VS-ST230SPbF Series

Vishay Semiconductors

Phase Control Thyristors (Stud Version), 230 A

PRIMARY CHARACTERISTICS					
I _{T(AV)}	230 A				
V _{DRM} /V _{RRM}	1400 V, 1600 V				
V _{TM}	1.55 V				
I _{GT}	150 mA				
TJ	-40 °C to +125 °C				
Package	TO-93 (TO-209AB)				
Circuit configuration	Single SCR				

FEATURES

- Center amplifying gate
- International standard case TO-93 (TO-209AB)
- · Hermetic metal case with ceramic insulator
- Compression bonded encapsulation for heavy duty operations such as severe thermal cycling
- · Designed and qualified for industrial level
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

TYPICAL APPLICATIONS

- DC motor controls
- · Controlled DC power supplies
- AC controllers

MAJOR RATINGS AND CHARACTERISTICS						
PARAMETER	TEST CONDITIONS	VALUES	UNITS			
I		230	А			
I _{T(AV)}	T _C	85	°C			
I _{T(RMS)}		360	А			
1	50 Hz	5700	٨			
ITSM	60 Hz	5970	A			
l ² t	50 Hz	163	kA ² s			
14	60 Hz	149	KA-S			
V _{DRM} /V _{RRM}		1400 to 1600	V			
tq	Typical	100	μs			
TJ		-40 to +125	C°			

ELECTRICAL SPECIFICATIONS

VOLTAGE R	ATINGS			
TYPE NUMBER	VOLTAGE CODE	V _{DRM} /V _{RRM} , MAXIMUM REPETITIVE PEAK AND OFF-STATE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK VOLTAGE V	$I_{DRM}/I_{RRM} MAXIMUM AT T_J = T_J MAXIMUM mA$
VS-ST230S	14	1400	1500	30
V3-312303	16	1600	1700	30

COMPLIANT

VS-ST230SPbF Series

Vishay Semiconductors

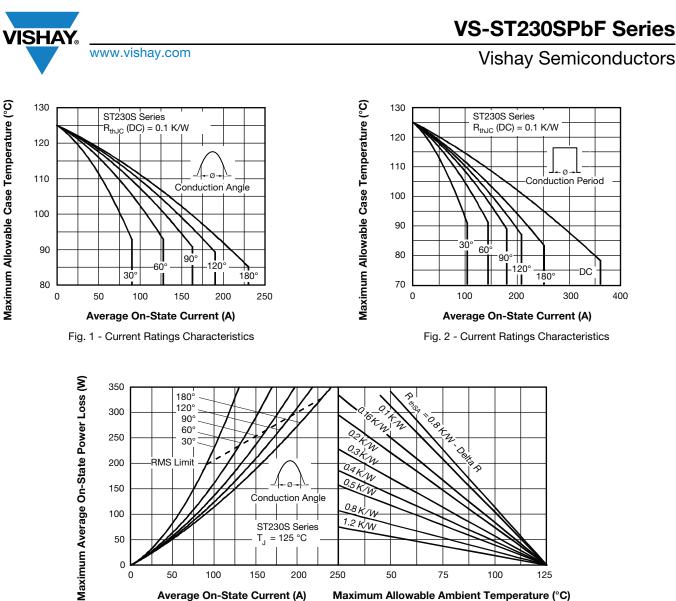
ABSOLUTE MAXIMUM RATINGS								
PARAMETER	SYMBOL		TEST CON	DITIONS	VALUES	UNITS		
Maximum average on-state current	l=	180° condu	180° conduction, half sine wave		230	А		
at case temperature	I _{T(AV)}		ction, nan sine (wave	85	°C		
Maximum RMS on-state current	I _{T(RMS)}	DC at 78 °C	case temperat	ure	360			
		t = 10 ms	No voltage		5700			
Maximum peak, one-cycle	I	t = 8.3 ms	reapplied		5970	Α		
non-repetitive surge current	I _{TSM}	t = 10 ms	100 % V _{RRM}		4800			
		t = 8.3 ms	reapplied	Sinusoidal half wave,	5000			
Maximum 12t far fusian	l ² t	t = 10 ms	No voltage	initial $T_J = T_J$ maximum	163	kA ² s		
		t = 8.3 ms	reapplied		148			
Maximum I ² t for fusing		1-1			t = 10 ms	100 % V _{RRM}		115
		t = 8.3 ms	reapplied		105			
Maximum I ² √t for fusing	l²√t	t = 0.1 to 10) ms, no voltage	e reapplied	1630	kA²√s		
Low level value of threshold voltage	V _{T(TO)1}	(16.7 % x π	$x \ I_{T(AV)} < I < \pi \ x$	$I_{T(AV)}$), $T_{J} = T_{J}$ maximum	0.92	V		
High level value of threshold voltage	V _{T(TO)2}	$(I > \pi \times I_{T(AV)})$), $T_J = T_J maxin$	num	0.98	v		
Low level value of on-state slope resistance	r _{t1}	(16.7 % x π	$x I_{T(AV)} < I < \pi x$	I _{T(AV)}), T _J = T _J maximum	0.88	mΩ		
High level value of on-state slope resistance	r _{t2}	$(I > \pi \times I_{T(AV)}), T_J = T_J maximum$			0.81	11152		
Maximum on-state voltage	V _{TM}	I _{pk} = 720 A,	$T_J = T_J maximu$	ım, t _p = 10 ms sine pulse	1.55	V		
Maximum holding current	Ι _Η	T _ 25 °C	anada ayanlıy 1	2.V registive load	600	mA		
Maximum (typical) latching current	١L	1j=25 C,	anoue supply 1	2 V resistive load	1000 (300)	IIIA		

