FEATURES

Two 12-Bit DACs in One Package
DAC Ladder Resistance Matching: 0.5\%
Space Saving Skinny DIP and Surface Mount Packages
4-Quadrant Multiplication
Low Gain Error (1 LSB max Over Temperature)
Byte Loading Structure
Fast Interface Timing

APPLICATIONS

Automatic Test Equipment
Programmable Filters
Audio Applications
Synchro Applications
Process Control

GENERAL DESCRIPTION

The AD 7537 contains two 12-bit current output DACs on one monolithic chip. A separate reference input is provided for each DAC. The dual DAC saves valuable board space, and the monolithic construction ensures excellent thermal tracking. Both DACs are guaranteed 12-bit monotonic over the full temperature range.
The AD 7537 has a 2-byte (8 LSBs, 4 M SBs) loading structure. It is designed for right-justified data format. The control signals for register loading are A0, A $, \overline{\mathrm{CS}}, \overline{\mathrm{WR}}$ and $\overline{\mathrm{UPD}}$. D ata is loaded to the input registers when $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ are low. T o transfer this data to the DAC registers, UPD must be taken low with $\overline{\mathrm{WR}}$.
Added features on the AD 7537 include an asynchronous $\overline{\text { CLR }}$ line which is very useful in calibration routines. When this is taken low, all registers are cleared. The double buffering of the data inputs allows simultaneous update of both DAC s. Also, each DAC has a separate AGND line. This increases the device versatility; for instance one DAC may be operated with AGND biased while the other is connected in the standard configuration.
The AD 7537 is manufactured using the Linear C ompatible CMOS (LC² M OS) process. It is speed compatible with most microprocessors and accepts TTL, 74H C and 5 V CM OS logic level inputs.

[^0]FUNCTIONAL BLOCK DIAGRAM

PRODUCT HIGHLIGHTS

1. DAC to DAC M atching:

Since both DACs are fabricated on the same chip, precise matching and tracking is inherent. M any applications which are not practical using two discrete DAC s are now possible. Typical matching: 0.5\%.
2. Small Package Size:

The AD 7537 is packaged in small 24-pin 0.3" DIPs and in 28-terminal surface mount packages.
3. Wide Power Supply T olerance:

The device operates on $\mathrm{a}+12 \mathrm{~V}$ to $+15 \mathrm{~V} \mathrm{~V}_{\mathrm{DD}}$, with $\pm 10 \%$ tolerance on this nominal figure. All specifications are guaranteed over this range.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel:781/329-4700

Fax:781/461-3113

AD7537- SPECIFICATIONS
$\left(\mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V}\right.$ to $+15 \mathrm{~V}, \pm 10 \%, \mathrm{~V}_{\text {REFA }}=\mathrm{V}_{\text {REFB }}=10 \mathrm{~V} ; I_{\text {OUTA }}=A G N D=0 \mathrm{~V}$, $\mathrm{I}_{\text {OUTB }}=A G N D B=0 \mathrm{~V}$. All specifications $\mathrm{T}_{\text {MI }}$ to $\mathrm{T}_{\text {MAX }}$ unless otherwise noted.)

