FEATURES

Input frequencies from $\mathbf{8 k H z}$ to $\mathbf{7 1 0} \mathbf{~ M H z}$
Output frequencies up to $810 \mathbf{~ M H z}$ LVPECL and LVDS (up to 200 MHz for CMOS output)
Preset pin-programmable frequency translation ratios cover popular wireline and wireless frequency applications, including xDSL, T1/E1, BITS, SONET, and Ethernet
Arbitrary frequency translation ratios via SPI port
On-chip VCO
Accepts a crystal resonator for holdover applications
Two single-ended (or one differential) reference input(s)
Two output clocks (independently programmable as LVDS, LVPECL, or CMOS)
SPI-compatible, 3-wire programming interface
Single supply (3.3 V)
Very low power: <450 mW (under most conditions)
Small package size ($5 \mathrm{~mm} \times 5 \mathrm{~mm}$)
Exceeds Telcordia GR-253-CORE jitter generation, transfer, and tolerance specifications

APPLICATIONS

Cost effective replacement of high frequency VCXO, OCXO, and SAW resonators
Extremely flexible frequency translation for SONET/SDH, Ethernet, Fibre Channel, DRFI/DOCSIS, and PON/EPON/GPON

Wireless infrastructure

Test and measurement (including handheld devices)

GENERAL DESCRIPTION

The AD9553 is a phase-locked loop (PLL) based clock translator designed to address the needs of passive optical networks (PON) and base stations. The device employs an integer-N PLL to accommodate the applicable frequency translation requirements. The user supplies up to two single-ended input reference signals or one differential input reference signal via the REFA and REFB inputs. The device supports holdover applications by allowing the user to connect a 25 MHz crystal resonator to the XTAL input.
The AD9553 is pin programmable, providing a matrix of standard input/output frequency translations from a list of 15 possible input frequencies to a list of 52 possible output frequency pairs (OUT1 and OUT2). The device also has a 3-wire SPI interface, enabling the user to program custom input-to-output frequency translations.

The AD9553 output drivers are compatible with LVPECL, LVDS, or single-ended CMOS logic levels, although the AD9553 is implemented in a strictly CMOS process.
The AD9553 operates over the extended industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Rev. A
Information furnished by Analog Devices is believed to be accurate and reliable. However, no

AD9553

TABLE OF CONTENTS

Features 1
Applications 1
General Description 1
Basic Block Diagram 1
Revision History 2
Specifications 3
Power Consumption 3
Logic Input Pins 3
Logic Output Pins 3
RESET Pin 4
Reference Clock Input Characteristics 4
VCO Characteristics 5
Crystal Input Characteristics 5
Output Characteristics6
Jitter Characteristics 7
Serial Control Port 8
Serial Control Port Timing 8
Absolute Maximum Ratings 9
ESD Caution 9
Pin Configuration and Function Descriptions. 10
Typical Performance Characteristics 11
Input/Output Termination Recommendations 15
REVISION HISTORY
10/10—Rev. 0 to Rev. A
Changes to Features Section, Applications Section, and General Description Section 1
Added Table Summary to Specifications Section 3
Added Supply Voltage Parameter, Table 1 3
Changes to Table 5 4
Changes to Table 6 and Crystal Load Capacitance Parameter,
Table 7 5
Changes to Table 8 6
Changes to Table 9 7
Changes to Pin 1 and Pin 15, Table 13 10
Added Figure 4, Renumbered Sequentially 11
Added Figure 10, Figure 12, Figure 13, and Figure 14 12
Added Input/Output Termination Recommendations Section, Figure 25, Figure 26, and Figure 27 15
Moved Theory of Operation and Figure 28 16
Changed General Description Section to Overview Section andMoved16
Changes to Overview Section 16
Changes to Preset Frequencies Section and Table 14 17
Changes to Table 15 18
Theory of Operation 16
Overview 16
Preset Frequencies 16
Device Control Modes 19
Description of Functional Blocks 20
Jitter Tolerance 26
Output/Input Frequency Relationship 26
Calculating Divider Values 27
Low Dropout (LDO) Regulators 28
Automatic Power-On Reset 28
Applications Information 29
Thermal Performance 29
Serial Control Port 30
Serial Control Port Pin Descriptions 30
Operation of the Serial Control Port 30
Instruction Word (16 Bits) 31
MSB/LSB First Transfers 31
Register Map 33
Register Map Descriptions 35
Outline Dimensions 42
Ordering Guide 42
Changes to Table 16 19
Changes to PLL (PFD, Charge Pump, VCO, Feedback Divider Section 22
Changes to Loop Filter Section, Figure 31, Table 17, PLL Locked Indicator Section, and Output Dividers Section 23
Changes to Output Driver Mode Control Section 24
Changes to Output Driver Polarity (CMOS) Section 25
Changes to Output/Input Frequency Relationship Section 26
Changes to Calculating Divider Values Section 27
Changes to Automatic Power-On Reset Section 28
Changes to Thermal Performance Section 29
Changes to Address 0×18, Address 0×32, and Address 0×34, Table 27. 33
Changes to Address 0x18, Table 31 37
Change to Address 0x20, Table 34 38
Changes to Address 0x24, Table 35 and Address 0x28, Table 36 39
Changes to Address 0x32, Table 37 40
Changes to Address 0x34, Table 39 41

SPECIFICATIONS

Minimum (min) and maximum (max) values apply for the full range of supply voltage and operating temperature variations. Typical (typ) values apply for $\mathrm{VDD}=3.3 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

POWER CONSUMPTION

Table 1.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
SUPPLY VOLTAGE	3.135	3.30	3.465	V	Pin 18, Pin 21, and Pin 28
TOTAL CURRENT		162	185	mA	Tested with both output channels active at maximum output frequency; LVPECL and LVDS outputs use a 100Ω termination between both pins of the output driver
VDD CURRENT BY PIN					Tested with both output channels active at maximum output frequency; LVPECL and LVDS outputs use a 100Ω termination between both pins of the output driver
Pin 18		93	106	mA	
Pin 21					
LVDS Configured Output		35	41	mA	
LVPECL Configured Output		36	42	mA	
CMOS Configured Output		29	34	mA	
Pin 28					
LVDS Configured Output		35	41	mA	
LVPECL Configured Output		36	42	mA	
CMOS Configured Output		29	34	mA	

LOGIC INPUT PINS

Table 2.

Parameter	Min \quad Typ	Max	Unit	Test Conditions/Comments
INPUT CHARACTERISTICS ${ }^{1}$				
Logic 1 Voltage, V_{IH}	1.02		V	For the CMOS inputs, a static Logic 1 results from either a pull-up resistor or no connection
Logic 0 Voltage, V_{IL}		0.64	V	
Logic 1 Current, I_{H}		3	$\mu \mathrm{~A}$	
Logic 0 Current, I_{IL}		17	$\mu \mathrm{~A}$	

${ }^{1}$ The A 3 to A 0 and Y 5 to Y 0 pins have $100 \mathrm{k} \Omega$ internal pull-up resistors. The OM 2 to OM 0 pins have $40 \mathrm{k} \Omega$ pull-up resistors when the device is not in SPI mode.

LOGIC OUTPUT PINS

Table 3.

Parameter	Min \quad Typ	Max	Unit	Test Conditions/Comments
OUTPUT CHARACTERISTICS				
Output Voltage High, $\mathrm{V}_{\text {OH }}$	2.7		V	Tested at 1 mA load current
Output Voltage Low, V_{OL}		0.19	V	Tested at 1 mA load current

AD9553

RESET PIN

Table 4.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
INPUT CHARACTERISTICS ${ }^{1}$					
\quad Input Voltage High, V_{IH}	1.96			V	
\quad Input Voltage Low, V_{IL}			0.85	V	
\quad Input Current High, $\mathrm{I}_{\mathrm{INH}}$		0.3	12.5	$\mu \mathrm{~A}$	
\quad Input Current Low, $\mathrm{I}_{\mathrm{INL}}$		31	43	$\mu \mathrm{~A}$	
MINIMUM PULSE WIDTH LOW	150		$\mu \mathrm{~s}$	Tested with an active source driving the $\overline{\text { RESET }}$ pin	

REFERENCE CLOCK INPUT CHARACTERISTICS

Table 5.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
DIFFERENTIAL INPUT					
Input Frequency Range	0.008		250	MHz	
			710	MHz	Assumes minimum LVDS input level and requires bypassing of the divide-by- 5 divider and $\times 2$ multiplier
Common-Mode Internally Generated Input Voltage	613	692	769	mV	Use ac coupling to preserve the internal dc bias of the differential input
Differential Input Voltage Sensitivity	250			mV p-p	Requires ac coupling; can accommodate single-ended input by ac grounding unused input; the instantaneous voltage on either pin must not exceed the 3.3 V dc supply rails
Differential Input Resistance		5		$k \Omega$	
Differential Input Capacitance		3		pF	
Duty Cycle					Pulse width high and pulse width low specifications establish the bounds for duty cycle
Pulse Width Low	1.6			ns	Up to 250 MHz
Pulse Width High	1.6			ns	Up to 250 MHz
Pulse Width Low	0.64			ns	Beyond 250 MHz , up to 710 MHz
Pulse Width High	0.64			ns	Beyond 250 MHz , up to 710 MHz
CMOS SINGLE-ENDED INPUT					
Input Frequency Range	0.008		200	MHz	
Input High Voltage	1.62			V	
Input Low Voltage			0.52	V	
Input Threshold Voltage		1.0		V	When ac coupling to the input receiver, the user must dc bias the input to 1 V ; the single-ended CMOS input is 3.3 V compatible
Input High Current		0.04		$\mu \mathrm{A}$	
Input Low Current		0.03		$\mu \mathrm{A}$	
Input Capacitance		3		pF	
Duty Cycle					Pulse width high and pulse width low establish the bounds for duty cycle
Pulse Width Low	2			ns	
Pulse Width High	2			ns	
$\times 2$ FREQUENCY MULTIPLIER			125	MHz	To avoid excessive reference spurs, the $\times 2$ multiplier requires 48% to 52% duty cycle; reference clock input frequencies greater than 125 MHz require the use of the divide-by-5 divider

VCO CHARACTERISTICS

Table 6.

\left.| Parameter | Min | Typ Max | Unit | Test Conditions/Comments |
| :--- | :--- | :--- | :--- | :--- |
| FREQUENCY RANGE | 3350 | 4050 | | MHz |$\right]$

CRYSTAL INPUT CHARACTERISTICS

Table 7.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
$\begin{array}{l}\text { CRYSTAL FREQUENCY } \\ \text { Range }\end{array}$	10	25	52	MHz	$\begin{array}{l}\text { When using the pin selected frequency settings, the device } \\ \text { requires a 25 MHz crystal to support holdover functionality }\end{array}$
$\begin{array}{llll}\text { Tolerance }\end{array}$		20	ppm		

AD9553

OUTPUT CHARACTERISTICS

Table 8.

