

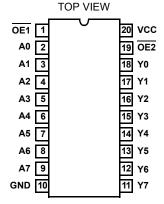
HCTS541MS

Radiation Hardened Non-Inverting Octal Buffer/Line Driver, Three-State

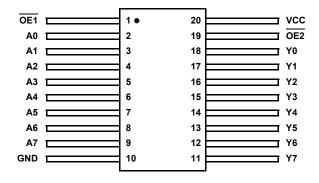
FN3073 Rev 1.00 August 1995

Features Pinouts

- 3 Micron Radiation Hardened CMOS SOS
- · Total Dose 200K RAD (Si)
- SEP Effective LET No Upsets: >100 MEV-cm²/mg
- Single Event Upset (SEU) Immunity < 2 x 10⁻⁹ Errors/ Bit-Day (Typ)
- Dose Rate Survivability: >1 x 10¹² RAD (Si)/s
- Dose Rate Upset >10¹⁰ RAD (Si)/s 20ns Pulse
- Latch-Up Free Under Any Conditions
- Fanout (Over Temperature Range)
 - Bus Driver Outputs 15 LSTTL Loads
- Military Temperature Range: -55°C to +125°C
- Significant Power Reduction Compared to LSTTL ICs
- DC Operating Voltage Range: 4.5V to 5.5V
- LSTTL Input Compatibility
 - VIL = 0.8V Max
 - VIH = VCC/2 Min
- Input Current Levels Ii \leq 5 μ A at VOL, VOH


Description

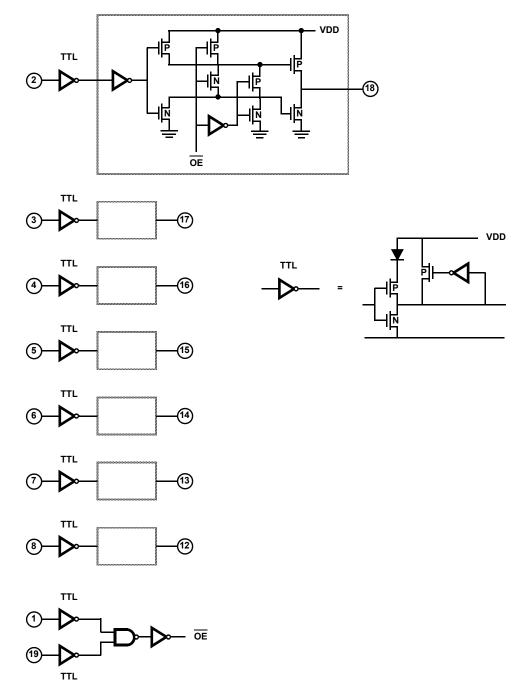
The Intersil HCTS541MS is a Radiation Hardened non-inverting octal buffer/line driver, three-state outputs. The output enable pins (OEN1 and OEN2) control the three-state outputs. If either enable is high the outputs will be in the high impedance state. For data output both enables (OEN1 and OEN2) must be low.


The HCTS541MS utilizes advanced CMOS/SOS technology to achieve high-speed operation. This device is a member of radiation hardened, high-speed, CMOS/SOS Logic Family.

The HCTS54 is supplied in a 20 lead Ceramic flatpack (K suffix) or a SBDIP Package (D suffix).

20 LEAD CERAMIC DUAL-IN-LINE METAL SEAL PACKAGE (SBDIP) MIL-STD-1835 CDIP2-T20

20 LEAD CERAMIC METAL SEAL FLATPACK PACKAGE (FLATPACK) MIL-STD-1835 CDFP4-F20 TOP VIEW



Ordering Information

PART NUMBER	TEMPERATURE RANGE	SCREENING LEVEL	PACKAGE
HCTS541DMSR	-55°C to +125°C	Intersil Class S Equivalent	20 Lead SBDIP
HCTS541KMSR	-55°C to +125°C	Intersil Class S Equivalent	20 Lead Ceramic Flatpack
HCTS541D/Sample	+25°C	Sample	20 Lead SBDIP
HCTS541K/Sample	+25°C	Sample	20 Lead Ceramic Flatpack
HCTS541HMSR	+25°C	Die	Die