Parameter	J, A Versions	K, B Versions	L, C Versions	S Version	T Version	U Version	Units	Test Conditions/Comments
ACCURACY								
Resolution	12	12	12	12	12	12	Bits	
Relative Accuracy	± 1	$\pm 1 / 2$	$\pm 1 / 2$	± 1	$\pm 1 / 2$	$\pm 1 / 2$	LSB max	
D ifferential N onlinearity	± 1	LSB max	All grades guaranteed monotonic over temperature.					
Gain Error	± 6	± 3	± 1	± 6	± 3	± 2	LSB max	M easured using $R_{F B A}, R_{F B B}$. Both D AC registers loaded with all 1 s .
Gain Temperature C oefficient ${ }^{2}$; $\Delta \mathrm{G}$ ain/ $\Delta \mathrm{T}$ emperature Output L eakage Current	± 5	$\mathrm{ppm} /{ }^{\circ} \mathrm{C} \max$	T ypical value is $1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$					
$\begin{aligned} & \text { IOUTA } \\ & +25^{\circ} \mathrm{C} \end{aligned}$	10	10	10	10	10	10	nA max	D AC A Register loaded
$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {Max }}$	150	150	150	250	250	250	nA max	with all Os
$\begin{aligned} & \mathrm{I}_{\text {OUTB }} \\ & \quad+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \end{aligned}$	$\begin{aligned} & 10 \\ & 150 \end{aligned}$	$\begin{aligned} & 10 \\ & 150 \end{aligned}$	$\begin{aligned} & 10 \\ & 150 \end{aligned}$	$\begin{aligned} & 10 \\ & 250 \end{aligned}$	$\begin{aligned} & 10 \\ & 250 \end{aligned}$	$\begin{aligned} & 10 \\ & 250 \end{aligned}$	$n A \max$ nA max	D AC B Register loaded with all Os
REFERENCE INPUT Input Resistance	$\begin{aligned} & 9 \\ & 20 \end{aligned}$	$\begin{array}{\|l} 9 \\ 20 \end{array}$	$\begin{array}{\|l} \hline 9 \\ 20 \end{array}$	$\begin{array}{\|l} 9 \\ 20 \end{array}$	$\begin{array}{\|l} 9 \\ 20 \end{array}$	$\begin{array}{\|l} 9 \\ 20 \end{array}$	$k \Omega$ min $k \Omega \max$	T ypical Input Resistance $=14 \mathrm{k} \Omega$
$\begin{aligned} & \mathrm{V}_{\text {REFA, }} \mathrm{V}_{\text {REFB }} \\ & \text { Input Resistance } M \text { atch } \end{aligned}$	± 3	± 3	± 1	± 3	± 3	± 1	\% max	T ypically $\pm 0.5 \%$
DIGITAL INPUTS								
$V_{\text {IH }}$ (Input High Voltage)	2.4	2.4	2.4	2.4	2.4	2.4	V min	
$\mathrm{V}_{\text {IIL }}$ (Input L ow Voltage)	0.8	0.8	0.8	0.8	0.8	0.8	V max	
$\mathrm{I}_{\text {IN }}$ (Input Current)								
$+25^{\circ} \mathrm{C}$	± 1	$\mu \mathrm{A}$ max	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}$					
$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {max }}$	± 10	$\mu \mathrm{A}$ max						
$\mathrm{C}_{\text {IN }}\left(\right.$ Input C apacitance) ${ }^{2}$	10	10	10	10	10	10		
POWER SUPPLY ${ }^{3}$								
$V_{\text {D }}$	10.8/16.5	10.8/16.5	10.8/16.5	10.8/16.5	10.8/16.5	10.8/16.5	V min/V max	
I_{DD}	2	2	2	2	2	2	mA max	

AC PERFORMANCE CHARACTERISTICS

These characteristics are included for Design Guidance only and are not subject to test.
$\left(V_{D D}=+12 \mathrm{~V}\right.$ to $+15 \mathrm{~V} ; \mathrm{V}_{\text {REFA }}=\mathrm{V}_{\text {REFB }}=+10 \mathrm{~V} ; \mathrm{I}_{\text {OUTA }}=\mathrm{AGNDA}=0 \mathrm{~V}$, $\mathrm{I}_{\text {OUTB }}=$ AGNDB $=0 \mathrm{~V}$. Output Amplifiers are AD644 except where noted. $)$