[^0]
JITTER CHARACTERISTICS

Table 9.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
JITTER GENERATION					
12 kHz to 20 MHz					
LVPECL Output		1.28		ps rms	Input $=19.44 \mathrm{MHz}$, output $=245.76 \mathrm{MHz}$
		0.89		ps rms	Input $=25 \mathrm{MHz}$, output $=125 \mathrm{MHz}$, $\operatorname{Pin} \mathrm{A} 3$ to $\operatorname{Pin} \mathrm{A} 0=1110$, Pin Y5 to Pin Y0 = 111111 (see Figure 4)
		1.31		ps rms	Input $=122.88 \mathrm{MHz}$, output $=155.52 \mathrm{MHz}$
LVDS Output		1.29		ps rms	Input $=19.44 \mathrm{MHz}$, output $=245.76 \mathrm{MHz}$
		1.32		ps rms	Input $=122.88 \mathrm{MHz}$, output $=155.52 \mathrm{MHz}$
CMOS Output		1.26		ps rms	Input $=19.44 \mathrm{MHz}$, output $=245.76 \mathrm{MHz}$, see Figure 17 regarding CMOS toggle rates above 250 MHz
		1.24		ps rms	Input $=122.88 \mathrm{MHz}$, output $=155.52 \mathrm{MHz}$
50 kHz to 80 MHz					
LVPECL Output		0.75		ps rms	Input $=19.44 \mathrm{MHz}$, output $=245.76 \mathrm{MHz}$
		0.58		ps rms	Input $=25 \mathrm{MHz}$, output $=125 \mathrm{MHz}$, Pin A3 to Pin A0 $=1110$, Pin Y5 to Pin Y0 = 111111 (see Figure 4)
		0.44		ps rms	Input $=122.88 \mathrm{MHz}$, output $=155.52 \mathrm{MHz}$
LVDS Output		0.76		ps rms	Input $=19.44 \mathrm{MHz}$, output $=245.76 \mathrm{MHz}$
		0.45		ps rms	Input $=122.88 \mathrm{MHz}$, output $=155.52 \mathrm{MHz}$
CMOS Output		0.44		ps rms	Input $=19.44 \mathrm{MHz}$, output $=245.76 \mathrm{MHz}$, see Figure 17 regarding CMOS toggle rates above 250 MHz
		0.39		ps rms	Input $=122.88 \mathrm{MHz}$, output $=155.52 \mathrm{MHz}$
JITTER TRANSFER BANDWIDTH					See the Typical Performance Characteristics section
Low Bandwidth Setting		170		Hz	
Medium Bandwidth Setting		20		kHz	
High Bandwidth Setting		75		kHz	
JITTER TRANSFER PEAKING					See the Typical Performance Characteristics section
Low BW Setting		1.3		dB	
Medium BW Setting		0		dB	
High BW Setting		0.08		dB	

AD9553

SERIAL CONTROL PORT

Table 10.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
$\overline{\overline{C S}}$					
Input Logic 1 Voltage	1.6			V	
Input Logic 0 Voltage			0.5	V	
Input Logic 1 Current			0.03	$\mu \mathrm{A}$	
Input Logic 0 Current		2		$\mu \mathrm{A}$	
Input Capacitance		2		pF	
SCLK					
Input Logic 1 Voltage	1.6			V	
Input Logic 0 Voltage			0.5	V	
Input Logic 1 Current		2		$\mu \mathrm{A}$	
Input Logic 0 Current			0.03	$\mu \mathrm{A}$	
Input Capacitance		2		pF	
SDIO					
Input					
Input Logic 1 Voltage	1.6			V	
Input Logic 0 Voltage			0.5	V	
Input Logic 1 Current		1		$\mu \mathrm{A}$	
Input Logic 0 Current		1		$\mu \mathrm{A}$	
Input Capacitance		2		pF	
Output					
Output Logic 1 Voltage	2.8			V	1 mA load current
Output Logic 0 Voltage			0.3	V	1 mA load current

SERIAL CONTROL PORT TIMING

Table 11.

Parameter	Limit	Unit
SCLK		
Clock Rate, 1/t ${ }_{\text {cLK }}$	50	MHz max
Pulse Width High, $\mathrm{t}_{\text {HIGH }}$	3	ns min
Pulse Width Low, $\mathrm{t}_{\text {Low }}$	3	ns min
SDIO to SCLK Setup, $\mathrm{t}_{\text {DS }}$	4	$n \mathrm{nsmin}$
SCLK to SDIO Hold, t_{DH}	0	ns min
SCLK to Valid SDIO, t_{Dv}	13	ns max
$\overline{\mathrm{CS}}$ to SCLK Setup (t_{s}) and Hold (t_{H})	0	ns min
$\overline{\mathrm{CS}}$ Minimum Pulse Width High	6.4	$n s$ min

ABSOLUTE MAXIMUM RATINGS

Table 12.

Parameter	Rating
Supply Voltage (VDD)	3.6 V
Maximum Digital Input Voltage	-0.5 V to VDD +0.5 V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 13. Pin Function Descriptions

Pin No.	Mnemonic	Type ${ }^{1}$	Description
$\begin{aligned} & 29,30,31, \\ & 32,1,2 \end{aligned}$	$\begin{aligned} & \mathrm{Y} 0, \mathrm{Y} 1, \mathrm{Y} 2, \mathrm{Y} 3, \\ & \mathrm{Y} 4, \mathrm{Y} 5 \end{aligned}$	I	Control Pins. These pins select one of 52 preset output frequency combinations for OUT1 and OUT2. Note that when all six control pins are Logic 0, SPI programming is active.
3,4,5,6	$\begin{aligned} & \mathrm{A} 0, \mathrm{~A} 1, \mathrm{~A} 2, \\ & \mathrm{~A} 3 \end{aligned}$	I	Control Pins. These pins select one of 15 preset input reference frequencies. Note that when all four control pins are Logic 0, SPI programming is active.
7	REFA	1	Reference Clock Input. Connect this pin to a single-ended active clock input signal. Alternatively, this pin is the noninverted part of a differential clock input signal.
8	REFB/REFA	1	Reference Clock Input. Connect this pin to a single-ended active clock input signal. Alternatively, this pin is the inverted part of a differential clock input signal.
9,10	XTAL	I	Crystal Resonator Input. Connect a crystal resonator across these pins. Alternatively, connect a single-ended clock source (CMOS compatible) to either input pin (let the unused pin float). When using the preset input/output frequencies via the Y 5 to Y 0 and A 3 to A 0 pins, the crystal must have a resonant frequency of 25 MHz with a specified load capacitance of 10 pF .
11	SEL REFB	I	Control Pin. This pin allows manual selection of REFA (Logic 0) or REFB (Logic 1) as the active reference assuming that the desired reference signal is present. Note that this pin is nonfunctional when Register 0x29[5] = 1 .
12	OM2/CS	I	Digital Input. When the device is not in SPI mode, this pin is an output mode control pin (OM2) with an internal $40 \mathrm{k} \Omega$ pull-up resistor. The OM2 pin, in conjunction with the OM0 and OM1 pins, allows the user to select one of eight output configurations (see Table 21). In SPI mode, this pin is an active low chip select ($\overline{(C S}$) with no internal pull-up resistor.
13	OM1/SCLK	1	Digital Input. When the device is not in SPI mode, this pin is an output mode control pin (OM1) with an internal $40 \mathrm{k} \Omega$ pull-up resistor. The OM1 pin, in conjunction with the OM0 and OM2 pins, allows the user to select one of eight output configurations (see Table 21). In SPI mode, this pin is the serial data clock (SCLK) with no internal pull-up resistor.
14	OMO/SDIO	I/O	Digital Input/Output. When the device is not in SPI mode, this pin is an input only and functions as an output mode control pin (OMO) with an internal $40 \mathrm{k} \Omega$ pull-up resistor. The OMO pin, in conjunction with the OM1 and OM2 pins, allows the user to select one of eight output configurations (see Table 21). In SPI mode, this pin is the serial data input/output (SDIO) with no internal pull-up resistor.
15	$\overline{\text { RESET }}$	I	Reset Internal Logic. This is a digital input pin. This pin is active low with a $100 \mathrm{k} \Omega$ internal pull-up resistor and resets the internal logic to default states (see the Automatic Power-On Reset section).
16	FILTER	I/O	Loop Filter Node for the PLL. Connect external loop filter components (see Figure 30) from this pin to Pin 17 (LDO).
17, 19	LDO	P/O	LDO Decoupling Pins. Connect a $0.47 \mu \mathrm{~F}$ decoupling capacitor from each of these pins to ground.
18, 21, 28	VDD	P	Power Supply Connection: 3.3 V Analog Supply.
20	LOCKED	0	Active High Locked Status Indicator for the PLL.
26, 22	$\overline{\text { OUT1, OUT2 }}$	0	Complementary Square Wave Clocking Outputs.
27, 23	OUT1, OUT2	0	Square Wave Clocking Outputs.
24, 25	GND	P	Ground.
Not Applicable	EP		Exposed Pad. The exposed die pad must be connected to GND.

[^1]
TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. Phase Noise, Pin Programmed
($f_{\text {XTAL }}=25 \mathrm{MHz}, f_{\text {OUT } 1}=156.25 \mathrm{MHz}$)

Figure 4. Phase Noise, Pin Programmed
$\left(f_{\text {REF }}=25 \mathrm{MHz}, f_{\text {OUT1 }}=125 \mathrm{MHz}, \operatorname{Pin} A x=1110\right)$

Figure 5. Phase Noise, Pin Programmed
$\left(f_{\text {REF }}=61.44 \mathrm{MHz}, f_{\text {OUT } 1}=122.88 \mathrm{MHz}\right)$

Figure 6. Phase Noise, Pin Programmed
$\left(f_{\text {REF }}=77.76 \mathrm{MHz}, f_{\text {OUT1 }}=622.08 \mathrm{MHz}\right.$)

Figure 7. Phase Noise, Pin Programmed
$\left(f_{\text {REF }}=19.44 \mathrm{MHz}, f_{\text {OUT1 }}=155.52 \mathrm{MHz}\right.$)

Figure 8. Phase Noise, Pin Programmed
$\left(f_{\text {REF }}=8 \mathrm{kHz}, f_{\text {OUT } 1}=155.52 \mathrm{MHz}\right)$

AD9553

Figure 9. Jitter Transfer, Loop Bandwidth $=170 \mathrm{~Hz}$

Figure 10. Jitter Transfer, Loop Bandwidth $=20 \mathrm{kHz}$

Figure 11. Jitter Transfer, Loop Bandwidth $=75$ kHz

Figure 12. Output Transient Due to Input Reference Switchover, Pin $A x=0110$, Pin $Y x=000001$, Loop Bandwidth $=170 \mathrm{~Hz}$

Figure 13. Output Transient Due to Input Reference Switchover, Pin $A x=1101$, Pin $Y x=101101$, Loop Bandwidth $=75 \mathrm{kHz}$

Figure 14. Output Transient Due to Input Reference Switchover, Pin $A x=1110$, Pin $Y x=110011$, Loop Bandwidth $=75 \mathrm{kHz}$

Figure 15. Supply Current vs. Output Frequency, LVPECL and LVDS (10 pF Load)

Figure 16. Supply Current vs. Output Frequency,
CMOS (10 pF Load)

Figure 17. Peak-to-Peak Output Voltage vs. Frequency, CMOS

Figure 18. Peak-to-Peak Output Voltage vs. Frequency, LVPECL and LVDS (100 Ω Load)