Functional Block Diagram

TRUTH TABLE

OE1	OE2	An	OUTPUTS
L	L	Н	Н
Н	Х	Х	Z
Х	Н	Х	Z
L	L	L	L

H = High Voltage Level, L = Low Voltage Level, X = Immaterial, Z = High Impedance

Absolute Maximum Ratings

Supply Voltage (VCC)0.5 to +	7.0V
Input Voltage Range, All Inputs0.5V to VCC +	0.5V
DC Input Current, Any One Input±1	0mA
DC Drain Current, Any One Output±2	5mA
(All Voltage Reference to the VSS Terminal)	
Storage Temperature Range (TSTG)65°C to +1	50°C
Lead Temperature (Soldering 10sec)+2	65°C
Junction Temperature (TJ) +1	75°C
ESD Classification	ass 1

Reliability Information

Thermal Resistance	$\theta_{\sf JA}$	θ_{JC}
SBDIP Package	72°C/W	24°C/W
Ceramic Flatpack Package	107°C/W	28°C/W
Maximum Package Power Dissipation at +125	OC Ambien	t
SBDIP Package		0.69W
Ceramic Flatpack Package		0.47W
If device power exceeds package dissipation of	capability, p	rovide heat
sinking or derate linearly at the following rate:		
SBDIP Package	1	I3.9mW/ ^o C
Ceramic Flatpack Package		9.3mW/°C

CAUTION: As with all semiconductors, stress listed under "Absolute Maximum Ratings" may be applied to devices (one at a time) without resulting in permanent damage. This is a stress rating only. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. The conditions listed under "Electrical Performance Characteristics" are the only conditions recommended for satisfactory device operation.

Operating Conditions

Supply Voltage (VCC) +4.5V to +5.5V	Input Low Voltage (VIL)
Operating Temperature Range (T _A)55°C to +125°C	Input High Voltage (VIH)
Input Rise and Fall Times at 4.5V VCC (TR, TF) 500ns Max	

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

	(NOTE 1) GROUP A SUB-		LIMITS				
PARAMETER	SYMBOL	CONDITIONS	GROUPS	TEMPERATURE	MIN	MAX	UNITS
Quiescent Current	ICC	VCC = 5.5V, VIN = VCC or GND	1	+25°C	-	40	μА
		VIIV - VCC OI GIND	2, 3	+125°C, -55°C	-	750	μА
Output Current (Sink)	IOL	VCC = 4.5V, VIH = 4.5V, VOUT = 0.4V, VIL = 0V	1	+25°C	7.2	-	mA
(SIIIK)		VOOT = 0.4V, VIL = 0V	2, 3	+125°C, -55°C	6.0	-	mA
Output Current (Source)	IOH	VCC = 4.5V, VIH = 4.5V, VOUT = VCC - 0.4V.	1	+25°C	-7.2	-	mA
(Source)		VIL = 0V	2, 3	+125°C, -55°C	-6.0	-	mA
Output Voltage Low	VOL	VCC = 4.5V, VIH = 2.25V, IOL = 50μA, VIL = 0.8V	1, 2, 3	+25°C, +125°C, -55°C	-	0.1	V
		VCC = 5.5V, VIH = 2.75V, IOL = 50μA, VIL = 0.8V	1, 2, 3	+25°C, +125°C, -55°C	-	0.1	V
Output Voltage High	VOH	VCC = 4.5V, VIH = 2.25V, IOH = -50μA, VIL = 0.8V	1, 2, 3	+25°C, +125°C, -55°C	VCC -0.1	-	V
		VCC = 5.5V, VIH = 2.75V, IOH = -50μA, VIL = 0.8V	1, 2, 3	+25°C, +125°C, -55°C	VCC -0.1	-	V
Input Leakage Current	IIN	VCC = 5.5V, VIN = VCC or GND	1	+25°C	-	±0.5	μА
Current		GND	2, 3	+125°C, -55°C	-	±5.0	μА
Three-State Output	IOZ	Applied Voltage = 0V or VCC, VCC = 5.5V	1	+25°C	-	±1	μΑ
Leakage Current		VCC, VCC - 5.5V	2, 3	+125°C, -55°C	-	±50	μΑ
Noise Immunity Functional Test	FN	VCC = 4.5V, VIH = 2.25V, VIL = 0.8V (Note 2)	7, 8A, 8B	+25°C, +125°C, -55°C	-	-	-