Parameter	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}, \mathrm{T}_{\text {MAX }}$	Units	Test Conditions/Comments
Output Current Settling T ime	1.5		$\mu \mathrm{s}$ max	To 0.01% of full-scale range. I Iout load $=100 \Omega, C_{\text {EXT }}=13 \mathrm{pF}$. DAC output measured from falling edge of $\overline{\mathrm{WR}}$. Typical Value of Settling Time is $0.8 \mu \mathrm{~s}$.
Digital-to-A nalog G litch Impulse	7		$n \mathrm{~V}$-s typ	M easured with $V_{\text {REFA }}=V_{\text {REFB }}=0 \mathrm{~V}$. I I OUTA, $I_{\text {OUtb }}$ load $=100 \Omega$, $C_{E X T}=13 \mathrm{pF}$. DAC registers alternately loaded with all 0 s and all 1 s .
AC F eedthrough ${ }^{4}$ $V_{\text {Refa }}$ to $I_{\text {outa }}$ $V_{\text {refb }}$ to $I_{\text {outb }}$	$\begin{aligned} & -70 \\ & -70 \end{aligned}$	$\begin{aligned} & -65 \\ & -65 \end{aligned}$	dB max dB max	$\mathrm{V}_{\text {Refa }}, \mathrm{V}_{\text {Refb }}=20 \mathrm{~V}$ p-p 10 kHz sine wave. DAC registers loaded with all Os .
Power Supply Rejection $\Delta \mathrm{G}$ ain/ $\Delta \mathrm{V}_{\mathrm{DD}}$	± 0.01	± 0.02	\% per \% max	$\Delta \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DD}} \max -\mathrm{V}_{\mathrm{DD}} \min$
Output C apacitance Couta Coutb Couta Coutb	$\begin{aligned} & 70 \\ & 70 \\ & 140 \\ & 140 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \\ & 140 \\ & 140 \end{aligned}$	pF max pF max pF max pF max	DAC A, DAC B loaded with all Os DAC A, DAC B loaded with all 1s
```Channel-to-C hannel I solation \(V_{\text {refa }}\) to Ioutb \(V_{\text {refb }}\) to \(I_{\text {outa }}\)```	-84 -84		dB typ   dB typ	$\mathrm{V}_{\text {REFA }}=20 \mathrm{~V}$ p-p 10 kHz sine wave, $\mathrm{V}_{\text {REFB }}=0 \mathrm{~V}$. Both DAC sloaded with all 1 s .   $\mathrm{V}_{\text {REFB }}=20 \mathrm{~V}$ p-p 10 kHz sine wave, $\mathrm{V}_{\text {REFA }}=0 \mathrm{~V}$. Both DAC s loaded with all 1s.
Digital C rosstalk	7		$n \mathrm{~V}$-s typ	M easured for a Code Transition of all Os to all 1 s . $I_{\text {OUta }}, I_{\text {OUtb }}$ load $=100 \Omega, C_{\text {EXt }}=13 \mathrm{pF}$.
Output N oise Voltage Density ( $10 \mathrm{~Hz}-100 \mathrm{kHz}$ )	25		$\mathrm{nV} / \sqrt{\text { Hz }}$ typ	$M$ easured between $R_{\text {FBA }}$ and $I_{\text {OUTA }}$ or $R_{\text {Fbв }}$ and $I_{\text {OUtb }}$. F requency of measurement is $10 \mathrm{Hz-100} \mathrm{kHz}$.
Total H armonic Distortion	-82		dB typ	$\mathrm{V}_{\text {IN }}=6 \mathrm{~V} \mathrm{rms}$,1 kHz . Both DACs loaded with all 1 s .

NOTES
${ }^{1}$ T emperature range as follows:
J, K, L Versions: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$;
A, B, C Versions: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$;
S, T, U Versions: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

[^1]TIMING CHARACTERISTICS $\left(V_{D O}=+10.8 \mathrm{~V}\right.$ to $\left.+16.5 \mathrm{~V}, \mathrm{~V}_{\text {REAA }}=\mathrm{V}_{\text {Refe }}=+10 \mathrm{~V} ; \mathrm{I}_{\text {OUTA }}=A G N D A=0 \mathrm{~V}, \mathrm{I}_{\text {OUTB }}=A G N D B=0 \mathrm{~V}.\right)$

Parameter	Limit at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Limit at } \\ & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ & \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	Limitat $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+55^{\circ} \mathrm{C} \\ & \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	Units	Test Conditions/Comments
$\mathrm{t}_{1}$	15	15	30	ns min	Address Valid to W rite Setup T ime
$\mathrm{t}_{2}$	15	15	25	$n \mathrm{n}$ min	Address V alid to W rite H old T ime
$\mathrm{t}_{3}$	60	80	80	ns min	D ata Setup Time
$\mathrm{t}_{4}$	25	25	25	ns min	D ata H old T ime
$\mathrm{t}_{5}$	0	0	0	$n \mathrm{n}$ min	Chip Select or U pdate to W rite Setup Time
$\mathrm{t}_{6}$	0	0	0	$n \mathrm{n}$ min	Chip Select or U pdate to W rite H old T ime
$\mathrm{t}_{7}$	80	80	100	ns min	W rite Pulse W idth
$\mathrm{t}_{8}$	80	80	100	$n s$ min	Clear Pulse Width

Specifications subject to change without notice.

## ABSOLUTE MAXIMUM RATINGS*

( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise stated)
$V_{D D}$ to DGND ................................ $0.3 \mathrm{~V},+17 \mathrm{~V}$
$V_{\text {ReFa }}, V_{\text {Refb }}$ to $A G N D A, A G N D B \ldots . . . . . . . . . . . . .25 \mathrm{~V}$
$V_{\text {Rfba }}, V_{\text {RFbb }}$ to $A G N D A, A G N D B \ldots . . . . . . . . . . . . . .25 \mathrm{~V}$
Digital Input Voltage to DGND $\ldots . . .-\quad-0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
$I_{\text {outa }}$, $I_{\text {outb }}$ to DGND $\ldots . . . . . . . . .-0.3 \mathrm{~V}, \mathrm{~V}_{\text {DD }}+0.3 \mathrm{~V}$
AGNDA, AGNDB to DGND $\ldots . . . . .-0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Power Dissipation (Any Package)