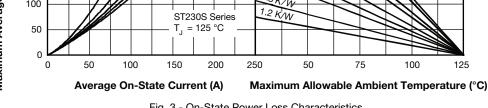
SWITCHING				
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum non-repetitive rate of rise of turned-on current	dl/dt	Gate drive 20 V, 20 $\Omega,t_r \le 1~\mu s$ T_J = T_J maximum, anode voltage $\le 80~\%~V_{DRM}$	1000	A/µs
Typical delay time	t _d	Gate current 1 A, dl _g /dt = 1 A/ μ s V _d = 0.67 % V _{DRM} , T _J = 25 °C	1.0	110
Typical turn-off time	tq	I_{TM} = 300 A, T_J = T_J maximum, dI_F/dt = 20 A/µs, V_R = 50 V, dV/dt = 20 V/µs, gate 0 V 100 $\Omega,$ t_p = 500 µs	100	μs

BLOCKING				
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum critical rate of rise of off-state voltage	dV/dt	$T_J = T_J$ maximum linear to 80 % rated V_{DRM}	500	V/µs
Maximum peak reverse and off-state leakage current	I _{RRM} , I _{DRM}	$T_J = T_J$ maximum, rated V_{DRM}/V_{RRM} applied	30	mA

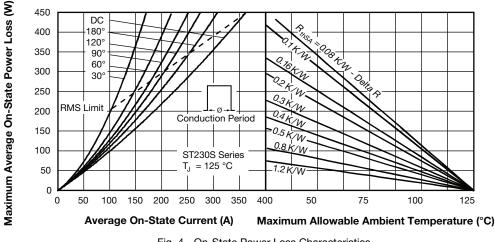
Vishay Semiconductors

TRI	GG	ER	ING
-----	----	----	-----


TRIGGERING								
PARAMETER	SYMBOL	т	EST CONDITIONS	VAL	UNITS			
PARAMETER	STIVIDUL		EST CONDITIONS	TYP.	MAX.	UNITS		
Maximum peak gate power	P_{GM}	$T_J = T_J$ maximum,	$t_p \le 5 \text{ ms}$	10	0.0	W		
Maximum average gate power	P _{G(AV)}	$T_J = T_J$ maximum,	f = 50 Hz, d% = 50	2	.0	vv		
Maximum peak positive gate current	I _{GM}	$T_J = T_J$ maximum,	$t_p \le 5 \text{ ms}$	3	.0	А		
Maximum peak positive gate voltage	+ V _{GM}		+ < 5 mg	2	0	V		
Maximum peak negative gate voltage	- V _{GM}	$T_J = T_J$ maximum, $t_p \le 5$ ms			$r_j = r_j \max(r_j, r_p \le 5 \text{ ms})$ 5.0		.0	v
	I _{GT}	T _J = - 40 °C		180	-			
DC gate current required to trigger		T _J = 25 °C	Maximum required gate trigger/	90	150	mA		
		T _J = 125 °C	current/voltage are the lowest	40	-			
