

AP3772H

General Description

The AP3772H is a high performance AC/DC power supply controller for battery charger and adapter applications. The device uses Pulse Frequency Modulation (PFM) method to build discontinuous conduction mode (DCM) flyback power supplies.

The AP3772H provides accurate constant voltage, constant current (CV/CC) regulation without requiring an opto-coupler and the secondary control circuitry. It also eliminates the need of loop compensation circuitry while maintaining good stability. The AP3772H can achieve excellent regulation and high average efficiency, yet meets no-load consumption less than 30mW. It can also achieve excellent dynamic performance while maintaining 30mW standby power with AP4340.

The AP3772H has a built-in fixed cable voltage drop compensation function. The magnitude of the cable compensation voltage is set as 3% of the rated output voltage. It also has an adjustable built-in line compensation function to achieve tight CC.

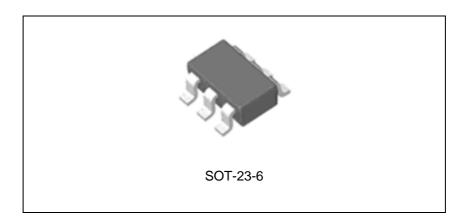
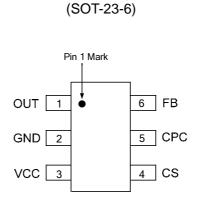
The AP3772H is available in SOT-23-6 package.

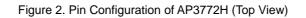
Features

- Primary Side Control for Tight Constant Current and Constant Voltage
- 30mW No-load Input Power
- Excellent Dynamic Performance with AP4340
- Bipolar Junction Transistor (BJT) Driving
- Proprietary Adjustable Line Compensation for CC Variation
- Constant and Built-in 6%, 3% and No Cable Voltage Drop Compensation
- Enhanced Audio Noise Suppression
- Open Circuit Protection
- Over Voltage Protection
- Short Circuit Protection
- SOT-23-6 package

Applications

- Adapters/Chargers for Cell/cordless Phones, PDAs, MP3 and Other Portable Devices
- LED Driver
- Standby and Auxiliary Power Supplies


Figure 1. Package Type of AP3772H

Pin Configuration

K6 Package

Pin Description

Pin Number	Pin Name	Function		
1	OUT	The OUT pin is used to turn on and turn off the power switch. When turning on the power switch, the OUT pin will output 30mA source current to support the base current of the power BJT. When turning off the power switch, the resistance between the OUT and GND will become to 5Ω		
2	GND	The GND pin is the ground of the IC. When the power BJT is turned off, a fast reverse sinking current to the gate of BJT will flow out from this pin. Attention should be paid to in the PCB layout		
3	VCC	The VCC pin supplies the power for the IC. In order to get the correct operation of the IC, a capacitor with low ESR should be placed as close as possible to the VCC pin		
4	CS	The CS is the current sense pin of the IC. The IC will turn off the power BJT according to the voltage on the CS pin. When the power BJT is on, a current is output from the CS pin which is proportional to the line voltage to realize the function of line compensation		
5	CPC	A capacitor more than 10nF should be connected to this pin. The voltage of CPC pin is linear to load of the system and it is used for the functions of cable voltage drop compensation and audio noise suppression		
6	FB	The CV and CC regulation are realized based on the voltage sampling of this pin		

AP3772H

Functional Block Diagram

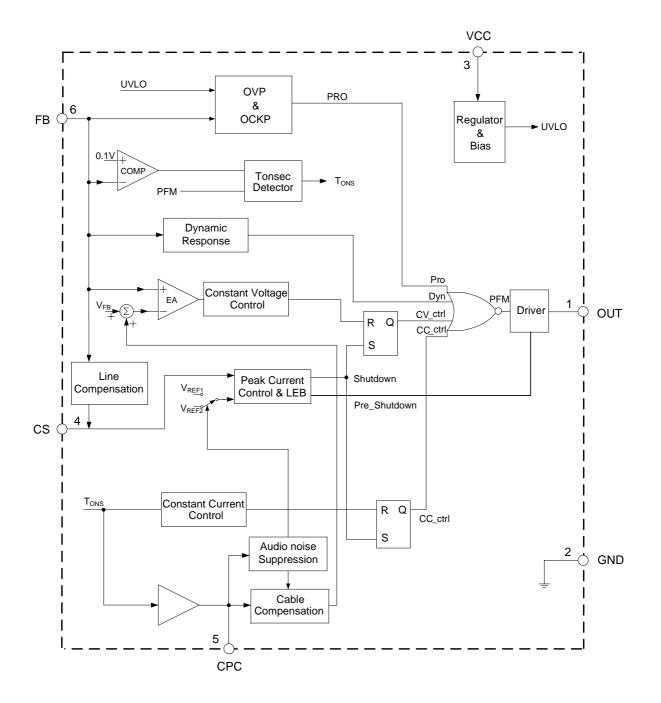
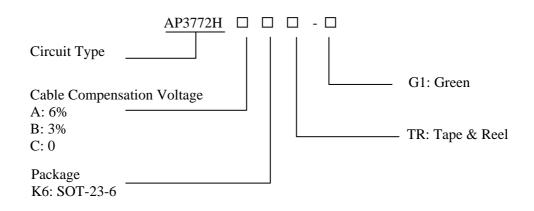