```
To +750}\textrm{C
450 mW
```



$$
\begin{aligned}
& \text { Operating Temperature Range } \\
& \text { Commercial Plastic (J, K, L Versions) .... }-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\
& \text { Industrial Hermetic (A, B, C Versions) } \ldots-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\
& \text { Extended H ermetic ( } \mathrm{S}, \mathrm{~T}, \mathrm{U} \text { Versions) } \quad .-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
& \text { Storage Temperature . . . . . . . . . . ..... }-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
& \text { Lead T emperature (Soldering, } 10 \mathrm{sec} \text { ) . . . . . . . . . . . . }+300^{\circ} \mathrm{C} \\
& \text { *Stresses above those listed under "Absolute M aximum Ratings" may cause } \\
& \text { permanent damage to the device. This is a stress rating only and functional } \\
& \text { operation of the device at these or any other conditions above those indicated in } \\
& \text { the operational sections of this specification is not implied. Exposure to absolute } \\
& \text { maximum rating conditions for extended periods may affect device reliability. }
\end{aligned}
$$

## CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD 7537 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.


Figure 1. Timing Diagram

PIN FUNCTION DESCRIPTION (PDIP)

PIN	MNE MONIC	DESCRIPTION
1	AGNDA	Analog Ground for DAC A.
2	I Outa	C urrent output terminal of DAC A.
3	$\mathrm{R}_{\text {FBA }}$	F eedback resistor for DAC A.
4	$\mathrm{V}_{\text {REFA }}$	R eference input to DAC A.
5	$\overline{\mathrm{CS}}$	C hip Select Input Active Iow.
6-14	DB0-DB7	Eight data inputs, D B0-D B7.
12	DGND	Digital Ground.
15	A0	Address Line 0.
16	A1	Address Line 1.
17	$\overline{\mathrm{CLR}}$	C lear Input. Active low. C lears all registers.
18	$\overline{\mathrm{WR}}$	Write Input. Active low.
19	$\overline{\text { UPD }}$	U pdates DAC Registers from inputs registers.
20	$V_{D D}$	Power supply input. N ominally +12 V to +15 V , with $\pm 10 \%$ tolerance.
21	$V_{\text {Refb }}$	R eference input to DAC B.
22	$\mathrm{R}_{\text {FBB }}$	F eedback resistor for DAC B.
23	Ioutb	Current output terminal of DAC B.
24	AGNDB	Analog Ground for DAC B.

## PIN CONFIGURATIONS

## PDIP and SOIC



## CIRCUIT INFORMATION - D/A SECTION

The AD 7537 contains two identical 12-bit multiplying D/A converters. E ach DAC consists of a highly stable R-2R Iadder and 12 N -channel current steering switches. Figure 2 shows a simplified D/A circuit for DAC A. In the R-2R ladder, binary weighted currents are steered between Iouta and AGNDA. The
current flowing in each ladder leg is constant, irrespective of switch state. The feedback resistor $\mathrm{R}_{\text {FBA }}$ is used with an op amp (see Figures 4 and 5) to convert the current flowing in Iouta to a voltage output.


Figure 2. Simplified Circuit Diagram for DAC A

## EQUIVALENT CIRCUIT ANALYSIS

Figure 3 shows the equivalent circuit for one of the $D / A$ converters (DAC A) in the AD 7537. A similar equivalent circuit can be drawn for DAC B.
$\mathrm{C}_{\text {out }}$ is the output capacitance due to the N -channel switches and varies from about 50 pF to 150 pF with digital input code. The current source $I_{\text {LKG }}$ is composed of surface and junction leakages and approximately doubles every $10^{\circ} \mathrm{C} . \mathrm{R}_{0}$ is the equivalent output resistance of the device which varies with input code.