Figure 19. Duty Cycle vs. Output Frequency, CMOS

Figure 20. Duty Cycle vs. Output Frequency, LVPECL and LVDS (100 Ω Load)

AD9553

Figure 21. Typical Output Waveform, LVPECL (800 MHz)

Figure 22. Typical Output Waveform, LVDS ($800 \mathrm{MHz}, 3.5 \mathrm{~mA}$ Drive Current)

Figure 23. Typical Output Waveform, CMOS ($250 \mathrm{MHz}, 10$ pF Load)

INPUT/OUTPUT TERMINATION RECOMMENDATIONS

Figure 24. AC-Coupled LVDS or LVPECL Output Driver

Figure 26. Reference Input

Figure 25. DC-Coupled LVDS or LVPECL Output Driver

AD9553

THEORY OF OPERATION

Figure 27. Detailed Block Diagram

OVERVIEW

The AD9553 can receive up to two input reference clocks, REFA and REFB. Both input clock paths include an optional divide-by-5 $(\div 5)$ prescaler, an optional $\times 2$ frequency multiplier, and a 14 -bit programmable divider. Alternatively, the user can program the device to operate with one differential input clock (instead of two single-ended input clocks) via the serial I/O port. In the differential operating mode, the REFB path is inactive.
The AD9553 also has a dedicated XTAL input for direct connection of an optional 25 MHz crystal resonator. This allows for a backup clock signal useful for holdover operation in case both input references fail. The XTAL clock path includes a fixed $\times 2$ frequency multiplier and a 14 -bit programmable divider.
The AD9553 includes a switchover control block that automatically handles switching from REFA to REFB (or vice versa) in the event of a reference failure. If both REFA and REFB fail, however, then the switchover control block automatically enters holdover mode by selecting the XTAL clock signal (assuming the presence of a crystal resonator at the XTAL input).
Generally, the clock signals that appear at the input to the clock multiplexer (see Figure 27) all operate at the same frequency. Thus, the frequency at the input to the PLL (FPFD in Figure 27) is the same regardless of the signal selected by the clock multiplexer. The PLL converts FPFD to a frequency within the operating range of the $\mathrm{VCO}(3.35 \mathrm{GHz}$ to 4.05 GHz$)$ based on the value of the feedback divider (N). The VCO prescaler $\left(\mathrm{P}_{0}\right)$ reduces the VCO output frequency by an integer factor of 5 to 11 , resulting in an intermediate frequency in the range of 305 MHz to 810 MHz .

The 10-bit P_{1} and P_{2} dividers can further reduce the P_{0} output frequency to yield the final output clock frequencies at OUT1 and OUT2, respectively.

Thus, the frequency translation ratio from the reference input to the output depends on the selection of the $\div 5$ prescalers; the $\times 2$ frequency multipliers; the values of the three R dividers; the N divider; and the $\mathrm{P}_{0}, \mathrm{P}_{1}$, and P_{2} dividers. These parameters are set automatically via the preconfigured divider settings per the Ax and Yx pins (see the Preset Frequencies section). Alternatively, the user can custom program these parameters via the serial I/O port (see the Serial Control Port and Register Map sections), which allows the device to accommodate custom frequency translation ratios.

PRESET FREQUENCIES

The frequency selection pins (A3 to A0 and Y5 to Y0) allow the user to hardwire the device for preset input and output frequencies based on the pin logic states (see Figure 27). The pins decode ground or open connections as Logic 0 or Logic 1, respectively.
To have access to the device control registers via the SPI port, the user must select Pin Y5 to Pin Y0 $=000000$ and/or Pin A3 to Pin A0 $=0000$. Doing so causes Pin 12 through Pin 14 to function as SPI port control pins instead of output mode control pins (see the Output Driver Mode Control section). Note that after selecting SPI mode, the user must write a Logic 1 to Bit 0 of Register 0x32 and Register 0×34 to enable the registers as the source of the OUT1 and OUT2 mode control bits (see Figure 31 and the Output Driver Mode Control section).

The Ax pins allow the user to select one of fifteen input reference frequencies as shown in Table 14. The device sets the appropriate divide-by- $5\left(\div 5_{A}, \div 5_{B}\right)$, multiply-by- $2\left(\times 2_{A}, \times 2_{B}\right)$, and input divider ($R_{A}, R_{B}, R_{X O}$) values based on the logic levels applied to the Ax pins.

The same settings apply to both the REFA and REFB input paths. Furthermore, the $\div 5, \times 2$, and R values cause the PLL input frequency to be either 16 kHz or $40 / 3 \mathrm{kHz}$. There are two exceptions. The first is for Pin A3 to Pin A0 $=1101$, which yields a PLL input frequency of $155.52 / 59 \mathrm{MHz}$. The second is for Pin A3 to Pin A0 = 1110, which yields a PLL input frequency of either 1.5625 MHz or 4.86 MHz depending on the Yx pins.

Note that the XTAL input is not available for holdover functionality in the A 3 to $\mathrm{A} 0=1101$ and 1110 pin configurations, thus the undefined R_{xo} value.
The Yx pins allow the user to select one of 52 output frequency combinations ($\mathrm{f}_{\text {OUT1 }}$ and $\mathrm{f}_{\text {OUT2 }}$) per Table 15. The device sets the appropriate P_{0}, P_{1}, and P_{2} settings based on the logic levels applied to the Yx pins. Note, however, that selections 101101 through 110010 require Pin A3 to Pin A0 $=1101$, and selection 110011 requires Pin A3 to Pin A0 $=1110$.

The value (N) of the PLL feedback divider and the control setting for the charge pump current (CP) depend on a combination of both the $A x$ and $Y x$ pin settings as shown in Table 16.

Table 14. Pin Configured Input Frequency, Ax Pins ${ }^{1}$

Pin A3 to Pin A0	$\mathrm{f}_{\text {REFA }}, \mathrm{f}_{\text {REFB }}(\mathrm{MHz})$	Divide-by-5 ${ }_{A}$ Divide-by-5 ${ }_{B}$	$\times \mathbf{2}_{\text {A }} \times{ }^{\text {a }}$ B	$\mathrm{R}_{\mathrm{A}}, \mathrm{R}_{\mathrm{B}}$ (Decimal)	R_{xo} (Decimal)
0000	SPI mode				
0001	0.008	Bypassed	On	1	3125
0010	1.536	Bypassed	Bypassed	96	3125
0011	2.048	Bypassed	Bypassed	128	3125
0100	16.384	Bypassed	Bypassed	1024	3125
0101	19.44	Bypassed	Bypassed	1215	3125
0110^{2}	25	Bypassed	On	3125	3125
0111	38.88	Bypassed	Bypassed	2430	3125
1000	61.44	Bypassed	Bypassed	3840	3125
1001	77.76	Bypassed	Bypassed	4860	3125
1010	122.88	Bypassed	Bypassed	7680	3125
1011	125	On	On	3125	3125
1100	1.544	Bypassed	On	193	3125
1101^{3}	155.52	Bypassed	Bypassed	59	Undefined
1110^{4}	25 or 77.76	Bypassed	Bypassed	16	Undefined
1111	200/3	Bypassed	Bypassed	5000	3750

[^2]
AD9553

Table 15. Pin Configured Output Frequency, Yx Pins

Pin Y5 to Pin Y0	fvco (MHz)	fouti (MHz)	foutz (MHz)	P_{0}	P_{1}	P_{2}
000000	SPI mode					
000001	3686.4	245.76	245.76	5	3	3
000010	3686.4	245.76	122.88	5	3	6
000011	3686.4	245.76	61.44	5	3	12
000100	3686.4	245.76	16.384	5	3	45
000101	3686.4	245.76	2.048	5	3	360
000110	3686.4	245.76	1.536	5	3	480
000111	3686.4	122.88	122.88	5	6	6
001000	3686.4	122.88	61.44	5	6	12
001001	3686.4	122.88	16.384	5	6	45
001010	3686.4	122.88	2.048	5	6	360
001011	3686.4	122.88	1.536	5	6	480
001100	3686.4	61.44	61.44	5	12	12
001101	3686.4	61.44	16.384	5	12	45
001110	3686.4	61.44	2.048	5	12	360
001111	3686.4	61.44	1.536	5	12	480
010000	3686.4	16.384	16.384	5	45	45
010001	3686.4	16.384	2.048	5	45	360
010010	3686.4	16.384	1.536	5	45	480
010011	3686.4	2.048	2.048	5	360	360
010100	3686.4	2.048	1.536	5	360	480
010101	3686.4	1.536	1.536	5	480	480
010110	3750	156.25	156.25	6	4	4
010111	3750	156.25	125	6	4	5
011000	3750	156.25	25	6	4	25
011001	3750	125	125	6	5	5
011010	3750	125	25	6	5	25
011011	3750	25	25	6	25	25
011100	3732.48	155.52	155.52	6	4	4
011101	3732.48	155.52	77.76	6	4	8
011110	3732.48	155.52	19.44	6	4	32
011111	3732.48	77.76	77.76	6	8	8
100000	3732.48	77.76	19.44	6	8	32
100001	3732.48	19.44	19.44	6	32	32
100010	3686.4	153.6	153.6	6	4	4
100011	3686.4	153.6	122.88	6	4	5
100100	3686.4	153.6	61.44	6	4	10
100101	3686.4	153.6	2.048	6	4	300
100110	3686.4	153.6	1.536	6	4	400
100111	3600	100	100	6	6	6
101000	3600	100	50	6	6	12
101001	3600	100	25	6	6	24
101010	3600	50	50	6	12	12
101011	3600	50	25	6	12	24
101100	3705.6	1.544	1.544	6	400	400
101101	~ 3985.53	fo^{1}	fo^{1}	6	,	1
101110	~ 3985.53	fo^{1}	$\mathrm{f}_{\mathrm{o}} / 2^{1}$	6	1	2
101111	~ 3985.53	fo^{1}	fo/4 ${ }^{1}$	6	1	4
110000	~ 3985.53	$\mathrm{fo}_{0} / 2^{1}$	$\mathrm{f}_{\mathrm{o}} / 2^{1}$	6	2	2
110001	~ 3985.53	$\mathrm{fo}_{0} / 2^{1}$	$\mathrm{f}_{\mathrm{o}} / 4^{1}$	6	2	4
110010	~ 3985.53	fo/4 ${ }^{1}$	fo/4 ${ }^{1}$	6	4	4
110011	3732.48	622.08	622.08	6	1	1
110100 to 111110	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined
111111	3750	125	25	5	6	30

[^3]Table 16. Pin Configuration vs. PLL Feedback Divider (N) and Charge Pump Value (CP)

A3 to A0	Y5 to Yo	\mathbf{N}^{1}	CP 2
0001 to 1100	000001 to 010101	230,400	121
	010110 to 011011	234,375	121
	011100 to 100001	233,280	121
	100010 to 100110	230,400	121
	100111 to 101011	225,000	121
	101100	231,600	121
	10101 to 11111	Undefined	Undefined
1101	000001 to 101100	Undefined	Undefined
	101101 to 110010	Undefined	255
	110010 to 11111	Undefined	Undefined
1110	00001 to 110010	768	Undefined
	110011	2400	121
	110100 to 111110	276,480	Undefined
	11111	281,250	121
1111	000001 to 010101	279,936	145
	010110 to 011011	276,480	145
	011100 to 100001	270,000	145
	100010 to 100110	277,920	145

${ }^{1}$ PLL feedback divider value (decimal).
${ }^{2}$ Charge pump register value (decimal). Multiply by $3.5 \mu \mathrm{~A}$ to yield I_{CP}.

