1000
	0.068	$5.0\times10.5\times18.0$	B32922C3683+***	1170	1300	1000
	0.10	$6.0 \times 11.0 \times 18.0$	B32922A2104+***	960	1100	1000
	0.10	$5.0\times10.5\times18.0$	B32922C3104+***	1170	1300	1000
	0.15	$7.0\times12.5\times18.0$	B32922A2154+***	830	900	1000
	0.15	$6.0 \times 12.0 \times 18.0$	B32922C3154+***	960	1100	1000
	0.22	$8.5 \times 14.5 \times 18.0$	B32922A2224+***	680	700	500
	0.22	$8.0 \times 14.0 \times 18.0$	B32922T2224+***	730	750	500
	0.22	$7.0 \times 12.5 \times 18.0$	B32922C3224+***	830	900	1000
	0.22	$8.0 \times 14.0 \times 18.0$	B32922T3224+***	730	750	500
	0.33	$9.0\times17.5\times18.0$	B32922A2334+***	640	700	500
	0.33	$13.0 \times 14.0 \times 18.0$	B32922T2334+***	_	500	300
	0.33	$8.0 \times 14.0 \times 18.0$	B32922C3334M***	730	750	500
	0.33	$8.5 \times 14.5 \times 18.0$	B32922D3334+***	680	700	500
	0.33	$13.0 \times 14.0 \times 18.0$	B32922T3334+***	-	500	300
	0.47	$9.0\times17.5\times18.0$	B32922C3474+***	640	700	500
	0.56	$11.0 \times 18.5 \times 18.0$	B32922C3564+***	-	550	250
	0.68	$11.0 \times 18.5 \times 18.0$	B32922C3684M***	_	550	250

Composition of ordering code

+ = Capacitance tolerance code:

 $M = \pm 20\%$

 $K = \pm 10\%$

*** = Packaging code: 289 = Ammo pack 189 = Reel

000 = Untaped (lead length 6 - 1 mm)

(Closer tolerances on request)

Preferred types

X2 / 305 VAC

Ordering codes and packing units

Lead spacing	C _R	Max. dimensions	Ordering code	Ammo	Reel	Untaped
		$w \times h \times l$	(composition see	pack		
mm	μF	mm	below)	pcs./unit	pcs./unit	pcs./unit
22.5	0.33	$8.5 \times 16.5 \times 26.5$	B32923A2334+***	480	500	510
	0.33	$6.0 \times 15.0 \times 26.5$	B32923C3334M***	680	700	720
	0.33	$7.0 \times 16.0 \times 26.5$	B32923D3334+***	580	600	630
	0.33	$7.5\times14.0\times26.5$	B32923T3334+***	550	500	570
	0.47	$8.5 \times 16.5 \times 26.5$	B32923A2474M***	480	500	510
	0.47	$10.5 \times 16.5 \times 26.5$	B32923B2474+***	390	400	540
	0.47	$8.5 \times 16.5 \times 26.5$	B32923C3474+***	480	500	510
	0.56	$8.5 \times 16.5 \times 26.5$	B32923C3564M***	480	500	510
	0.68	$10.5 \times 18.5 \times 26.5$	B32923A2684M***	390	400	540
	0.68	$10.5\times20.5\times26.5$	B32923B2684+***	390	400	540
	0.68	$10.5 \times 16.5 \times 26.5$	B32923C3684+***	390	400	540
	0.82	$10.5\times18.5\times26.5$	B32923C3824M***	390	400	540
	1.0	$12.0 \times 22.0 \times 26.5$	B32923A2105M***	_	_	450
	1.0	$11.0 \times 20.5 \times 26.5$	B32923C3105+***	370	350	510
	1.5	$12.0 \times 22.0 \times 26.5$	B32923C3155M***	_	-	450
	1.5	$14.5 \times 29.5 \times 26.5$	B32923D3155+***	_	_	260
	2.2	$14.5 \times 29.5 \times 26.5$	B32923C3225+***	_	_	260

Composition of ordering code

+ = Capacitance tolerance code:

 $M = \pm 20\%$

 $K = \pm 10\%$

*** = Packaging code:

289 = Ammo pack

189 = Reel

000 = Untaped (lead length 6 - 1 mm)

Preferred types

(Closer tolerances on request)