## DIGITAL CIRCUIT INFORMATION

The digital inputs are designed to be both TTL and 5 V CM OS compatible. All logic inputs are static protected M OS gates with typical input currents of less than 1 nA .

Table I. AD 7537 Truth Table

$\overline{\text { CLR }}$	UPD	$\overline{\mathrm{CS}}$	$\overline{\text { WR }}$		A0	FUNCTION
1	1	1	X	X	X	N o D ata T ransfer
1	1	X	1	X	$X$	No D ata T ransfer
0	X	X	X	X	X	All Registers Cleared
1	1	0	0	0	0	DAC A LS Input Register Loaded with DB7-D B0 (LSB)
1	1	0	0	0	1	DAC A M S Input Register Loaded with DB3 (M SB)-D B0
1	1	0	0	1	0	DAC B LS Input Register L oaded with DB7-DB0 (LSB)
1	1	0	0	1	1	DAC B M S Input Register L oaded with DB3 (M SB)-D B0
1	0	1	0	X	X	DAC A, DAC B Registers U pdated Simultaneously from Input Registers
1	0	0	0	X	X	DAC A, DAC B Registers are T ransparent

NOTES: X = Don't care


Figure 3. Equivalent Analog Circuit for DAC A

## UNIPOLAR BINARY OPERATION

## (2-QUADRANT MULTIPLICATION)

Figure 4 shows the circuit diagram for unipolar binary operation. With an ac input, the circuit performs 2-quadrant multiplication. The code table for Figure 4 is given in T able II.

Operational amplifiers A1 and A2 can be in a single package (AD 644, AD 712) or separate packages (AD 544, AD 711, AD OP27). Capacitors C1 and C2 provide phase compensation to help prevent overshoot and ringing when high-speed op amps are used.
For zero offset adjustment, the appropriate DAC register is loaded with all 0 s and amplifier offset adjusted so that $\mathrm{V}_{\text {Outa }}$ or $\mathrm{V}_{\text {оutв }}$ is 0 V . Full-scale trimming is accomplished by loading the D AC register with all 1s and adjusting R1 (R3) so that $V_{\text {OUTA }}\left(V_{\text {OUTB }}\right)=-V_{\text {IN }}(4095 / 4096)$. F or high temperature operation, resistors and potentiometers should have a low T emperature C oefficient. In many applications, because of the excellent G ain T.C. and G ain Error specifications of the AD 7537, G ain Error trimming is not necessary. In fixed reference applications, full scale can also be adjusted by omitting R1, R2, R3, R 4 and trimming the reference voltage magnitude.


Figure 4. AD7537 Unipolar Binary Operation
Table II. Unipolar Binary C ode Table for Circuit of Figure 4

Binary Number in   DAC Register   MSB $\quad$ LSB	Analog Output,   $\mathbf{V}_{\text {OUTA }}$ or V ${ }_{\text {outB }}$
111111111111	$-\mathrm{V}_{\text {IN }}\left(\frac{4095}{4096}\right)$
100000000000	$-\mathrm{V}_{\text {IN }}\left(\frac{2048}{4096}\right)=-1 / 2 \mathrm{~V}_{\text {IN }}$
000000000001	$-\mathrm{V}_{\text {IN }}\left(\frac{1}{4096}\right)$
000000000000	0 V

## BIPOLAR OPERATION

## (4-QUADRANT MULTIPLICATION)

The recommended circuit diagram for bipolar operation is shown in Figure 5. Offset binary coding is used.
With the appropriate DAC register loaded to 100000000000 , adjust R1 (R3) so that $\mathrm{V}_{\text {outa }}\left(\mathrm{V}_{\text {out }}\right)=0 \mathrm{~V}$. Alternatively, R1, $R 2(R 3, R 4)$ may be omitted and the ratios of $R 6, R 7(R 9,10)$ varied for $\mathrm{V}_{\text {outa }}\left(\mathrm{V}_{\text {outb }}\right)=0 \mathrm{~V}$. Full-scale trimming can be accomplished by adjusting the amplitude of $\mathrm{V}_{\text {IN }}$ or by varying the value of R5 (R8).
If R1, R2 (R3, R4) are not used, then resistors R5, R6, R 7 (R8, R9, R10) should be ratio matched to $0.01 \%$ to ensure gain error performance to the data sheet specification. When operating over a wide temperature range, it is important that the resistors be of the same type so that their temperature coefficients match.
The code table for Figure 5 is given in Table III.