NOTES:

- 1. All voltages referenced to device GND.
- 2. For functional tests, $VO \ge 4.0V$ is recognized as a logic "1", and $VO \le 0.5V$ is recognized as a logic "0".

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

		(NOTES 1, 2)	GROUP A SUB-		LIM	IITS	
PARAMETER	SYMBOL	CONDITIONS	GROUPS	TEMPERATURE	MIN	MAX	UNITS
Data to Output	TPHL, TPLH	VCC = 4.5V	9	+25°C	2	20	ns
		VCC = 4.5V	10, 11	+125°C, -55°C	2	22	ns
Enable to Output	TPZL	VCC = 4.5V	9	+25°C	2	23	ns
			10, 11	+125°C, -55°C	2	26	ns
	TPZH	VCC = 4.5V	9	+25°C	2	20	ns
			10, 11	+125°C, -55°C	2	21	ns
Disable to Output	TPLZ	VCC = 4.5V	9	+25°C	2	22	ns
			10, 11	+125°C, -55°C	2	23	ns
	TPHZ	VCC = 4.5V	9	+25°C	2	21	ns
			10, 11	+125°C, -55°C	2	22	ns

NOTES:

- 1. All voltages referenced to device GND.
- 2. AC measurements assume RL = 500Ω , CL = 50pF, Input TR = TF = 3ns, VIL = GND, VIH = 3V.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIM	IITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Capacitance Power Dissipation	CPD	VCC = 5.0V, f = 1MHz	1	+25°C	-	38	pF
Dissipation			1	+125°C, -55°C	-	60	pF
Input Capacitance	CIN	VCC = 5.0V, f = 1MHz	1	+25°C	-	10	pF
			1	+125°C	-	10	pF
Output Transition Time	TTHL, TTLH	VCC = 4.5V	1	+25°C	1	12	ns
Time	11611		1	+125°C, -55°C	-	18	ns

NOTE:

TABLE 4. DC POST RADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

		(NOTES 1, 2)		200K LIM	RAD	
PARAMETER	SYMBOL	CONDITIONS	TEMPERATURE	MIN	MAX	UNITS
Quiescent Current	ICC	VCC = 5.5V, VIN = VCC or GND	+25°C	-	0.75	mA
Output Current (Sink)	IOL	VCC = 4.5V, VIN = VCC or GND, VOUT = 0.4V	+25°C	6.0	-	mA

^{1.} The parameters listed in Table 3 are controlled via design or process parameters. Min and Max Limits are guaranteed but not directly tested. These parameters are characterized upon initial design release and upon design changes which affect these characteristics.

TABLE 4. DC POST RADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

		(MOTES 4. 2)			RAD	
PARAMETER	SYMBOL	(NOTES 1, 2) CONDITIONS	TEMPERATURE	MIN	MAX	UNITS
Output Current (Source)	IOH	VCC = 4.5V, VIN = VCC or GND, VOUT = VCC -0.4V	+25°C	-6.0	-	mA
Output Voltage Low	VOL	VCC = 4.5V or 5.5V, VIH = VCC/2, VIL = 0.8V, IOL = 50μA	+25°C	-	0.1	V
Output Voltage High	VOH	VCC = 4.5V or 5.5V, VIH = VCC/2, VIL = 0.8V, IOH = -50μA	+25°C	VCC -0.1	-	V
Input Leakage Current	IIN	VCC = 5.5V, VIN = VCC or GND	+25°C	-	±5	μΑ
Three-State Output Leakage Current	IOZ	Applied Voltage = 0V or VCC, VCC = 5.5V	+25°C	-	±50	μА
Noise Immunity Functional Test	FN	VCC = 4.5V, VIH = 2.25V, VIL = 0.8V, (Note 3)	+25°C	-	-	-
Data to Output	TPHL, TPLH	VCC = 4.5V	+25°C	2	22	ns
Enable to Output	TPZL	VCC = 4.5V	+25°C	2	26	ns
	TPZH	VCC = 4.5V	+25°C	2	21	ns
Disable to Output	TPLZ	VCC = 4.5V	+25°C	2	23	ns
	TPHZ	VCC = 4.5V	+25°C	2	22	ns