X2 / 305 VAC

Ordering codes and packing units

	1_	T	T			
Lead spacing	C _R	Max. dimensions	Ordering code	Ammo	Reel	Untaped
	_	$w \times h \times l$	(composition see	pack		
mm	μF	mm	below)	pcs./unit	pcs./unit	•
27.5	0.68	$11.0 \times 19.0 \times 31.5$	B32924C3684+***	_	350	320
	0.82	$11.0 \times 19.0 \times 31.5$	B32924C3824+***	_	350	320
	1.0	$11.0 \times 21.0 \times 31.5$	B32924A2105+***	_	350	320
	1.0	$11.0 \times 19.0 \times 31.5$	B32924C3105+***	_	350	320
	1.5	$13.5 \times 23.0 \times 31.5$	B32924A2155M***	_	250	260
	1.5	$14.0 \times 24.5 \times 31.5$	B32924B2155+***	_	_	260
	1.5	$12.5 \times 21.5 \times 31.5$	B32924C3155+***	_	300	280
	2.2	$18.0 \times 27.5 \times 31.5$	B32924A2225+***	_	_	200
	2.2	$14.0 \times 24.5 \times 31.5$	B32924C3225+***	_	_	260
	3.3	$21.0 \times 31.0 \times 31.5$	B32924A2335M***	_	_	180
	3.3	$18.0 \times 27.5 \times 31.5$	B32924C3335M***	_	_	200
	3.3	$16.0 \times 32.0 \times 31.5$	B32924D3335+***	_	_	220
	4.7	$22.0 \times 36.5 \times 31.5$	B32924A2475M***	_	_	160
	4.7	$18.0 \times 33.0 \times 31.5$	B32924C3475M***	_	_	200
	4.7	$21.0 \times 31.0 \times 31.5$	B32924D3475M***	_	_	180
	5.6	$22.0 \times 36.5 \times 31.5$	B32924C3565+***	_	_	160
37.5	2.2	$14.0 \times 25.0 \times 41.5$	B32926C3225+***	_	-	115
	3.3	$18.0 \times 32.5 \times 41.5$	B32926A2335+***	_	_	90
	3.3	$16.0 \times 28.5 \times 41.5$	B32926C3335+***	_	_	100
	4.7	$20.0 \times 39.5 \times 41.5$	B32926A2475M***	_	_	75
	4.7	$18.0 \times 32.5 \times 41.5$	B32926C3475+***	_	_	90
	5.6	$20.0 \times 39.5 \times 41.5$	B32926A2565M***	_	_	75
	5.6	$18.0 \times 32.5 \times 41.5$	B32926C3565+***	_	_	90
	6.8	$28.0 \times 42.5 \times 41.5$	B32926A2685M***	_	_	55
	6.8	$20.0 \times 39.5 \times 41.5$	B32926C3685+***	_	_	75
	8.2	$28.0 \times 42.5 \times 41.5$	B32926A2825M***	_	_	55
	8.2	$20.0 \times 39.5 \times 41.5$	B32926C3825+***	_	_	55
	10.0	$28.0\times42.5\times41.5$	B32926C3106+***	_	_	55

Composition of ordering code

+ = Capacitance tolerance code:

 $M = \pm 20\%$

 $K = \pm 10\%$

*** = Packaging code:

289 = Ammo pack

189 = Reel

000 = Untaped (lead length 6 - 1 mm)

(Closer tolerances on request)

Preferred types

X2 / 305 VAC

Technical data

Standard version (A/B/T): B3292*A.... / B3292*B.... / B3292*T....

Miniaturized version (C/D): B3292*C.... / B3292*D.... (preferred types)

+125 °C (for $C_R \le 1 \mu F$ with A/B/T version)					
+110 °C (for 0	$C_R > 1 \mu F o$	r C/D version)			
	C _R ≤0.1 μ	F 0.1μF <c<sub>R≤</c<sub>	2.2 μF	C _R >2.2 μF	
at 1 kHz	1.0	1.0		2.0	
100 kHz	5.0	_		_	
C _R ≤0.33 μF	C _R >0.33	μF		_	
100 000 MΩ	30 000 s				
	•				
2121 V, 2 s				_	
В				_	
310 V (50/60	Hz)				
305 V (50/60	Hz)				
760 V (630 V	for C/D ve	rsion)			
T _A ≤ 110 °C	,	$V_{op} = V_{AC}$	(cor	ntinuously)	
T _A ≤ 110 °C	,	$V_{op} = 1.25 \cdot V_A$.c (100	00 h)	
110 °C <t<sub>A≤</t<sub>	125 °C	$V_{op} = V_{AC}$	(100	00 h) (only	
			for A	A/B/T version)	
56 days / 40 °	°C / 93% re	elative humidity	y	_	
Capacitance	change ∆	C/C ≤ 5	5%		
Dissipation fa	ctor chang	$e \Delta \tan \delta \leq 0$	$\leq 0.5 \cdot 10^{-3} \text{ (at 1 kHz)}$		
Insulation res	istance R _{ir}	s ≤ 1	.0 · 10	⁻³ (at 10 kHz)	
or time consta	ant $\tau = C_R$	• R _{ins} ≥ 5	≥ 50% of minimum		
		as-	deliver	ed values	
	$+110$ °C (for 0 at 1 kHz 100 kHz $C_R \le 0.33$ μF 100 000 MΩ $= 100$ $= 10$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