DEVICE CONTROL MODES

The AD9553 provides two modes of control: pin control and register control. Pin control, via the frequency selection pins (Ax and Yx) as described in the Preset Frequencies section, is the simplest. Typically, pin control is for applications requiring only a single set of operating parameters (assuming that one of the options available via the frequency selection pins provides the parameters that satisfy the application requirements). Register control is typically for applications that require the flexibility to program different operating parameters from time to time, or for applications that require parameters not available with any of the pin control options. The block diagram (see Figure 28) shows how the SPI and pin control modes interact.

The SPI/OM[2:0] label in Figure 28 refers to Pin 12, Pin 13, and Pin 14 of the AD9553. Furthermore, the SPI mode signal is Logic 1 when Pin A3 to Pin A0 $=0000$ and/or Pin Y5 to Pin $\mathrm{Y} 0=000000$; otherwise, it is Logic 0 . The SPI/OM[2:0] pins serve double duty (as either SPI pins or output mode control pins). A mux (controlled by the SPI mode signal) selects whether the three signals associated with the SPI/OM[2:0] pins connect to the output mode control decoder or to the SPI controller. Note that the SPI mode signal originates from the frequency selection pins decoder.

To enable communication with the SPI controller (SPI mode), the user must apply the appropriate logic pattern to the frequency selection pins (A3 to A0 $=0000$ and/or Y5 to Y0 $=000000$).

Note that as long as the frequency selection pins are set to invoke SPI mode, the user cannot establish output mode control via the output mode control decoder. Conversely, when the frequency selection pins are set to anything other than SPI mode, the user cannot communicate with the device via the SPI controller.

In Figure 28, note that some of the functions internal to the AD9553 are controlled by function bits that originate either from the two pin decoders or from within the register map. Specifically, each function receives its function bits from a function mux; and each function mux, in turn, receives its control signal from a single enable SPI control bit in the register map.
Be aware that the default values within the register map are such that all enable SPI control bits are Logic 0 . Thus, the default state of the device is such that each function mux selects the pin decoders (not the register map) as the source for all control functions.
In order to switch a function mux so that it selects function bits from the register map, the user must first set the frequency selection pins to SPI mode. Then, write a Logic 1 to the appropriate enable SPI control bit in the register map. Be aware that the function mux routes the function bits in the register map to the selected function the instant that the enable SPI control bit becomes Logic 1 . Thus, it is a good idea to program the function bits to the desired state prior to writing Logic 1 to the corresponding enable SPI control bit.

AD9553

Figure 28. Control Mode Diagram

Although the SPI and pin control modes are functionally independent, it is possible to mix the control modes. For example, suppose that pin control satisfies all of the requirements for an application except for the value of the P_{2} divider (which is associated with OUT2). The user could do the following:

- Activate SPI mode via the frequency selection pins.
- Program the desired P_{0}, P_{1}, and P_{2} values in the register map (Register 0x15 to Register 0x18).
- Set the enable SPI control bit for the output dividers (Register 0x14[2] = 1).
- Calibrate the VCO by enabling SPI control of VCO calibration (Register 0x0E[2] = 1), then issue a calibrate command (Register $0 x 0 E[7]=1$). Be sure to program the N divider, R dividers, $\div 5$ dividers, and $\times 2$ multipliers to the values defined by the Ax and Yx pin settings prior to calibrating the VCO.
- Restore the original settings to the frequency selection pins to invoke the desired frequency selection.

In this way, the function muxes that control P_{0}, P_{1}, and P_{2} select the appropriate register bits as the source for controlling the dividers, while all the other function muxes select the pin decoders as the source for controlling the other functions. Note that the dividers remain under register control until the user activates

SPI mode and writes Register $0 \times 14[2]=0$, thereby causing the function mux to use the frequency selection pins decoder as the source for controlling the dividers, instead of the register map.

DESCRIPTION OF FUNCTIONAL BLOCKS

Reference Inputs

The default configuration of the AD9553 provides up to two single-ended input clock receivers, REFA and REFB, which are high impedance CMOS inputs. In applications that require redundant reference clocks with switchover capability, REFA is the primary reference and REFB the secondary reference. Alternatively, the user can configure the input (via the serial I/O port) as a single differential receiver. In this case, the REFB input functions as $\overline{\mathrm{REFA}}$ (the complementary input of REFA). Note that in this configuration the device operates with only one reference input clock, eliminating the need for switchover functionality.

XTAL Input

The AD9553 accepts an optional 25 MHz crystal resonator connected across the XTAL pins. Alternatively, it accepts a single-ended clock source (CMOS compatible) connected to either one of the XTAL input pins (in this case, the unused input remains floating). Unless otherwise programmed, the device expects the crystal to have a specified load capacitance of 10 pF (default). The AD9553 provides the necessary load capacitance internally. The internal load capacitance consists
of a fixed component of 8 pF and a variable (programmable) component of 0 pF to 15.75 pF .
After applying power to the AD9553 (or after a device reset), the programmable component defaults to 2 pF . This establishes the default load capacitance of $10 \mathrm{pF}(8 \mathrm{pF}$ fixed plus 2 pF programmable).

To accommodate crystals with a specified load capacitance other than 10 pF (8 pF to 23.75 pF), the user can adjust the programmable capacitance in 0.25 pF increments via Register 0x1B[5:0]. Note that when the user sets Register 0x1B[7] to 0 (enabling SPI control of the XTAL tuning capacitors), the variable capacitance changes from 2 pF (its default power-up value) to 15.75 pF due to the default value of Register $0 \times 1 \mathrm{x}$ [5:0]. This causes the crystal load capacitance to be 23.75 pF until the user overwrites the default contents of Register 0x1B[5:0].

A noncomprehensive, alphabetical list of crystal manufacturers includes the following:

- AVX/Kyocera
- ECS
- Epson Toyocom
- Fox Electronics
- NDK
- Siward

Although these crystals meet the load capacitance and motional resistance requirements of the AD9553 according to their data sheets, Analog Devices, Inc., does not guarantee their operation with the AD9553, nor does Analog Devices endorse one supplier of crystals over another.
Input Frequency Prescalers (Divide-by-5 ${ }_{A}$, Divide-by-5 ${ }_{B}$)
The divide-by- 5 prescalers provide the option to reduce the input reference frequency by a factor of five. Note that the prescalers physically precede the $\times 2$ frequency multipliers. This allows the prescalers to bring a high frequency reference clock down to a frequency that is within the range of the $\times 2$ frequency multipliers.

Input $\times \mathbf{2}$ Frequency Multipliers ($\times \mathbf{2}_{\boldsymbol{A},} \times \mathbf{2}_{B}$)

The $\times 2$ frequency multipliers provide the option to double the frequency at their input; thereby taking advantage of a higher frequency at the input to the PLL (FPFD). This provides greater separation between the frequency generated by the PLL and the modulation spur associated with the frequency at the PLL input. However, increased reference spur separation comes at the expense of the harmonic spurs introduced by the frequency multiplier. As such, beneficial use of the frequency multiplier is application specific. Note that the maximum input frequency to the $\times 2$ frequency multipliers must not exceed 125 MHz .

Input Clock Detectors

The three clock input sections (REFA, REFB, and XTAL) include a dedicated monitor circuit that detects signal presence at the input. The detectors provide input to the switchover control block to support automatic reference switching and holdover operation.

Switchover/Holdover

The AD9553 supports automatic reference switching and holdover functions. It also supports manual reference switching via an external pin (SEL REFB) or via program control using the serial I/O port. A block diagram of the switchover/holdover capability appears in Figure 29. Note that the mux selects one of the three input signals (REFA, REFB, or XTAL) routing it to the input of the PLL. The selection of an input signal depends on which signals are present along with the contents of Register 0x29[7:6] and the logic level at the SEL REFB pin.
Note that each input signal has a dedicated signal presence detector. Each detector uses the feedback signal from the PLL as a sampling clock (which is always present due to the free-running VCO). This allows the detectors to determine the presence or absence of the input signals reliably. Note that the mux control logic uses the detector signals directly in order to determine the need for a switch to holdover operation.
Holdover occurs whenever the mux control logic determines that both the REFA and REFB signals are not present, in which case the device selects the XTAL signal if it is present. The exception is when Register $0 \times 29[7: 6]=10$ or 11 , which disables the holdover function. If none of the three input signals is present, the device waits until at least one signal becomes present and selects according to the device settings (Register 0x29[7:6] and the logic level at the SEL REFB pin).
When the device is reset (or following a power-up), the internal logic defaults to revertive switchover mode (Register 0x29[7:6] = 00). In revertive switchover mode, the device selects the REFA signal whenever it is present. If REFA is not present, then the device selects the REFB signal, if present, but returns to REFA whenever it becomes available. That is, in revertive switchover mode, the device favors REFA. If both REFA and REFB are not present, the device switches to holdover mode.

When programmed for nonrevertive switchover mode (Register 0x29[7:6] = 01), the device selects the REFA signal if it is present. If REFA is not present, then the device selects the REFB signal (if present). Even if REFA becomes available, the device continues to use REFB until REFB fails. That is, in nonrevertive switchover mode, the switch to REFB is permanent unless REFB fails (or unless both REFA and REFB fail, in which case the device switches to holdover mode).

AD9553

Figure 29. Switchover/Holdover Block Diagram

The user can override the automatic switchover functions (revertive and nonrevertive) and manually select the REFA or REFB signal by programming Register $0 \times 29[7: 6]=10$ or 11 , respectively. Note, however, that the desired signal (REFA or REFB) must be present for the device to select it.
The user can also force the device to switch to REFB by applying a Logic 1 to the external SEL REFB pin. This overrides a REFA selection invoked by either the revertive/nonrevertive logic or when Register 0x29[7:6] = 10. Note, however, that REFB must be present to be selected by the device.

PLL (PFD, Charge Pump, VCO, Feedback Divider)

The PLL (see Figure 27) consists of a phase/frequency detector (PFD), a partially integrated analog loop filter (see Figure 30), an integrated voltage controlled oscillator (VCO), and a 20 -bit programmable feedback divider. The PLL generates a 3.35 GHz to 4.05 GHz clock signal that is phase locked to the active input reference signal, and its frequency is the phase detector frequency (FPFD) multiplied by the feedback divider value (N).
The PFD of the PLL drives a charge pump that increases, decreases, or holds constant the charge stored on the loop filter capacitors (both internal and external). The stored charge results in a voltage that sets the output frequency of the VCO. The feedback loop of the PLL causes the VCO control voltage to vary in such a way as to phase lock the PFD input signals. Note that the PFD supports input frequencies spanning 13.3 kHz to 100 MHz (implying that input frequencies between 8 kHz and 13.3 kHz must use the $\times 2$ frequency multiplier in the input path).