Figure 3. Functional Block Diagram of AP3772H

AP3772H

Ordering Information

Package	Temperature Range	Cable Compensation Voltage	Part Number	Marking ID	Packing Type
SOT-23-6	-40 to 85°C	6%	AP3772HAK6TR-G1	GBC	Tape & Reel
		3%	AP3772HBK6TR-G1	GKJ	Tape & Reel
		0	AP3772HCK6TR-G1	GJD	Tape & Reel

BCD Semiconductor's Pb-free products, as designated with "G1" suffix in the part number, are RoHS compliant and green.

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Value	Unit	
Supply Voltage	V _{CC}	-0.3 to 30	V	
CS, CPC to GND		-0.3 to 7	V	
FB Input Voltage	V_{FB}	-40 to 10	V	
Source Current at OUT Pin	I _{SOURCE}	Internally Limited	А	
Operating Junction Temperature	T_{J}	150	°C	
Storage Temperature	T _{STG}	-65 to 150	°C	
Lead Temperature (Soldering, 10 sec)	T _{LEAD}	300	°C	
Thermal Resistance (Junction to Ambient)	θ_{JA}	200	°C/W	

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

AP3772H

Electrical Characteristics

 V_{CC} =15V, T_A =25°C, unless otherwise specified.

Parameter		Symbol	Conditions	Min	Тур	Max	Unit
UVLO SECTION							
Startup Threshold		V _{TH} (ST)		13	15.5	18	V
Minimal Operating	Voltage	V _{OPR} (MIN)		3	3.5	4.5	V
STANDBY CURR	ENT SEC	TION				1	
Startup Current		I _{ST}	$V_{CC}=V_{TH}$ (ST)-1V, Before startup	0	0.2	0.6	μΑ
Operating Current		I _{CC} (OPR)	Static current	250	500	600	μA
DRIVE OUTPUT	SECTION	N				•	
	Sink	I _{SINK}	Apply 1V @ OUT pin	150	330	500	mA
Output Current	Source	I _{SOURCE}		30	40	50	mA
Maximum Off Time		t _{OFF} (MAX)		14	18	25	ms
CURRENT SENS	E SECTIO)N	L			1	
Current Sense Threshold Voltage at Heavy Load		V _{CS1}		500	525	550	mV
Leading Edge Blanking		t _{LEB}	The minimum power switch turn on time	300	500	650	ns
FEEDBACK INP	UT SECTI	ION					
Input Resistance of	FB Pin	R _{FB}	V _{FB} =4V	1	1.6	2	MΩ
Feedback Threshold		V _{FB}		3.98	4.04	4.1	V
LINE COMPENS	ATION SI	ECTION					
Line Compensation Transconductance (Note 2)		g _m		0.8	1.2	1.6	μS
CABLE COMPEN	NSATION	SECTION					
			АР3772НА	5	6	7	
Cable Compensation		ΔV_{FB_CABLE}	AP3772HB	2	3	4	%
Voltage		$/V_{FB}$ %	AP3772HC		0		
DYNAMIC FUNC	CTION SE	CTION					
Delay Time for Dynamic Function t _D		t _D		110	150	200	μs
Trigger Voltage for Dynamic Function V _{TRIGG}		V _{TRIGGER}		120	150	180	mV
PROTECTION S	ECTION				-		
Over Voltage Protection		V _{FB} (OVP)		7	8	9	V
		tonp (MAX)		20	35	50	μs

Note 2: Line compensation voltage on CS pin: $\triangle V_{CS} = V_{IN_{-}DC} \cdot \frac{N_{AUX}}{N_{PRI}} \cdot \frac{R_6}{R_6 + R_7} \cdot g_m \cdot R_{LINE}$