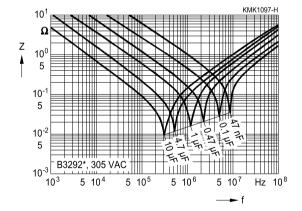
X2 / 305 VAC

Pulse handling capability

"dV/dt" represents the maximum permissible voltage change per unit of time for non-sinusoidal voltages, expressed in V/µs.

" k_0 " represents the maximum permissible pulse characteristic of the waveform applied to the capacitor, expressed in $V^2/\mu s$.

Note:


The values of dV/dt and k_0 provided below must not be exceeded in order to avoid damaging the capacitor.

dV/dt and ko values

Lead spacing	10 mm		15 mm	nm 22.5		22.5 mm		27.5 mm		37.5 mm	
Version	A/B/T	C/D	A/B/T	C/D	A/B/T	C/D	A/B/T	C/D	A/B/T	C/D	
dV/dt in	550	475	400	340	200	170	150	120	100	80	
V/μs											
k ₀ in V²/μs	473000	408500	344000	292400	172000	146200	129000	103200	86000	68800	

Impedance Z versus frequency f

(typical values)

product specification is suitable for use in a particular customer applicat

We also point out that in individual cases, a malfunction of passive

- or failure before the end of their usual service life cannot be concurrent state of the art, even if they are operated as specified requiring a very high level of operational safety and especially in customer malfunction or failure of a passive electronic component could end (e.g. in accident prevention or life-saving systems), it must therefore suitable design of the customer application or other action taken by the of protective circuitry or redundancy) that no injury or damage is sustate event of malfunction or failure of a passive electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the propublication may contain substances subject to restrictions in obecause they are classed as "hazardous"). Useful information or Material Data Sheets on the Internet (www.epcos.com/material). Sheets

detailed questions, please contact our sales offices.

- 5. We constantly strive to improve our products. Consequently, the propublication may change from time to time. The same is true of a specifications. Please check therefore to what extent product described in this publication are still applicable before or when you place. We also reserve the right to discontinue production and delivery of we cannot guarantee that all products named in this publication will always.
- Unless otherwise agreed in individual contracts, all orders are subject the "General Terms of Delivery for Products and Services in published by the German Electrical and Electronics Industry Associated
- 7. The trade names EPCOS, EPCOS-JONES, Baoke, CeraDiode, OPhaseMod, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMID, SIOV, WindCap are trademarks registered or pending in Europe and information will be found on the Internet at www.epcos.com/trademarks.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for tdk manufacturer:

Other Similar products are found below:

VLF5012ST-1R0N2R5 C3225X5R0J686M200AC VLF5014AT-150MR76 VLF5014AT-6R8MR99 CXA-2115 MCZ1210AH301L2T
78P7200-IH/F MLP2012S1R5TT ACH3218-682-TD01 ACT45B-KIT NL565050T-822J-PF C1005JB1H471K050BA
C1608CH1H151J080AA C2012JB1H105K125AB C4532NP01H154J250KA SLF12575T-680M2R0-PF CD75-B2GA331KYGKA
CLF10040T-221M CLF12555T-220M R22095*REPAIRED MLF1005LR12K MLP2520S1R0ST MLP2520S1R5MT VLS252015T3R3M1R0 VLS4012T-150MR65 ZCAT-KIT MPZ2012-KIT NLV32T-R27J-EFD CKCM25C0G2A101K060AK CLF10040T-4R7N
VLS252010HBX-R24M-1 CGJ2B2X7R1C222K CGA8M3X7R1H475K CGA9M1X7T2J334K CGA8P3X7T2E105M/S0FT
CGA6J4C0G2J392J CGA6M3X7R2E154K CGA3E3C0G2E181J CGA2B2C0G1H331J CEU-AC01-E6-KIT CERB3UX5R0G105M
RLF12545T-100M5R1-PF PFE500F28/T CCT406393-600-36-02 PFC3819QM-181K09B-00 VLF3010AT-100MR49 MMZ0603D330C
MPZ2012S102ATD25 MLG1608B18NJ UHV-251A