

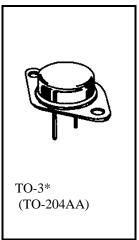
NPN DARLINGTON POWER SILICON TRANSISTOR

Qualified per MIL-PRF-19500/502

Devices Qualified Level

2N6058 2N6059

JANTX JANTXV


MAXIMUM RATINGS

Ratings	Symbol	2N6058	2N6059	Units
Collector-Emitter Voltage	V_{CEO}	80	100	Vdc
Collector-Base Voltage	V_{CBO}	80	100	Vdc
Emitter-Base Voltage	V_{EBO}	5	.0	Vdc
Base Current	I_{B}	0	.2	Adc
Collector Current	I_{C}	1	2	Adc
Total Power Dissipation ⁽¹⁾ @ $T_C = +25^{\circ}C$	D	1:	50	W
$^{\circ}$	P_{T}	7	5	W
Operating & Storage Junction Temperature Range	T _J , T _{stg}	-55 to	+175	°C

THERMAL CHARACTERISTICS

Characteristics	Symbol	Max.	Unit
Thermal Resistance, Junction-to-Case	$R_{ heta JC}$	1.0	⁰ C/W

¹⁾ Derate linearly at 1.0 W/ $^{\circ}$ C above T_C > +25 $^{\circ}$ C

*See appendix A for package outline

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}$ C unless otherwise noted)

Characteristic	es	Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage					
$I_C = 100 \text{ mAdc}$	2N6058	$V_{(BR)CEO}$	80		Vdc
	2N6059		100		
Collector-Emitter Cutoff Current					
$V_{CE} = 40 \text{ Vdc}$	2N6058	I_{CEO}		1.0	mAdc
$V_{CE} = 50 \text{ Vdc}$	2N6059			1.0	
Collector-Emitter Cutoff Current					
$V_{CE} = 80 \text{ Vdc}, V_{BE} = 1.5 \text{ Vdc}$	2N6058	I_{CEX}		0.5	mAdc
$V_{CE} = 100 \text{ Vdc}, V_{BE} = 1.5 \text{ Vdc}$	2N6059			0.5	
Emitter-Base Cutoff Current					
$V_{EB} = 5.0 \text{ Vdc}$		I_{EBO}		2.0	mAdc

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 794-1666 / Fax: (978) 689-0803

2N6058, 2N6059 JAN SERIES

ELECTRICAL CHARACTERISTICS (con't)

Characteristics	Symbol	Min.	Max.	Unit
ON CHARACTERISTICS (2)				
Forward-Current Transfer Ratio				
$I_C = 1.0 \text{ Adc}, V_{CE} = 3.0 \text{ Vdc}$		1,000		
$I_C = 6.0 \text{ Adc}, V_{CE} = 3.0 \text{ Vdc}$	h_{FE}	1,000	18,000	
$I_C = 12 \text{ Adc}, V_{CE} = 3.0 \text{ Vdc}$		150		
Collector-Emitter Saturation Voltage				
$I_C = 12 \text{ Adc}, I_B = 120 \text{ mAdc}$	$V_{CE(sat)}$		3.0	Vdc
$I_C = 6.0 \text{ Adc}, I_B = 24 \text{ mAdc}$, ,		2.0	
Base-Emitter Saturation Voltage				
$I_C = 12 \text{ Adc}, I_B = 120 \text{ mAdc}$	$V_{BE(sat)}$		4.0	Vdc
Base-Emitter Voltage				
$I_C = 6.0 \text{ Adc}, V_{CE} = 3.0 \text{ Vdc}$	$ m V_{BE}$		2.8	Vdc
DYNAMIC CHARACTERISTICS				
Magnitude of Common Emitter Small-Signal Short-Circuit				
Forward Current Transfer Ratio				
$I_C = 5.0 Adc, V_{CE} = 3.0 Vdc, f = 1.0 MHz$	$ h_{fe} $	10	250	
Small-Signal Short-Circuit Forward Current Transfer Ratio				
$I_C = 5.0 \text{ Adc}, V_{CE} = 3.0 \text{ Vdc}, f = 1.0 \text{ kHz}$	h_{fe}	1,000		
Output Capacitance				
$V_{CB} = 10 \text{ Vdc}, I_{E} = 0, 100 \text{ kHz} \le f \le 1.0 \text{ MHz}$	$C_{ m obo}$		300	pF
SWITCHING CHARACTERISTICS				
Turn-On Time				
$V_{CC} = 30 \text{ Vdc}; I_C = 5.0 \text{ Adc}; I_B = 20 \text{ mAdc}$	^t on		2.0	μs
Turn-Off Time				
$V_{CC} = 30 \text{ Vdc}$; $I_C = 5.0 \text{ Adc}$; $I_{B1} = I_{B2} = 20 \text{ mAdc}$	^t off		10	μs
SAFE OPERATING AREA				
DC Tests				
$T_C = +25^{\circ}C + 10^{\circ}C$, -0° , 1 Cycle, $t \ge 1.0$ s				
Test 1				
$V_{CE} = 12.5 \text{ Vdc}, I_{C} = 12 \text{ Adc}$				
Test 2				

 $V_{CE} = 30 \text{ Vdc}, I_C = 5.0 \text{ Adc}$

Test 3

 $V_{CE} = 70 \text{ Vdc}, I_C = 200 \text{ mAdc}$

2N6058

 $V_{CE} = 90 \text{ Vdc}, I_C = 155 \text{ mAdc}$

2N6059

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 794-1666 / Fax: (978) 689-0803

⁽²⁾ Pulse Test: Pulse Width = 300µs, Duty Cycle ≤ 2.0%.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Darlington Transistors category:

Click to view products by Microsemi manufacturer:

Other Similar products are found below:

281287X SMMBT6427LT1G 2N7371 BDV64B JANTXV2N6287 028710A SMMBTA64LT1G 2N6350 2SB1214-TL-E

SMMBTA14LT1G SBSP52T1G NJVMJD117T4G Jantx2N6058 2N6353 LB1205-L-E 500-00005 2N6053 NJVMJD112G Jan2N6350

Jantx2N6352 Jantx2N6350 BULN2803LVS ULN2001N 2SB1383 2SB1560 2SB852KT146B TIP112TU TIP122TU BCV27 MMBTA13
TP MMBTA14-TP MMSTA28T146 BSP50H6327XTSA1 KSH122TF NTE2557 NJVNJD35N04T4G TIP115 MPSA29-D26Z MJD127T4

FJB102TM BCV26E6327HTSA1 BCV46E6327HTSA1 BCV47E6327HTSA1 BSP61H6327XTSA1 BU941ZPFI 2SB1316TL 2SD1980TL

NTE2350 NTE245 NTE246