		T _J = - 40 °C	value which will trigger all units 12	2.9	-			
DC gate voltage required to trigger	V _{GT}	T _J = 25 °C	V anode to cathode applied	1.8	3.0	V		
		T _J = 125 °C		1.2	-			
DC gate current not to trigger	I _{GD}		Maximum gate current/voltage not	ot 10		mA		
DC gate voltage not to trigger	V _{GD}	$T_J = T_J maximum$	to trigger is the maximum value which will not trigger any unit with rated V _{DRM} anode to cathode applied	0.05		V		


THERMAL AND MECHANICAL SPECIFICATIONS					
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum operating junction temperature range	TJ		-40 to 125	°C	
Maximum storage temperature range	T _{Stg}		-40 to 150		
Maximum thermal resistance, junction to case	R _{thJC}	DC operation	0.10	- к/W	
Maximum thermal resistance, case to heatsink	R _{thC-hs}	C-hs Mounting surface, smooth, flat and greased			
Mounting torque, \pm 10 %		Non-lubricated threads	31 (275)	N⋅m	
Mounting torque, ± 10 %		Lubricated threads	24.5 (210)	(lbf · in)	
Approximate weight			280	g	
Case style		See dimensions - link at the end of datasheet	TO-93 (TO-2	209AB)	

	ON			
CONDUCTION ANGLE	SINUSOIDAL CONDUCTION	RECTANGULAR CONDUCTION	TEST CONDITIONS	UNITS
180°	0.016	0.012		
120°	0.019	0.020		
90°	0.025	0.027	$T_J = T_J maximum$	K/W
60°	0.036	0.037		
30°	0.060	0.060		


Note

• The table above shows the increment of thermal resistance R_{thJC} when devices operate at different conduction angles than DC

Vishay Semiconductors

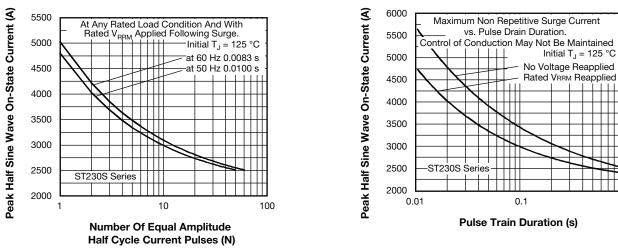
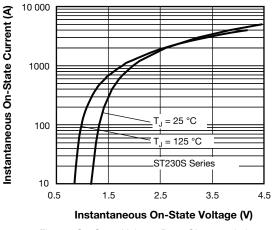
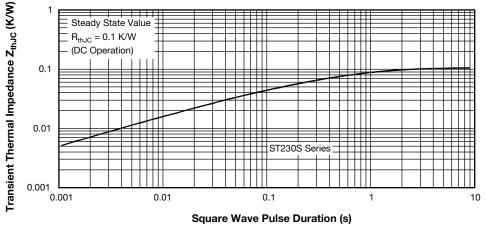
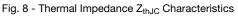
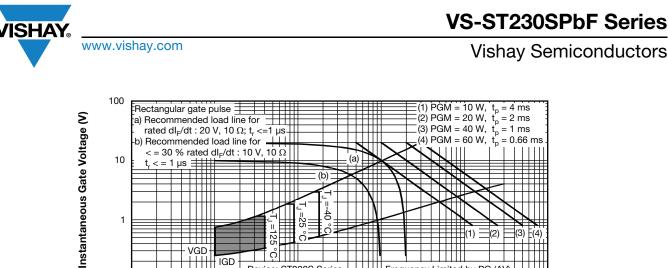