Figure 5. Bipolar Operation (Offset Binary Coding)
Table III. Bipolar CodeTable for Offset Binary Circuit of Figure 5

Binary Number in DAC Register MSB   LSB	Analog Output, $\mathbf{V}_{\text {OUTA }}$ or $\mathbf{V}_{\text {outb }}$
111111111111	$+\mathrm{V}_{\text {IN }}\left(\frac{2047}{2048}\right)$
100000000001	$+\mathrm{V}_{\text {IN }}\left(\frac{1}{2048}\right)$
100000000000	0 V
011111111111	$-\mathrm{V}_{\text {IN }}\left(\frac{1}{2048}\right)$
000000000000	$-\mathrm{V}_{\text {IN }}\left(\frac{2048}{2048}\right)=-\mathrm{V}_{\text {IN }}$

## SEPARATE AGND PINS

The DAC s in the AD 7537 have separate AG N D lines taken to pins AGNDA and AGNDB on the package. This increases the applications versatility of the part. Figure 6 is an example of this. DAC A is connected in standard fashion as a programmable attenuator. AGNDA is at ground potential. DAC $B$ is operating with AGND B biased to +5 V by the AD 584. T his gives an output range of +5 V to +10 V .


Figure 6. AD7537 DACs Used in Different Modes

## PROGRAMMABLE OSCILLATOR

Figure 7 shows a conventional state variable oscillator in which
the AD 7537 controls the programmable integrators. The frequency of oscillation is given by:

$$
f=\frac{1}{2 \pi} \sqrt{\frac{\mathrm{R} 6}{\mathrm{R} 5} \times \frac{1}{\mathrm{C} 1 \times \mathrm{C} 2 \times R_{E Q 1} \times \mathrm{R}_{\mathrm{EQ} 2}}}
$$

where $R_{E Q 1}$ and $R_{E Q 2}$ are the equivalent resistances of the DACs. The same digital code is loaded into both D ACs. If C1 $=C 2$ and R5 $=R 6$, the expression reduces to

$$
\mathrm{f}=\frac{1}{2 \pi} \times \frac{1}{\mathrm{C}} \sqrt{\frac{1}{\mathrm{R}_{\mathrm{EQ} 1} \times \mathrm{R}_{\mathrm{EQ} 2}}}
$$

Since $R_{E Q}=\frac{2^{n} \times R_{L A D}}{N},\left(R_{L A D}=D A C\right.$ ladder resistance $)$.

$$
\begin{aligned}
& f=\frac{1}{2 \pi} \times \frac{1}{C} \sqrt{\frac{\left(N / 2^{n}\right)^{2}}{R_{L A D 1} \times R_{L A D 2}}} \\
& =\frac{1}{2 \pi} \times \frac{D}{C} \frac{1}{\sqrt{R_{L A D 1} \times R_{L A D 2}}} \quad D=\left(\frac{N}{2^{n}}\right) \\
& =\frac{1}{2 \pi} \times \frac{D}{C \times R_{L A D \sqrt{m}}}
\end{aligned}
$$

where $m$ is the DAC Iadder resistance mismatch ratio, typically 1.005 .

With the values shown in Figure 7, the output frequency varies from 0 Hz to 1.38 kHz . The amplitude of the output signal at the A3 output is 10 V peak-to-peak and is constant over the entire frequency span.


Figure 7. Programmable State Variable Oscillator

## APPLICATION HINTS

Output Offset: CM OS D /A converters in circuits such as Figures 4 and 5 exhibit a code dependent output resistance which in turn can cause a code dependent error voltage at the output of the amplifier. T he maximum amplitude of this error, which adds to the $\mathrm{D} / \mathrm{A}$ converter nonlinearity, depends on $\mathrm{V}_{0 s}$, where $\mathrm{V}_{\text {os }}$ is the amplifier input offset voltage. To maintain specified operation, it is recommended that $\mathrm{V}_{\text {OS }}$ be no greater than $\left(25 \times 10^{-6}\right)\left(\mathrm{V}_{\text {REF }}\right)$ over the temperature range of operation. Suitable op amps are the AD 711C and its dual version, the AD 712C. These op amps have a wide bandwidth and high slew rate and are recommended for wide bandwidth ac applications. AD 711/AD 712 settling time to $0.01 \%$ is typically $3 \mu \mathrm{~s}$.