AP3772H

Typical Performance Characteristics

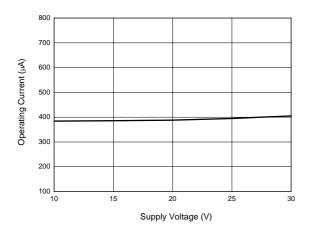


Figure 4. Operating Current vs. Supply Voltage

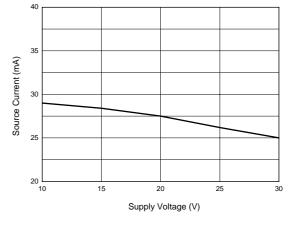


Figure 5. Source Current vs. Supply Voltage

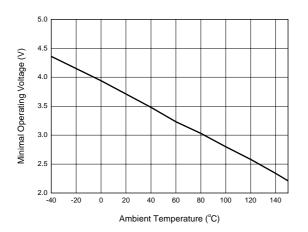


Figure 6. Minimal Operating Voltage vs. Ambient Temperature

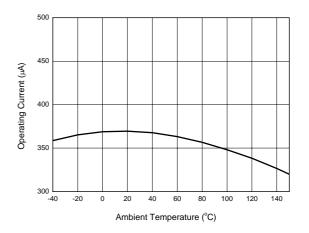
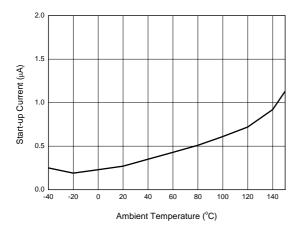



Figure 7. Operating Current vs. Ambient Temperature

Typical Performance Characteristics (Continued)

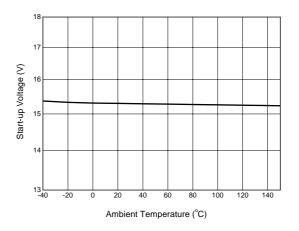


Figure 8. Start-up Current vs. Ambient Temperature

Figure 9. Start-up Voltage vs. Ambient Temperature

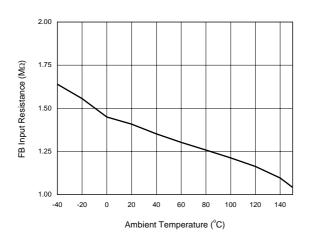


Figure 10. FB Input Resistance vs. Ambient Temperature

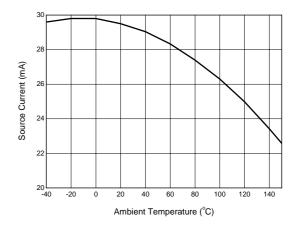
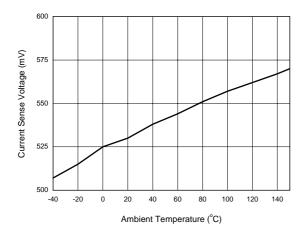
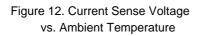




Figure 11. Source Current vs. Ambient Temperature

Typical Performance Characteristics (Continued)

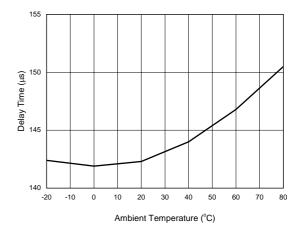


Figure 13. Delay Time vs. Ambient Temperature

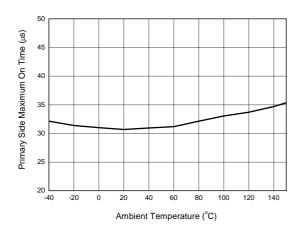


Figure 14. Primary Side Maximum On Time vs. Ambient Temperature

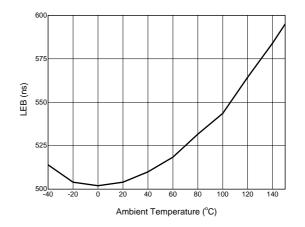
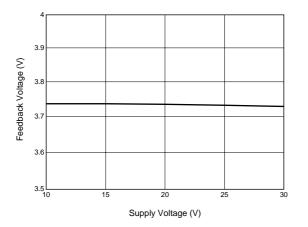



Figure 15. LEB vs. Ambient Temperature

AP3772H

Typical Performance Characteristics (Continued)