NOTES:

- 1. All voltages referenced to device GND.
- 2. AC measurements assume RL = 500Ω , CL = 50pF, Input TR = TF = 3ns, VIL = GND, VIH = 3V.
- 3. For functional tests $VO \ge 4.0V$ is recognized as a logic "1", and $VO \le 0.5V$ is recognized as a logic "0".

TABLE 5. BURN-IN AND OPERATING LIFE TEST, DELTA PARAMETERS (+25°C)

PARAMETER	GROUP B SUBGROUP	DELTA LIMIT
ICC	5	12μΑ
IOL/IOH	5	-15% of 0 Hour
IOZL/IOZH	5	±200nA

TABLE 6. APPLICABLE SUBGROUPS

CONFORMANCE GROUPS	METHOD	GROUP A SUBGROUPS	READ AND RECORD
Initial Test (Preburn-In)	100%/5004	1, 7, 9	ICC, IOL/H, IOZL/H
Interim Test I (Postburn-In)	100%/5004	1, 7, 9	ICC, IOL/H, IOZL/H
Interim Test II (Postburn-In)	100%/5004	1, 7, 9	ICC, IOL/H, IOZL/H
PDA	100%/5004	1, 7, 9, Deltas	
Interim Test III (Postburn-In)	100%/5004	1, 7, 9	

TABLE 6. APPLICABLE SUBGROUPS (Continued)

CONFORMANCE GROUPS		METHOD	GROUP A SUBGROUPS	READ AND RECORD
PDA		100%/5004	1, 7, 9, Deltas	
Final Test		100%/5004	2, 3, 8A, 8B, 10, 11	
Group A (Note 1)		Sample/5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11	
Group B	Subgroup B-5	Sample/5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas	Subgroups 1, 2, 3, 9, 10, 11
	Subgroup B-6	Sample/5005	1, 7, 9	
Group D		Sample/5005	1, 7, 9	

NOTE: 1. Alternated Group A Inspection in accordance with Method 5005 of MIL-STD-883 may be exercised.

TABLE 7. TOTAL DOSE IRRADIATION

CONFORMANCE		TEST		READ AND RECORD	
GROUPS	METHOD	PRE RAD	POST RAD	PRE RAD	POST RAD
Group E Subgroup 2	5005	1, 7, 9	Table 4	1, 9	Table 4 (Note 1)

NOTE: 1. Except FN test which will be performed 100% Go/No-Go.

TABLE 8. STATIC AND DYNAMIC BURN-IN TEST CONNECTIONS

				OSCILLATOR	
OPEN	GROUND	1/2 VCC = 3V \pm 0.5V	VCC = 6V \pm 0.5V	50kHz	25kHz
STATIC BURN-IN I TEST CONNECTIONS (Note 1)					
11 - 18	1 - 10, 19	-	20	-	-
STATIC BURN-IN II TEST CONNECTIONS (Note 1)					
11 - 18	10	-	1 - 9, 19, 20	-	-
DYNAMIC BURN-IN TEST CONNECTIONS (Note 2)					
-	10	11 - 18	20	1, 19	2 - 9

NOTES:

- 1. Each pin except VCC and GND will have a resistor of $10k\Omega\pm5\%$ for static burn-in
- 2. Each pin except VCC and GND will have a resistor of $680\Omega\pm5\%$ for dynamic burn-in

TABLE 9. IRRADIATION TEST CONNECTIONS

OPEN	GROUND	VCC = 5V \pm 0.5V
11 - 18	10	1 - 9, 19, 20

NOTE: Each pin except VCC and GND will have a resistor of $47 \text{K}\Omega \pm 5\%$ for irradiation testing. Group E, Subgroup 2, sample size is 4 dice/wafer 0 failures.