Temperature Coefficients: The gain temperature coefficient of the AD 7537 has a maximum value of $5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ and typical value of $1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. This corresponds to worst case gain shifts of 2 LSBs and 0.4 LSB respectively over a $100^{\circ} \mathrm{C}$ temperature range. When trim resistors $R 1$ (R3) and R2 (R4) are used to adjust full scale range as in Figure 4, the temperature coefficient of R1 (R3) and R2 (R4) should also be taken into account. F or further information see "G ain Error and G ain T emperature Coefficient of CM OS M ultiplying DACs", Application N ote, Publication N umber E630c-5-3/86 available from A nalog D evices.
High Frequency Considerations: AD 7537 output capacitance works in conjunction with the amplifier feedback resistance to add a pole to the open loop response. This can cause ringing or oscillation. Stability can be restored by adding a phase compensation capacitor in parallel with the feedback resistor. This is shown as C 1 and C 2 in Figures 4 and 5.
Feedthrough: The dynamic performance of the AD 7537 depends upon the gain and phase stability of the output amplifier, together with the optimum choice of PC board layout and decoupling components. A suggested printed circuit layout for Figure 4 is shown in Figure 8 which minimizes feedthrough from $\mathrm{V}_{\text {REFA }}, \mathrm{V}_{\text {REFB }}$ to the output in multiplying applications.


Figure 8. Suggested Layout for AD7537

## MICROPROCESSOR INTERFACING

The byte loading structure of the AD 7537 makes it very easy to interface the device to any 8 -bit microprocessor system. Figures 9 and 10 show two interfaces: one for the M C 6809 and the
other for the M C 68008. Figure 11 shows how an AD 7537 system can be easily expanded by tying all the UPD lines together and using a single decoder output to control these. This expanded system is shown using a Z80 microprocessor but it is just as easily configured using any other 8-bit microprocessor system. N ote how the system shown in Figure 11 produces 4 analog outputs with a minimum amount of hardware.


Figure 9. AD7537-MC6809 Interface


Figure 10. AD7537-MC68008 Interface

*LINEAR CIRCUITRY OMITTED FOR CLARITY
Figure 11. Expanded AD7537 System

## OUTLINE DIMENSIONS



Figure 12. 24-Lead Plastic Dual In-Line Package [PDIP]
Narrow Body
( N -24-1)
Dimensions shown in inches and (millimeters)


COMPLIANT TO JEDEC STANDARDS MO-047-AB
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 16. 28-Lead Plastic Leaded Chip Carrier [PLCC] (P-28)
Dimensions shown in inches and (millimeters)


COMPLIANT TO JEDEC STANDARDS MS-013-AD
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 17. 24-Lead Standard Small Outline Package [SOIC-W] Wide Body (RW-24)
Dimensions shown in inches and (millimeters)

ORDERING GUIDE

Model ${ }^{1,2,3}$	Temperature Range	Relative Accuracy	Gain Error	Package Description	Package Option
AD7537JN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1$ LSB	$\pm 6$ LSB	24-Lead PDIP	N-24-1
AD7537JNZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1$ LSB	$\pm 6$ LSB	24-Lead PDIP	N-24-1
AD7537KN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2$ LSB	$\pm 3$ LSB	24-Lead PDIP	N-24-1
AD7537KNZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2$ LSB	$\pm 3$ LSB	24-Lead PDIP	N-24-1
AD7537LNZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2$ LSB	$\pm 1$ LSB	24-Lead PDIP	N-24-1
AD7537JP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1$ LSB	$\pm 6$ LSB	28-Lead PLCC	P-28
AD7537JP-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1$ LSB	$\pm 6$ LSB	28-Lead PLCC	P-28
AD7537JPZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1$ LSB	$\pm 6$ LSB	28-Lead PLCC	P-28