The PLL has a VCO with 128 frequency bands spanning a range of 3350 MHz to 4050 MHz (3700 MHz nominal). However, the actual operating frequency within a particular band depends on the control voltage that appears on the loop filter capacitor. The control voltage causes the VCO output frequency to vary linearly within the selected band. This frequency variability allows the control loop of the PLL to synchronize the VCO output signal with the reference signal applied to the PFD.
Typically, selection of the VCO frequency band (as well as gain adjustment) occurs automatically as part of the automatic VCO calibration process of the device, which initiates at power up (or reset). Alternatively, the user can force VCO calibration by first enabling SPI control of VCO calibration (Register 0x0E[2] = 1) and then writing a 1 to the calibrate VCO bit (Register 0x0E[7]). Note that VCO calibration centers the dc operating point of the VCO control signal. Furthermore, during VCO calibration, the output drivers provide a static dc signal.
To facilitate system debugging, the user can override the VCO band setting by first enabling SPI control of VCO band (Register 0x0E[0] $=1)$ and then writing the desired value to Register $0 \times 10[7: 1]$.

The feedback divider (N -divider) sets the frequency multiplication factor of the PLL in integer steps over a 20 -bit range. Note that the N -divider has a lower limit of 32 .

Loop Filter

The charge pump in the PFD delivers current to the loop filter (see Figure 30). The components primarily responsible for the bandwidth of the loop filter are external and connect between Pin 16 and Pin 17.

The internal portion of the loop filter has two configurations: one is for low loop bandwidth applications ($\sim 170 \mathrm{~Hz}$) and the other is for medium $(\sim 20 \mathrm{kHz}) /$ high $(\sim 75 \mathrm{kHz})$ bandwidth applications. The low loop bandwidth condition applies when the feedback divider value (N) is $214(16,384)$ or greater. Otherwise, the medium/high loop bandwidth configuration is in effect. The feedback divider value depends on the configuration of the Ax and Yx pins per Table 16.

Figure 30. External Loop Filter
The bandwidth of the loop filter primarily depends on three external components ($\mathrm{R}, \mathrm{C} 1$, and C2). There are two sets of recommended values for these components corresponding to the low and medium/high loop bandwidth configurations (see Table 17).

Table 17. External Loop Filter Components

A3 to A0 Pins	R	C1	C2	Loop Bandwidth
0001 to 1100 , and 1111	$6.8 \mathrm{k} \Omega$	47 nF	$1 \mu \mathrm{~F}$	0.17 kHz
1110^{1}	$12 \mathrm{k} \Omega$	51 pF	220 nF	20 kHz
1101 and 1110^{2}	$12 \mathrm{k} \Omega$	51 pF	220 nF	75 kHz

${ }^{1}$ The 20 kHz loop bandwidth case only applies when the A 3 pin to $\mathrm{A} 0 \mathrm{pin}=$ 1110 and the Y 5 pin to Y 0 pin $=111111$.
${ }^{2}$ The 75 kHz loop bandwidth case only applies when the A 3 pin to A 0 pin $=$ 1101 and the Y 5 pin to Y 0 pin $=101101$ through 110010, or when the A3 pin to A 0 pin $=1110$ and the Y 5 pin to $\mathrm{YO} \mathrm{pin}=110011$.
To achieve the best jitter performance in applications requiring a loop bandwidth of less than $1 \mathrm{kHz}, \mathrm{C} 1$ and C 2 must have an insulation resistance of at least $500 \Omega \mathrm{~F}$.

PLL Locked Indicator

The PLL provides a status indicator that appears at Pin 20 (LOCKED). When the PLL acquires phase lock, the LOCKED pin switches to a Logic 1 state. When the PLL loses lock, however, the LOCKED pin returns to a Logic 0 state.

Alternatively, the LOCKED pin serves as a test port allowing the user to monitor one-of-four internal clocks. Register 0x17[3:1] controls the test port as shown in Table 18.

Table 18. LOCKED Pin Output Control

Register 0x17[3:1]	LOCKED Pin Output
$0 X X$	PLL locked indication (default)
100	Crystal oscillator clock signal
101	PFD pump-up clock divided-by-2
110	PFD reference input clock divided-by-2
111	PLL feedback to PFD clock divided-by-2
Output Dividers	

The output divider section consists of three dividers: $\mathrm{P}_{0}, \mathrm{P}_{1}$, and P_{2}. The P_{0} divider (or VCO frequency prescaler) accepts the VCO frequency and reduces it by a factor of 5 to 11 (selectable). This brings the frequency down to a range between 305 MHz and 810 MHz .

The output of the P_{0} divider independently drives the P_{1} divider and the P_{2} divider. The P_{1} divider establishes the frequency at OUT1 and the P_{2} divider establishes the frequency at OUT2. The P_{1} and P_{2} dividers are each programmable over a range of 1 to 1023, which results in a frequency at OUT1 or OUT2 that is an integer submultiple of the frequency at the output of the P_{0} divider.

Output Driver Configuration

The user has complete control over all configurable parameters of the OUT1 and OUT2 drivers via the OUT1 and OUT2 driver control registers (Register 0x32 and Register 0x34, respectively, as shown in Figure 31). To alter the parameters from their default values, the user must use the SPI port to program the driver control registers as desired.
The OUT1 and OUT2 drivers are configurable in terms of the following parameters:

- Logic family (via mode control)
- Pin function (via mode control but only applies to the CMOS family)
- Polarity (only applies to the CMOS family)
- Drive current
- Power-down

Output Driver Mode Control

Three mode control bits establish the logic family and pin function of the output drivers. The three bits originate either from Bits[5:3] of Register 0x32 and Register 0x34 or from the decode logic associated with the OM2 to OM0 pins as shown in Figure 31. Note that Bit 0 of Register 0x32 and Register 0x34 determines the source of the three mode control bits for the associated output driver. Specifically, when Bit 0 of the register is Logic 0 (default), the source of the mode control bits for the associated driver is the OM2 to OM0 pin decoder. When Bit 0 is Logic 1, the source of the mode control bits is from Bits[5:3] of Register 0x32 and Register 0x34.

AD9553

The mode control bits establish the logic family and output pin function of the associated output driver per Table 19. The logic families include LVDS, LVPECL, and CMOS. Because both output drivers support the LVDS and LVPECL logic families, each driver has two pins to handle the differential signals associated with these two logic families. The OUT1 driver uses the OUT1 and $\overline{\text { OUT1 }}$ pins and the OUT2 driver uses the OUT2 and $\overline{\text { OUT2 }}$ pins. However, the CMOS logic family handles only single-ended signals, thereby requiring only one pin. Even though CMOS only requires one pin, both pins of OUT1 and both pins of OUT2 have a dedicated CMOS driver.

Note that the LVPECL mode of the AD9553 is not implemented using an emitter-follower topology, and therefore, a pull-down resistor is not needed (and should be avoided) on the output pins. Rather, it uses a CMOS output driver whose output amplitude and common-mode voltage are compatible with LVPECL specifications. 100Ω termination across the output pair is still recommended.

The user has the option to disable (that is, tristate) either or both of the pins for OUT1 and/or OUT2 via the mode control bits (see Table 19 for the 001, 010, and 011 bit patterns). Alternatively, the user can make both pins active (see Table 19, Bit Pattern 000) to produce two single-ended CMOS output clocks at OUT1 and/or OUT2.
Table 19. Output Mode Control Bits

Mode Control Bits	Logic Family	Pin Function of the Output Driver
000	CMOS	Both pins active Positive pin active, negative pin tristate 001
010	CMOS	Positive pin tristate, negative pin active
011	CMOS	Both pins tristate
100	LVDS	Both pins active
101	LVPECL	Both pins active
110	Unused	Unused

Note that the pin decoder for the OM2 to OM0 pins generates two sets of mode control bits: one set for the OUT1 driver and another set for the OUT2 driver. The relationship between the logic levels applied to the OM2 to OM0 pins and the resulting mode control bits appears in Table 20.
Table 20. OM2 to OM0 Pin Decoder

Pin OM2 to Pin OMO	Mode Control Bits	
	OUT1	OUT2
000	101	101
001	101	100
010	100	101
011	101	001
100	100	100
101	100	001
110	001	100
111	001	001

This decoding scheme allows the OM2 to OM0 pins to establish a matrix of logic family selections for the OUT1 and OUT2 drivers as shown in Table 21. Note that when the OM2 to OM0 pins select the CMOS logic family, the signal at the $\overline{\mathrm{OUT} 1} \mathrm{pin}$ is a phase aligned replica of the signal at the OUT1 pin and the signal at the $\overline{\text { OUT2 }}$ pin is a phase aligned replica of the signal at the OUT2 pin.
Table 21. Logic Family Assignment via the OM2 to OM0 Pins

Pin OM2 to Pin OM0	Logic Family	
	OUT1	OUT2
000	LVPECL	LVPECL
001	LVPECL	LVDS
010	LVDS	LVPECL
011	LVPECL	CMOS
100	LVDS	LVDS
101	LVDS	CMOS
110	CMOS	LVDS
111	CMOS	CMOS

Output Driver Polarity (CMOS)

When the mode control bits indicate the CMOS logic family (see Table 19), the user has control of the logic polarity associated with each CMOS output pin. Driver polarity defines how the logic level (Logic 1 or Logic 0) at a CMOS output pin relates to the logic state (logic true or logic false). Normal polarity equates Logic $1 /$ Logic 0 to logic true/logic false, while inverted polarity equates Logic 0/Logic 1 to logic true/logic false. Bit[2] of the OUT1 and OUT2 driver control registers establishes the CMOS polarity of the associated output driver (see Figure 31).

Output Drive Strength (CMOS or LVDS)

When the mode bits indicate the CMOS or LVDS logic family (see Table 19), the user can select whether the output driver uses weak or strong drive capability. Bit 7 of the OUT1 and

OUT2 driver control registers control the drive strength of the associated output driver (see Figure 31). In the case of the CMOS family, the strong setting allows for driving increased capacitive loads. In the case of the LVDS family, the nominal weak and strong drive currents are 3.5 mA and 7 mA , respectively.

Output Power Down

The AD9553 supports the option of independent power-down of the output drivers. Bit 6 of the OUT1 and OUT2 driver control registers controls the power-down function (see Figure 31). When Bit 6 is Logic 0 , the associated output driver is active. When Bit 6 is Logic 1, the associated output driver is in power-down mode.

AD9553

JITTER TOLERANCE

Jitter tolerance is the ability of the AD9553 to maintain lock in the presence of sinusoidal jitter. The AD9553 meets the input jitter tolerance mask per Telcordia GR-253-CORE (see Figure 32). The acceptable jitter tolerance is the region above the mask. The trace showing the performance of the AD9553 in Figure 32 represents the limitations of the test equipment because the AD9553 did not indicate loss of lock, even with the test equipment injecting its maximum jitter level.