Intersil Space Level Product Flow - 'MS'

Wafer Lot Acceptance (All Lots) Method 5007 (Includes SEM)

GAMMA Radiation Verification (Each Wafer) Method 1019, 4 Samples/Wafer, 0 Rejects

100% Nondestructive Bond Pull, Method 2023

Sample - Wire Bond Pull Monitor, Method 2011

Sample - Die Shear Monitor, Method 2019 or 2027

100% Internal Visual Inspection, Method 2010, Condition A

100% Temperature Cycle, Method 1010, Condition C, 10 Cycles

100% Constant Acceleration, Method 2001, Condition per Method 5004

100% PIND, Method 2020, Condition A

100% External Visual

100% Serialization

100% Initial Electrical Test (T0)

100% Static Burn-In 1, Condition A or B, 24 hrs. min., +125°C min., Method 1015

100% Interim Electrical Test 1 (T1)

100% Delta Calculation (T0-T1)

100% Static Burn-In 2, Condition A or B, 24 hrs. min., +125°C min., Method 1015

100% Interim Electrical Test 2 (T2)

100% Delta Calculation (T0-T2)

100% PDA 1, Method 5004 (Notes 1and 2)

100% Dynamic Burn-In, Condition D, 240 hrs., +125°C or Equivalent, Method 1015

100% Interim Electrical Test 3 (T3)

100% Delta Calculation (T0-T3)

100% PDA 2, Method 5004 (Note 2)

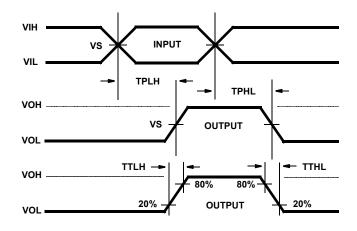
100% Final Electrical Test

100% Fine/Gross Leak, Method 1014

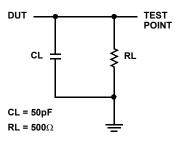
100% Radiographic, Method 2012 (Note 3)

100% External Visual, Method 2009

Sample - Group A, Method 5005 (Note 4)

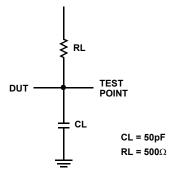

100% Data Package Generation (Note 5)

NOTES:


- 1. Failures from Interim electrical test 1 and 2 are combined for determining PDA 1.
- 2. Failures from subgroup 1, 7, 9 and deltas are used for calculating PDA. The maximum allowable PDA = 5% with no more than 3% of the failures from subgroup 7.
- 3. Radiographic (X-Ray) inspection may be performed at any point after serialization as allowed by Method 5004.
- 4. Alternate Group A testing may be performed as allowed by MIL-STD-883, Method 5005.
- 5. Data Package Contents:
 - Cover Sheet (Intersil Name and/or Logo, P.O. Number, Customer Part Number, Lot Date Code, Intersil Part Number, Lot Number, Quantity)
 - · Wafer Lot Acceptance Report (Method 5007). Includes reproductions of SEM photos with percent of step coverage.
 - GAMMA Radiation Report. Contains Cover page, disposition, Rad Dose, Lot Number, Test Package used, Specification Numbers, Test
 equipment, etc. Radiation Read and Record data on file at Intersil.
 - · X-Ray report and film. Includes penetrometer measurements.
 - · Screening, Electrical, and Group A attributes (Screening attributes begin after package seal).
 - Lot Serial Number Sheet (Good units serial number and lot number).
 - · Variables Data (All Delta operations). Data is identified by serial number. Data header includes lot number and date of test.
 - The Certificate of Conformance is a part of the shipping invoice and is not part of the Data Book. The Certificate of Conformance is signed by an authorized Quality Representative.