AD7537JPZ-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1$ LSB	$\pm 6$ LSB	28-Lead PLCC	P-28
AD7537KP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2$ LSB	$\pm 3$ LSB	28-Lead PLCC	P-28
AD7537KPZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2$ LSB	$\pm 3$ LSB	28-Lead PLCC	P-28
AD7537KPZ-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2$ LSB	$\pm 3$ LSB	28-Lead PLCC	P-28
AD7537LP-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2$ LSB	$\pm 1$ LSB	28-Lead PLCC	P-28
AD7537LPZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2$ LSB	$\pm 1$ LSB	28-Lead PLCC	P-28
AD7537LPZ-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2$ LSB	$\pm 1$ LSB	28-Lead PLCC	P-28
AD7537JR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1$ LSB	$\pm 6$ LSB	24-Lead SOIC_W	RW-24
AD7537JR-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1$ LSB	$\pm 6$ LSB	24-Lead SOIC_W	RW-24
AD7537JRZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1$ LSB	$\pm 6$ LSB	24-Lead SOIC_W	RW-24
AD7537JRZ-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1$ LSB	$\pm 6$ LSB	24-Lead SOIC_W	RW-24
AD7537KRZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2$ LSB	$\pm 3$ LSB	24-Lead SOIC_W	RW-24
AD7537KR-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2$ LSB	$\pm 3$ LSB	24-Lead SOIC_W	RW-24
AD7537BR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2$ LSB	$\pm 3$ LSB	24-Lead SOIC_W	RW-24
AD7537BR-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2$ LSB	$\pm 3$ LSB	24-Lead SOIC_W	RW-24
AD7537BRZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2$ LSB	$\pm 3$ LSB	24-Lead SOIC_W	RW-24

[^2]
## AD7537

## REVISION HISTORY

6/12—Rev. 0 to Rev. A
Added SOIC Package ..................................................... Universal
Removed LCCC Pin Configuration................................................ 4
Updated Outline Dimensions...................................................... 8
Changes to Ordering Guide......................................................... 9
10/87—Revision 0: Initial Version

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Digital to Analog Converters - DAC category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
046777H 057536E 063924B 5962-87700012A 5962-87700032A 5962-8770003EA 5962-8770101RA 5962-8770102RA 5962-87701032A 5962-8770103RA 5962-8770201RX 5962-8770202RX 5962-8770204RX 5962-8778901EA 5962-87789022A 5962-8778902EA 59628780201RA 5962-8865901XA 5962-88663013X 5962-8866302LX 5962-8871901MXA 5962-8871902MXA 5962-8871903MYA 59628876501RX 5962-8876502RX 5962-8876601LA 5962-8961701LA 5962-89657023A 5962-8967101LA 5962-89697013A 5962-89932012A 5962-9078502MLA 5962-9090801MVA 5962-9176401MXA 5962-9176402MXA 5962-9176404M3A 5962-9201601MEA 59629320401MEA 5962-9451801MLA 5962-9451802MLA 600641A 662182-4 702423BB 748442C AD1139J AD2S1210CSTZ AD390KD AD390TD AD420ANZ-32 AD420ARZ-32


[^0]:    Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

[^1]:    ${ }^{2}$ Sample tested at $+25^{\circ} \mathrm{C}$ to ensure compliance.
    ${ }^{3}$ F unctional at $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$, with degraded specifications.
    ${ }^{4}$ Pin 12 (DGND) on ceramic DIPs is connected to lid.

[^2]:    ${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.
    ${ }^{2}$ Analog Devices reserves the right to ship side-brazed CERDIP packages (D-24-1) in lieu of CERDIP packages (Q-24-1).
    ${ }^{3}$ To order MIL-STD-883, Class B processed parts, add/883B to part number. Contact your local sales office for military data sheet.