Figure 32. Jitter Tolerance

OUTPUT/INPUT FREQUENCY RELATIONSHIP

The frequency at OUT1 and OUT2 depends on the frequency at the input to the PLL, the PLL feedback divider value (N), and the output divider values ($\mathrm{P}_{0}, \mathrm{P}_{1}$, and P_{2}). The equations that define the frequency at OUT1 and OUT2 ($\mathrm{f}_{\text {oUT1 }}$ and $\mathrm{f}_{\text {oUT2 }}$, respectively) are as follows:

$$
\begin{aligned}
& f_{\text {OUT1 } 1}=F P F D\left(\frac{N}{P_{0} \times P_{1}}\right) \\
& f_{\text {OUT2 }}=F P F D\left(\frac{N}{P_{0} \times P_{2}}\right)
\end{aligned}
$$

where:
$F P F D$ is the frequency at the reference input of the PFD.
N is the feedback divider value.
P_{0} is the VCO prescaler divider value.
P_{1} is the OUT1 divider value.
P_{2} is the OUT2 divider value.
The operating frequency range of the PFD places a limitation on FPFD as follows:

$13.3 \mathrm{kHz} \leq F P F D \leq 100 \mathrm{MHz}$

Note that for applications using the frequency selection pins in conjunction with the XTAL input for the holdover function, the maximum value of FPFD is 50 MHz (twice the 25 MHz default crystal frequency).

FPFD depends on the input frequency to the AD9553, the configuration of the multiplexers for the $\div 5$ prescaler and $\times 2$ frequency multiplier, and the value of the R_{X} divider (either R_{A}, R_{B}, or R_{XO}) as follows:

$$
F P F D=f_{X} \times \frac{K}{R_{X}}
$$

where:
f_{X} is equal to $\mathrm{f}_{\text {REFA }}, \mathrm{f}_{\text {REFB }}$, or $\mathrm{f}_{\text {XTAL }}$.
K is the scale factor per Table 22.
$F P F D$ is the frequency at the input to the phase frequency detector.

Table 22. K as a Function of Input Multiplexer Configuration

Input	$\mathbf{\div 5}$	$\times \mathbf{2}$	K
REFA	Bypassed	Bypassed	1
	Active	Bypassed	$1 / 5$
	Bypassed	Active	2
	Active	Active	$2 / 5$
REFB	Bypassed	Bypassed	1
	Active	Bypassed	$1 / 5$
	Bypassed	Active	2
	Active	Active	$2 / 5$
XTAL	N/A ${ }^{1}$	N/A ${ }^{1}$	2

${ }^{1} \mathrm{~N} /$ A means not applicable.
This leads to the complete frequency translation formula

$$
\begin{aligned}
& f_{\text {OUT } 1}=f_{X}\left(\frac{K}{R_{X}}\right)\left(\frac{N}{P_{0} \times P_{1}}\right) \\
& f_{\text {OUT2 } 2}=f_{X}\left(\frac{K}{R_{X}}\right)\left(\frac{N}{P_{0} \times P_{2}}\right)
\end{aligned}
$$

Specific numeric constraints apply as follows. Note that the symbol \in indicates that the constraint is an element of one in the series from the list within the curly brackets.

$$
\begin{aligned}
& K \in\left\{\frac{1}{5}, \frac{2}{5}, 1,2\right\} \\
& K_{X} \in\{1,2, \ldots, 16,384\} \\
& N \in\{32,33, \ldots, 1,048,576\} \\
& P_{0} \in\{5,6, \ldots, 11\} \\
& P_{1} \in\{1,2, \ldots, 63\} \\
& P_{2} \in\{1,2, \ldots, 63\}
\end{aligned}
$$

Additional constraints apply. One constraint is related to the VCO and the other to the $\times 2$ frequency multipliers in the REFA and REFB paths. The VCO constraint is a consequence of its limited bandwidth. However, the $\times 2$ frequency multiplier constraint only applies when the $\div 5$ prescalers are bypassed, but it also requires that R_{A} and R_{B} are large enough to satisfy the FPFD constraint. The additional constraints are as follows:

$$
\begin{aligned}
& 3350 \mathrm{MHz} \leq f_{\text {OUT1 }} \times P_{0} \times P_{1} \leq 4050 \mathrm{MHz} \\
& 3350 \mathrm{MHz} \leq f_{\text {oUT } 2} \times P_{0} \times P_{2} \leq 4050 \mathrm{MHz} \\
& f_{\text {REFA/REFB }} \leq 125 \mathrm{MHz}(\times 2 \text { multiplier with } \div 5 \text { bypassed })
\end{aligned}
$$

Generally, the AD9553 is for applications in which $f_{\text {REFA }}$ and $f_{\text {REFB }}$ are the same frequency, so the multiplexers in the REFA and REFB paths share identical configurations. This, in conjunction with the crystal frequency ($\mathrm{f}_{\text {xTAL }}$), results in the following relationship between the R_{A} and $R_{x O}$ dividers (here K is the scale factor for the REFA path).

$$
\begin{equation*}
\frac{2 \times f_{X T A L}}{f_{R E F A}}=K \times \frac{R_{X O}}{R_{A}} \tag{1}
\end{equation*}
$$

Note that for pin programmed holdover applications using the crystal, the crystal frequency must be 25 MHz . Under these circumstances, Equation 1 simplifies as follows:

$$
\frac{50 \times 10^{6}}{f_{\text {REFA }}}=K \times \frac{R_{X O}}{R_{A}}
$$

CALCULATING DIVIDER VALUES

This section describes the process of calculating the divider values when given a specific $f_{\text {OUT1 }} / f_{\text {REF }}$ ratio ($f_{\text {REF }}$ is the frequency of either the REFA or REFB input signal source or the external crystal resonator). This description is in general terms, but it includes a specific example for clarity. The example assumes a frequency control pin setting of A3 to A0 $=1011$ (see Table 14) and Y 5 to $\mathrm{Y} 0=011100$ (see Table 15), yielding the following:

$$
\begin{aligned}
& f_{\text {REF }}=125 \mathrm{MHz} \\
& f_{\text {OUT1 }}=155.52 \mathrm{MHz}
\end{aligned}
$$

Follow these steps to calculate the divider values.

1. Determine the output divide factor (ODF). Note that the VCO frequency ($\mathrm{f}_{\mathrm{VCO}}$) spans 3350 MHz to 4050 MHz . The ratio, $\mathrm{f}_{\mathrm{vCo}} / \mathrm{f}_{\text {outi }}$, indicates the required ODF. Given the specified value of $\mathrm{f}_{\text {OUT } 1}(155.52 \mathrm{MHz})$ and the range of $\mathrm{f}_{\mathrm{VCO}}$, the ODF spans a range of 21.54 to 26.04. The ODF must be an integer, which means that ODF is $22,23,24,25$, or 26 .
2. Determine suitable values for P_{0}, P_{1} and $f_{V C o}$.

The ODF is the product of the two output dividers P_{0} and $P_{1}(O D F=P 0 P 1)$. However, P_{0} must be between 5 and 11 (see the Output/Input Frequency Relationship section), which means that there are only three possibilities for ODF in this example: $\mathrm{ODF}=22\left(\mathrm{P}_{0}=11, \mathrm{P}_{1}=2\right), \mathrm{ODF}=24\left(\mathrm{P}_{0}\right.$ $\left.=6, P_{1}=4\right)$, and $\mathrm{ODF}=25\left(\mathrm{P}_{0}=5, \mathrm{P}_{1}=5\right)$. These three ODF values result in the only VCO frequencies that satisfy the 155.52 MHz requirement for OUT1 $(3421.44 \mathrm{MHz}$ for $\mathrm{ODF}=22,3732.48 \mathrm{MHz}$ for $\mathrm{ODF}=24$, and 3888 MHz for $\mathrm{ODF}=25)$. The results appear in Equation 2, Equation 3, and Equation 4. Note that the second result (Equation 3) agrees with Table 15 in the Preset Frequencies section).

$$
\begin{align*}
& P_{o}=11, P_{1}=2\left(f_{V C O}=3421.44 \mathrm{MHz}\right) \tag{2}\\
& P_{o}=6, P_{1}=4\left(f_{V C O}=3732.48 \mathrm{MHz}\right) \tag{3}\\
& P_{0}=5, P_{1}=5\left(f_{V C O}=3888 \mathrm{MHz}\right) \tag{4}
\end{align*}
$$

3. Determine the boundary conditions on N, K, and R. Because of the architecture of the PLL, FPFD must be an integer submultiple of the VCO frequency as shown in the following equation. Note that N is an integer and is the 20 -bit value of the N -divider.

$$
F P F D=\frac{f_{V C O}}{N}
$$

This relationship leads to boundary conditions on N because N must be an integer that satisfies $\mathrm{N}=\mathrm{f}_{\mathrm{VCo}}$ /FPFD. The limits on FPFD (13.3 kHz to 100 MHz) combined with the results for $\mathrm{f}_{\mathrm{vco}}$ from Step 2 yield

$$
\begin{aligned}
& N=35 \ldots 257,251\left(\text { for } f_{V C O}=3421.44 \mathrm{MHz}\right) \\
& N=38 \ldots 280,637\left(\text { for } f_{V C O}=3732.48 \mathrm{MHz}\right) \\
& N=39 \ldots 292,330\left(\text { for } f_{V C O}=3888 \mathrm{MHz}\right)
\end{aligned}
$$

Note that FPFD also relates to the input frequency, $\mathrm{f}_{\text {REF }}$, per the following equation. Here, R is the 14 -bit integer division factor of the input divider $\left(R_{A}\right.$ or $\left.R_{B}\right)$, while K is the scale factor associated with the optional $\times 2$ multiplier and divide-by-five functions. Note that K can only be one of four values: $1 / 5,2 / 5,1$, or 2 .

$$
F P F D=f_{R E F}\left(\frac{K}{R}\right)
$$

This relationship leads to boundary conditions on R because $\mathrm{R} / \mathrm{K}=\mathrm{f}_{\mathrm{REF}} /$ FPFD where R must be an integer and K can only be $1 / 5,2 / 5,1$, or 2 .

The limits on FPFD (13.3 kHz to 100 MHz) combined with the given value of $\mathrm{f}_{\text {REF }}$ yield the following bounds on R. Note that for $K=2$, the upper bound on R is limited by its 14 -bit range.

$$
\begin{aligned}
& R=1 \ldots 1879(\text { for } K=1 / 5) \\
& R=1 \ldots 3759(\text { for } K=2 / 5) \\
& R=2 \ldots 9398(\text { for } K=1) \\
& R=3 \ldots 16,384(\text { for } K=2)
\end{aligned}
$$

4. Relate N, K, and R to the frequency requirements.

The two FPFD equations in Step 3 show that $f_{\text {VCO }}$ and $f_{\text {REF }}$ relate as

$$
\frac{f_{V C O}}{f_{\text {REF }}}=\frac{N K}{R}
$$

Note that $\mathrm{f}_{\text {REF }}$ is a known quantity (125 MHz) and the VCO frequencies were determined in Step 2 as 3421.44 MHz , 3732.48 MHz , and 3888 MHz . Based on these values of $\mathrm{f}_{\text {REF }}$ and $\mathrm{f}_{\mathrm{VCO}}$

$$
\frac{3421.44}{125}=\frac{N K}{R}, \quad \frac{3732.48}{125}=\frac{N K}{R}, \quad \text { or } \quad \frac{3888}{125}=\frac{N K}{R}
$$

AD9553

5. Determine N, K, and R.

For $\mathrm{f}_{\mathrm{vco}}=3888 \mathrm{MHz}$, an obvious solution is $\mathrm{K}=1, \mathrm{R}=125$, and $\mathrm{N}=3888$, which satisfies the constraint on both N and R, and yields $F P F D=1 \mathrm{MHz}$.