AC Timing Diagrams

AC Load Circuit


AC VOLTAGE LEVELS

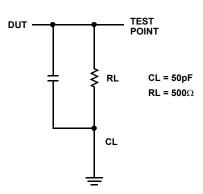
PARAMETER	нстѕ	UNITS
VCC	4.50	V
VIH	3.00	V
VS	1.30	V
VIL	0	V
VSS	0	V

Three-State Low Timing Diagrams

Three-State Low Load Circuit

THREE-STATE LOW VOLTAGE LEVELS

PARAMETER	нстѕ	UNITS
VCC	4.50	V
VIH	3.00	V
VS	1.30	V
VT	1.30	V
VW	0.90	V
GND	0	V


Three-State High Timing Diagrams

VIH VS INPUT VIL TPZH TPHZ VOH VOZ VT OUTPUT VW

THREE-STATE HIGH VOLTAGE LEVELS

PARAMETER	нстѕ	UNITS
VCC	4.50	V
VIH	3.00	V
VS	1.30	V
VT	1.30	V
vw	3.60	V
GND	0	V

Three-State High Load Circuit

© Copyright Intersil Americas LLC 1999. All Rights Reserved.

All trademarks and registered trademarks are the property of their respective owners.

For additional products, see www.intersil.com/en/products.html

Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted in the quality certifications found at www.intersil.com/en/support/qualandreliability.html

Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

Die Characteristics

DIE DIMENSIONS:

101 x 85 mils

METALLIZATION:

Type: SiAl

Metal Thickness: 11kÅ ± 1kÅ

GLASSIVATION:

Type: SiO₂

Thickness: 13kÅ ± 2.6kÅ

WORST CASE CURRENT DENSITY:

<2.0 x 10⁵A/cm²

BOND PAD SIZE:

 $100\mu m\ x\ 100\mu m$ 4 mils x 4 mils

Metallization Mask Layout

HCTS541MS VCC OE2 OE1 8 (20) (19) 8 (18) Y0 A1 (3) (17) Y1 A2 (4) (16) Y2 A3 (5) (15) Y3 A4 (6) A5 (7) (14) Y4 A6 (8) (13) Y5 Y7 (11) Y6 (12) <u>6</u> GND (10) Α7

NOTE: The die diagram is a generic plot from a similar HCS device. It is intended to indicate approximate die size and bond pad location. The mask series for the HCTS541 is TA14456A.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Buffers & Line Drivers category:

Click to view products by Renesas manufacturer:

Other Similar products are found below:

5962-9217601MSA 634810D CY2DP1502ZXI HEF4043BP NL17SG125DFT2G NL17SZ126P5T5G NLU1GT126CMUTCG

NLU3G16AMX1TCG NLV27WZ125USG CY2CP1504ZXC CY2DP1510AXC MC74HCT365ADTR2G BCM6306KMLG

54FCT240CTDB Le87401NQC Le87402MQC 028192B 042140C 051117G 070519XB 065312DB 091056E 098456D NL17SG07DFT2G

NL17SG17DFT2G NL17SG34DFT2G NL17SZ07P5T5G NL17SZ125P5T5G NLU1GT126AMUTCG NLV27WZ16DFT2G

NLV74LCX244DTR2G CY2DP1504ZXI 5962-8982101PA 5962-9052201PA 74LVC07ADR2G MC74VHC1G125DFT1G

NL17SH17P5T5G NL17SZ125CMUTCG NLV17SZ07DFT2G NLV37WZ17USG NLVHCT244ADTR2G 74HCT126T14-13

NL17SH125P5T5G NLV14049UBDTR2G NLV37WZ07USG 74VHC541FT(BE) SNJ54LVTH244AW RHFAC244K1 74LVC1G17FW4-7

74LVC1G126FZ4-7