Fig. 5 - Maximum Non-Repetitive Surge Current


Fig. 7 - On-State Voltage Drop Characteristics

 Revision: 27-Sep-17
 5
 Document Number: 94399

 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com
 THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

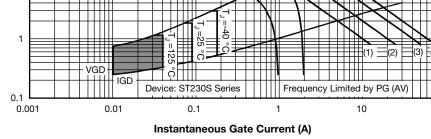


Fig. 9 - Gate Characteristics

100

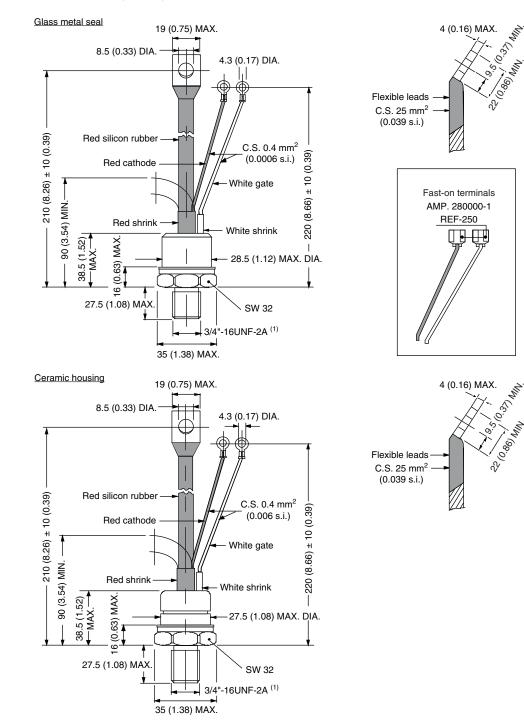
ORDERING INFORMATION TABLE

Device code	vs-	ST	23	0	S	16	Ρ	0	PbF
	1	2	3	4	5	6	7	8	9
	1 - 2 - 3 -	Thy	ristor	niconduo art num!		oduct			
	<u> </u>			er grade					
	5 -	S =	compre	ssion bo	onding s	stud			
	6 -	Volt	age coo	de x 100	= V _{RRM}	₁ (see V	oltage I	Ratings	table)
	7 -	P =	stud ba	se 3/4"-	16UNF2	2A threa	ads		
	8 -	0 =	eyelet t	erminals	s (gate a	and auxi	liary ca	thode le	eads)
		1 =	fast-on	terminal	s (gate	and aux	kiliary ca	athode	leads)
	9 -	Nor	ne = stai	ndard pr	oductio	n			
	-	Pbl	= = lead	(Pb)-fre	e				

Note: For metric device M16 x 1.5 contact factory

LINKS TO RELATED DOCUMENTS				
Dimensions	www.vishay.com/doc?95082			

Vishay Semiconductors


NI.

NIN,

DIMENSIONS in millimeters (inches)

www.vishay.com

Note

⁽¹⁾ For metric device: M16 x 1.5 - length 21 (0.83) maximum

Revision: 05-Mar-12

Document Number: 95082

For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

1

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for SCR Modules category:

Click to view products by Vishay manufacturer:

Other Similar products are found below :

DT430N22KOF T1401N42TOH T1851N60TOH T390N14TOF T420N12TOF T470N16TOF T640N16TOF T901N36TOF TD140N18KOF TD142N16KOF TD162N16KOF-A TD250N12KOF TD330N16AOF TT215N22KOF TZ310N20KOF TZ425N12KOF TZ500N12KOF T300N14TOF T3710N06TOF VT T390N16TOF T460N24TOF T501N70TOH T560N16TOF T640N14TOF TD250N14KOF TT600N16KOF TZ500N16KOF TZ240N36KOF TT210N12KOF NTE5710 TD180N16KOF TT240N28KOF TZ425N14KOF T1081N60TOH TT61N08KOF TD251N18KOF TT162N08KOF TZ430N22KOF TT180N12KOF T2001N34TOF VS-ST230S16P0PBF TD140N22KOF MDMA200P1600SA TT180N16KOF VS-ST333C08LFM0 VS-ST180C14C0L T1080N02TOF TD320N16SOF T360N22TOF TZ810N22KOF