For $\mathrm{f}_{\mathrm{VCO}}=3732.48 \mathrm{MHz}$, an obvious solution is $\mathrm{N}=$ $373,248, \mathrm{~K}=1$, and $\mathrm{R}=12,500$. This choice, however, violates the constraints on both N and R in Step 3.
A simple remedy is to divide both N and R by a common factor. In this particular case, four is the greatest common factor of N and R. Dividing by four leads to $\mathrm{N}=93,312$, $K=1$, and $R=3125(K=1)$, satisfying the constraint on N and R , and yielding FPFD $=40 \mathrm{kHz}$. Note that to match the values given in the Preset Frequencies section, FPFD must be 16 kHz . To accomplish this, keep $\mathrm{R}=3125$, but choose $\mathrm{K}=2 / 5$ (see Table 14). This changes N to 233,280, which agrees with Table 16.

For $\mathrm{f}_{\mathrm{vCO}}=3421.44 \mathrm{MHz}$, an obvious solution is

$$
\begin{aligned}
& N=342,144 \\
& K=1 \\
& R=12,500 .
\end{aligned}
$$

As with the case for $\mathrm{f}_{\mathrm{Vco}}=3732.48 \mathrm{MHz}$, this choice violates the constraints on both N and R in Step 3. Once again, the greatest common factor of N and R is four, leading to $\mathrm{N}=85,536, \mathrm{~K}=1$, and $\mathrm{R}=3125(\mathrm{~K}=1)$, yielding FPFD $=40 \mathrm{kHz}$.
In summary, if choosing $\mathrm{f}_{\mathrm{vco}}=3421.44 \mathrm{MHz}$, then a possible solution is

$$
\begin{aligned}
& P_{o}=11 \\
& P_{1}=2 \\
& N=85,536 \\
& R=3,125 \\
& K=1 \\
& F P F D=40 \mathrm{kHz}
\end{aligned}
$$

If one chooses $\mathrm{f}_{\mathrm{VCO}}=3732.48 \mathrm{MHz}$, then the solution set that matches the tables in the Preset Frequencies section is

$$
\begin{aligned}
& P_{0}=6 \\
& P_{1}=4 \\
& N=233,280 \\
& R=3,125 \\
& K=2 / 5 \\
& F P F D=16 \mathrm{kHz}
\end{aligned}
$$

If choosing $\mathrm{f}_{\mathrm{VCO}}=3888 \mathrm{MHz}$, then a possible solution is

$$
\begin{aligned}
& P_{0}=5 \\
& P_{1}=5 \\
& N=3888 \\
& R=125 \\
& K=1 \\
& F P F D=1 \mathrm{MHz}
\end{aligned}
$$

6. If applicable, determine R_{XO}, the XTAL divider value.

The value of R_{xO} depends on the value of $\mathrm{f}_{\text {REF }}$, K, and R from Step 5, as follows:

$$
R_{X O}=\left(\frac{50 \times 10^{6}}{f_{\text {REF }}}\right)\left(\frac{R}{K}\right)
$$

Given that $\mathrm{f}_{\text {REF }}=125 \mathrm{MHz}$, the two results from Step 5 lead to

$$
\begin{aligned}
& R_{X O}=3125(\text { for } R=3125 \text { and } K=2 / 5) \\
& R_{X O}=50(\text { for } R=125 \text { and } K=1)
\end{aligned}
$$

LOW DROPOUT (LDO) REGULATORS

The AD9553 is powered from a single 3.3 V supply and contains on-chip LDO regulators for each function to eliminate the need for external LDOs. To ensure optimal performance, each LDO output should have a 0201 -sized $0.47 \mu \mathrm{~F}$ capacitor connected between its access pin and ground. In addition, double vias to ground for these capacitors minimize the parasitic resistance and inductance.

AUTOMATIC POWER-ON RESET

The AD9553 has an internal power-on reset circuit (see Figure 33). At power-up, an 800 pF capacitor momentarily holds a Logic 0 at the active low input of the reset circuitry. This ensures that the device is held in a reset state ($\sim 250 \mu \mathrm{~s}$) until the capacitor charges sufficiently via the $100 \mathrm{k} \Omega$ pull-up resistor and $200 \mathrm{k} \Omega$ series resistor. Note that when using a low impedance source to drive the $\overline{\operatorname{RESET}}$ pin, be sure that the source is either tristate or Logic 0 at power-up. Otherwise, the device may not calibrate properly.

Figure 33. Power-On Reset
Provided an input reference signal is present at the REFA, REFB, or XTAL pin, the device automatically performs a VCO calibration during power-up. If the input reference signal is not present, VCO calibration fails and the PLL does not lock. As soon as an input reference signal is present, the user must reset the device to initiate the automatic VCO calibration process.
Any change to the preset frequency selection pins requires the user to reset the device. This is necessary to initiate the automatic VCO calibration process.

APPLICATIONS INFORMATION

THERMAL PERFORMANCE

The AD9553 is specified for case temperature ($\mathrm{T}_{\text {CASE }}$). To ensure that $\mathrm{T}_{\text {Case }}$ is not exceeded, use an airflow source. Use the following equation to determine the junction temperature on the application printed circuit board (PCB):

$$
T_{J}=T_{C A S E}+\left(\Psi_{J T} \times P_{D}\right)
$$

where:
T_{I} is the junction temperature (${ }^{\circ} \mathrm{C}$).
$T_{\text {CASE }}$ is the case temperature $\left({ }^{\circ} \mathrm{C}\right)$ measured by the customer at the top center of the package.
$\Psi_{J T}$ is the value indicated in Table 23.
P_{D} is the power dissipation (see Table 1 for the power consumption parameters).

Values of $\theta_{J A}$ are provided for package comparison and PCB design considerations. θ_{JA} can be used for a first-order approximation of T_{J} using the following equation:

$$
T_{I}=T_{A}+\left(\theta_{I A} \times P_{D}\right)
$$

where T_{A} is the ambient temperature $\left({ }^{\circ} \mathrm{C}\right)$.
Values of θ_{JC} are provided for package comparison and PCB design considerations when an external heat sink is required.

Values of $\theta_{J B}$ are provided for package comparison and PCB design considerations.

Table 23. Thermal Parameters for the 32-Lead LFCSP Package

Symbol	Description	Value ${ }^{1}$	Unit
$\theta_{\text {JA }}$	Junction-to-ambient thermal resistance, $0 \mathrm{~m} / \mathrm{sec}$ airflow per JEDEC JESD51-2 (still air)	41.6	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {JMA }}$	Junction-to-ambient thermal resistance, $1.0 \mathrm{~m} / \mathrm{sec}$ airflow per JEDEC JESD51-6 (moving air)	36.4	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {JMa }}$	Junction-to-ambient thermal resistance, $2.5 \mathrm{~m} / \mathrm{sec}$ airflow per JEDEC JESD51-6 (moving air)	32.6	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {вв }}$	Junction-to-board thermal resistance, $0 \mathrm{~m} / \mathrm{sec}$ airflow per JEDEC JESD51-8 (still air)	24.2	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\Psi_{\text {J }}$	Junction-to-board characterization parameter, $0 \mathrm{~m} / \mathrm{sec}$ airflow per JEDEC JESD51-6 (still air)	22.9	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {Jc }}$	Junction-to-case thermal resistance	4.8	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\Psi_{\text {JT }}$	Junction-to-top-of-package characterization parameter, $0 \mathrm{~m} / \mathrm{sec}$ airflow per JEDEC JESD51-2 (still air)	0.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^4]
AD9553

SERIAL CONTROL PORT

The AD9553 serial control port is a flexible, synchronous, serial communications port that allows an easy interface to many industry-standard microcontrollers and microprocessors. Single or multiple byte transfers are supported, as well as MSB first or LSB first transfer formats. The AD9553 serial control port is configured for a single bidirectional I/O pin (SDIO only). The serial control port uses 16 -bit instructions, which allow access to the entire register address range (0×00 to 0×34).
The serial control port has two types of registers: read-only and buffered. Read-only registers are nonbuffered and ignore write commands. All writable registers are buffered (also referred to as mirrored) and require an I/O update to transfer the new values from a temporary buffer on the chip to the actual register. To invoke an I/O update, write a 1 to the I/O update bit found in Register 0x05[0]. Because any number of bytes of data can be changed before issuing an update command, the update simultaneously enables all register changes occurring since any previous update.

SERIAL CONTROL PORT PIN DESCRIPTIONS

The serial data clock (SCLK) is the serial shift clock. This pin is an input. SCLK is used to synchronize serial control port reads and writes. Write data bits are registered on the rising edge of this clock, and read data bits are registered on the falling edge.
The digital serial data input/output (SDIO) pin is a dual-purpose pin that acts as input only or as an input/output. The AD9553 defaults to bidirectional pins for I/O.
The chip select bar $(\overline{\mathrm{CS}})$ is an active low control that gates the read and write cycles. When $\overline{\mathrm{CS}}$ is high, SDIO is in a high impedance state. See the Operation of the Serial Control Port section on the use of the $\overline{\mathrm{CS}}$ pin in a communication cycle.

Figure 34. Serial Control Port

OPERATION OF THE SERIAL CONTROL PORT

Framing a Communication Cycle with $\overline{\mathbf{C S}}$

The $\overline{\mathrm{CS}}$ line gates the communication cycle (a write or a read operation). $\overline{\mathrm{CS}}$ must be brought low to initiate a communication cycle.
The $\overline{\mathrm{CS}}$ stall high function is supported in modes where three or fewer bytes of data (plus instruction data) are transferred. Bits[W1:W0] must be set to 00,01 , or 10 (see Table 24). In these modes, $\overline{\mathrm{CS}}$ may temporarily return high on any byte boundary, allowing time for the system controller to process the next byte. $\overline{\mathrm{CS}}$ can go high on byte boundaries only and can go high during either part (instruction or data) of the transfer. During this period,
the serial control port state machine enters a wait state until all data has been sent. If the system controller decides to abort before the complete transfer of all the data, the state machine must be reset either by completing the remaining transfer or by returning the $\overline{\mathrm{CS}}$ line low for at least one complete SCLK cycle (but fewer than eight SCLK cycles). A rising edge on the $\overline{\mathrm{CS}}$ pin on a nonbyte boundary terminates the serial transfer and flushes the buffer.

Table 24. Byte Transfer Count

Bit W1	Bit W0	Bytes to Transfer (Excluding the 2-Byte Instruction)
0	0	1
0	1	2
1	0	3
1	1	Streaming mode

In the streaming mode (Bits[W1:W0] = 11), any number of data bytes can be transferred in a continuous stream. The register address is automatically incremented or decremented (see the MSB/LSB First Transfers section). $\overline{\mathrm{CS}}$ must be raised at the end of the last byte to be transferred, thereby ending the stream mode.

Communication Cycle—Instruction Plus Data

There are two parts to a communication cycle with the AD9553. The first part writes a 16 -bit instruction word into the AD9553, coincident with the first 16 SCLK rising edges. The instruction word provides the AD9553 serial control port with information regarding the data transfer, which is the second part of the communication cycle. The instruction word defines whether the upcoming data transfer is a read or a write, the number of bytes in the data transfer, and the starting register address for the first byte of the data transfer.