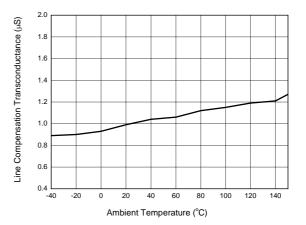
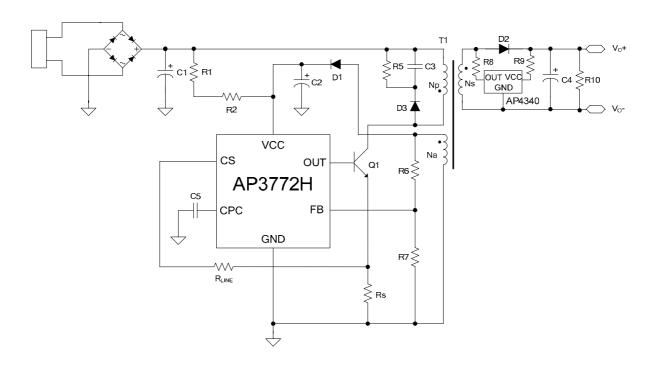
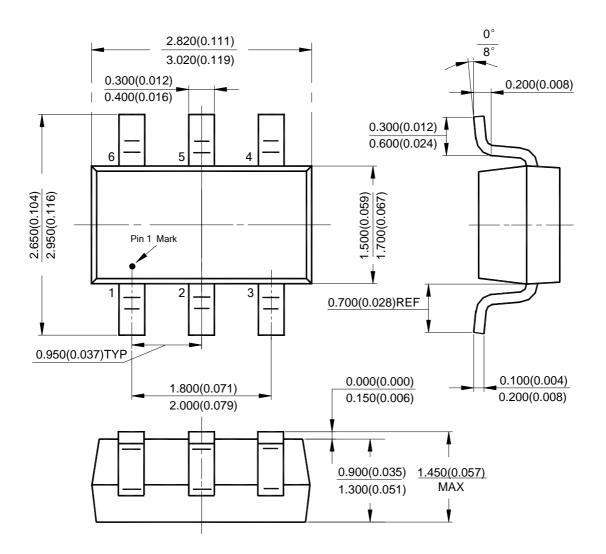


Figure 16. Feedback Voltage vs. Supply Voltage

Figure 17. Line Compensation Transconductance vs. Ambient Temperature

Typical Application




Figure 18. 5V/1A Output for Battery Charger of Mobile Phone (The AP4340 Is Used to Achieve Fast Dynamic Response)

Mechanical Dimensions

SOT-23-6

Unit: mm(inch)

BCD Semiconductor Manufacturing Limited

http://www.bcdsemi.com

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

- Headquarters BCD (Shanghai) Micro-electronics Limited No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, P. R.C. Tel: +86-021-2416-2266, Fax: +86-021-2416-2277

REGIONAL SALES OFFICE Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office Unit A Room 1203, Skyworth Bldg., Gaoxin Ave.1.S., Nanshan District Shenzhen 518057, China Tel: +86-0755-8660-4900, Fax: +86-0755-8660-4958

Taiwan Office (Hsinchu) BCD Semiconductor (Taiwan) Company Limited 8F, No.176, Sec. 2, Gong-Dao 5th Road, East District HsinChu City 300, Taiwan, R.O.C Tel: +886-3-5160181, Fax: +886-3-5160181

- Wafer Fab Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd.

800 Yishan Road, Shanghai 200233, China Tel: +021-6485-1491, Fax: +86-021-5450-0008

Taiwan Office (Taipei) BCD Semiconductor (Taiwan) Company Limited 3F, No.17, Lane 171, Sec. 2, Jiu-Zong Rd., Nei-Hu Dist., Taipei(114), Taiwan, R.O.C Tel: +886-2-2656 2808 Fax: +886-2-2656-2806/26562950

USA Office BCD Semiconductor Corp. 48460 Kato Road, Fremont, CA 94538, USA Tel: +1-510-668-1950 Fax: +1-510-668-1990

Korea Office BCD Semiconductor Limited Korea office. Room 101-1112, Digital-Empire II, 486 Sin-dong, Yeongtong-Gu, Suwon-city, Gyeonggi-do, Korea Tel: +82-31-695-8430

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for AC/DC Converters category:

Click to view products by Diodes Incorporated manufacturer:

Other Similar products are found below :

FSFR2100US AP3776MTR-G1 BP5037B15 BP5722A12 NCP1070STCT3G NCP1076STBT3G NCP1910B100DWR2G ICE3AR0680VJZ ICE3AR1080VJZ ICE3AR1580VJZ ICE3AR2280CJZ ICE3BR2280JZ ICE3RBR4765JZ SEA01 FAN7621SSJX MP172GJ-Z MP174GJ-P BP5011 BP5055-12 BP5710-1 BP5718A12 ICE2QR4780Z ICE3AR4780VJZ NCP1077P130G NCP1077STBT3G VIPER0PLD FSL206MRLX NCP1060BD100R2G NCP1124BP100G AP3983EP7-G1 TEA19363T/1J AP3171MPTR-G1 ICE3B0365J NCP1070P100G AP3125CMKTR-G1 NCP1076P100G MP174GS-Z MP171GJ-Z MP150GS SC1076P065G NCP1071STBT3G NCP1071P100G NCP1070P130G VI-RUR22-EWXX AME15-512TCJZ 47132 47165 47220 47223 47224