Write

If the instruction word is for a write operation (Bit I15 = 0), the second part is the transfer of data into the serial control port buffer of the AD9553. The length of the transfer (1,2, or 3 bytes; or streaming mode) is indicated by two bits (Bits[W1:W0]) in the instruction byte. The length of the transfer indicated by (Bits[W1:W0]) does not include the two-byte instruction. $\overline{\mathrm{CS}}$ can be raised after each sequence of eight bits to stall the bus (except after the last byte, where it ends the cycle). When the bus is stalled, the serial transfer resumes when $\overline{\mathrm{CS}}$ is lowered. Stalling on nonbyte boundaries resets the serial control port.

Read

If the instruction word is for a read operation (Bit $\mathrm{I} 15=1$), the next $\mathrm{N} \times 8$ SCLK cycles clock out the data from the address specified in the instruction word, where N is $1,2,3$, or 4 , as determined by Bits[W1:W0]. In this case, 4 is used for streaming mode, where four or more words are transferred per read. The data readback is valid on the falling edge of SCLK.

The default mode of the AD9553 serial control port is bidirectional mode, and the data readback appears on the SDIO pin.

By default, a read request reads the register value that is currently in use by the AD9553. However, setting Register 0x04[0] = 1 causes the buffered registers to be read instead. The buffered registers are the ones that take effect during the next I/O update.

Figure 35. Relationship Between the Serial Control Port Register Buffers and the Control Registers

INSTRUCTION WORD (16 BITS)

The MSB of the instruction word (see Table 25) is $\mathrm{R} / \overline{\mathrm{W}}$, which indicates whether the instruction is a read or a write. The next two bits, W1 and W0, are the transfer length in bytes. The final 13 bits are the address bits (Address Bits[A12:A0]) at which the read or write operation is to begin.
For a write, the instruction word is followed by the number of bytes of data indicated by Bits[W1:W0], which is interpreted according to Table 24.
Address Bits[A12:A0] select the address within the register map that is written to or read from during the data transfer portion of the communication cycle. The AD9553 uses all of the 13-bit address space. For multibyte transfers, this address is the starting byte address.

MSB/LSB FIRST TRANSFERS

The AD9553 instruction word and byte data can be MSB first or LSB first. The default for the AD9553 is MSB first. The LSB first mode can be set by writing a 1 to Register $0 x 00[6]$ and requires that an I/O update be executed. Immediately after the LSB first bit is set, all serial control port operations are changed to LSB first order.

When MSB first mode is active, the instruction and data bytes must be written from MSB to LSB. Multibyte data transfers in MSB first format start with an instruction byte that includes the register address of the most significant data byte. Subsequent data bytes must follow in order from high address to low address. In MSB first mode, the serial control port internal address generator decrements for each data byte of the multibyte transfer cycle.

When LSB first = 1 (LSB first), the instruction and data bytes must be written from LSB to MSB. Multibyte data transfers in LSB first format start with an instruction byte that includes the register address of the least significant data byte followed by multiple data bytes. The serial control port internal byte address generator increments for each data byte of the multibyte transfer cycle.
The AD9553 serial control port register address decrements from the register address just written toward $0 x 00$ for multibyte I/O operations if the MSB first mode is active (default). If the LSB first mode is active, the serial control port register address increments from the address just written toward 0x34 for multibyte I/O operations.
Unused addresses are not skipped during multibyte I/O operations. The user should write the default value to a reserved register and should write only zeros to unmapped registers. Note that it is more efficient to issue a new write command than to write the default value to more than two consecutive reserved (or unmapped) registers.

Table 25. Serial Control Port, 16-Bit Instruction Word, MSB First MSB

115	114	113	112	111	110	19	18	17	16	15	14	13	12	11	10
R/W	W1	W0	A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A1	A0

Table 26. Definition of Terms Used in Serial Control Port Timing Diagrams

Parameter	Description
$\mathrm{t}_{\mathrm{CLK}}$	Period of SCLK
t_{DV}	Read data valid time (time from falling edge of SCLK to valid data on SDIO)
t_{DS}	Setup time between data and rising edge of SCLK
t_{DH}	Hold time between data and rising edge of SCLK
t_{S}	Setup time between $\overline{\mathrm{CS}}$ and SCLK
t_{H}	Hold time between $\overline{\mathrm{CS}}$ and SCLK
$\mathrm{t}_{\text {HIGH }}$	Minimum period that SCLK should be in a logic high state
$\mathrm{t}_{\text {LOw }}$	Minimum period that SCLK should be in a logic low state

AD9553

Figure 36. Serial Control Port Write-MSB First, 16-Bit Instruction, Two Bytes Data

Figure 37. Serial Control Port Read-MSB First, 16-Bit Instruction, Four Bytes Data

Figure 38. Serial Control Port Write—MSB First, 16-Bit Instruction, Timing Measurements

Figure 39. Timing Diagram for Serial Control Port Register Read

Figure 40. Serial Control Port Write—LSB First, 16-Bit Instruction, Two Bytes Data

Figure 41. Serial Control Port Timing-Write

REGISTER MAP

A bit that is labeled ACLR is an active high, autoclearing bit. When set to a Logic 1 state, the control logic automatically returns it to a Logic 0 state upon completion of the indicated task.

Table 27. Register Map

Addr. (Hex)	Register Name	(MSB) Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	$\begin{aligned} & \hline \text { (LSB) } \\ & \text { Bit } 0 \end{aligned}$	Default
0x00	Serial port control	0	LSB first	Soft reset (ACLR)	1	1	Soft reset	LSB first	0	0x18
0x04	Readback control	Unused	Readback control	0x00						
0x05	I/O update	Unused	I/O update (ACLR)	0x00						
0x0A	PLL charge pump and PFD control	Charge Pump Current Control[7:0] ($3.5 \mu \mathrm{~A}$ granularity, $\sim 900 \mu \mathrm{~A}$ full scale)								0x80
0x0B		Enable SPI control of charge pump current	Enable SPI control of antibacklash period	Charge Pump Mode[1:0]		Disable charge pump	PFD feedback input edge control	PFD reference input edge control	Force VCO to midpoint frequency	0x30
0x0C		Unused	Unused	Unused	Unused	Unused	Char	Pump Clock	[2:0]	0x00
0x0D		Antibacklash Control[1:0]		Unused	Unused	Unused	Unused	Unused	PLL lock detector powerdown	0x00
0x0E	VCO control	Calibrate VCO (ACLR)	Enable ALC	ALC Threshold[2:0]			Enable SPI control of VCO calibration	Boost VCO supply	Enable SPI control of VCO band setting	0x70
0x0F		VCO Level Control[5:0]						Unused	Unused	0x80
0x10		VCO Band Control[6:0]							Unused	0x80
0x11	PLL and output frequency control	Unused	0x00							
0x12		Feedback Divider (N)[19:12]								0x80
0x13		Feedback Divider (N)[11:4]								0x00
0x14		Feedback Divider (N)[3:0]				Enable SPI control of feedback divider	Enable SPI control of output dividers	Unused	Reset PLL (ACLR)	0x00
0x15		P_{1} Divider[9:2]								0x20
0x16		P_{1} Divider[1:0]		P2 Divider[9:4]						0x00
0x17		P_{2} Divider[3:0]				Enable test port	Test Mux[1:0]		Unused	0x01
0x18		P_{0} Divider[2:0]			Unused	Unused	Unused	Unused	Unused	0x00
0x19		Unused	0x20							
0x1A	Input receiver and band gap control	Reference reset (ACLR)	Band Gap Voltage Adjust[4:0] (00000 $=$ maximum, $11111=$ minimum $)$					Unused	Enable SPI control of band gap voltage	0x00
0x1B	XTAL control	Disable SPI control of XTAL tuning capacitance	0	XTAL Tuning Capacitor Control[5:0] (0.25 pF per bit, inverted binary coding)						0x80
0x1C		Unused	0x00							
0x1D		Unused	0x00							
0x1E	Unused									

AD9553

Addr. (Hex)	Register Name	(MSB) $\text { Bit } 7$	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	$\begin{aligned} & \hline \text { (LSB) } \\ & \text { Bit } 0 \end{aligned}$	Default
0x1F	REFA frequency control	REFA Divider (R_{A})[13:6]								0x40
0x20		REFA Divider ($\mathrm{R}_{\text {A }}$)[5:0]						Enable SPI control of RA	Unused	0x00
0×21		Enable SPI control of $\times 2_{A}$	Select $\times 2{ }_{\text {A }}$	Enable SPI control of $\div 5_{\mathrm{A}}$	Select $\div 5{ }_{\text {A }}$	Unused	Unused	Unused	Unused	0x00
0x22	Unused									
0x23	REFB frequency control	REFB Divider (R_{B} [13:6]								0x80
0x24		REFB Divider (R_{B})[5:0]						Enable SPI control of R_{B}	Unused	0x00
0×25		Enable SPI control of $\times 2$ B	Select $\times 2$ B	Enable SPI control of $\div 5$ B	Select $\div 5$ B	Unused	Unused	Unused	Unused	0x00
0x26	Unused									
0x27	DCXO frequency and reference switchover control	XO divider ($\mathrm{Rxo}^{\text {(}}$ [13:6]								0x40
0x28		XO Divider (Rxo)[5:0]						Enable SPI control of Rxo	Unused	0x00
0x29		Switchover mode[1:0]		REFA Diff	Unused	Unused	Unused	Unused	Unused	0x00
$\begin{aligned} & 0 \times 2 \mathrm{~A} \\ & \text { to } \\ & 0 \times 31 \end{aligned}$	Unused									
0x32	OUT1 driver control	OUT1 drive strength	OUT1 powerdown	OUT1 Mode Control[2:0]			OUT1 CMOS polarity	Unused	Use Bits[5:3] as source for OUT1 mode control	0xA8
0x33	Unused	0x00								
0x34	OUT2 driver control	OUT2 drive strength	OUT2 powerdown	OUT2 Mode Control[2:0]			OUT2 CMOS polarity	Unused	Use Bits[5:3] as source for OUT2 mode control	0xA8

REGISTER MAP DESCRIPTIONS

Control bit functions are active high unless stated otherwise. Register address values are always hexadecimal unless otherwise indicated.

Serial Port Control (Register 0x00 to Register 0x05)

Table 28.

Address	Bit	Bit Name	Description
0x00	7	Unused	Forced to Logic 0 internally, which enables 3-wire mode only.
	6	LSB first	Bit order for SPI port. $0=$ most significant bit and byte first (default). 1 = least significant bit and byte first.
	5	Soft reset	Software initiated reset (register values set to default). This is an autoclearing bit.
	4	Unused	Forced to Logic 1 internally, which enables 16 -bit mode (the only mode supported by the device).
	[3:0]	Unused	Mirrored version of the contents of Register 0x00[7:4] (that is, Bits[3:0] = Bits[7:4]).
0x04	[7:1]	Unused	Unused.
	0	Readback control	For buffered registers, serial port readback reads from actual (active) registers instead of from the buffer. $0=$ reads values currently applied to the internal logic of the device (default). 1 = reads buffered values that take effect on next assertion of I/O update.
0x05	[7:1]	Unused	Unused.
	0	I/O update	Writing a 1 to this bit transfers the data in the serial I/O buffer registers to the internal control registers of the device. This is an autoclearing bit.

PLL Charge Pump and PFD Control (Register 0x0A to Register 0x0D)

Table 29.

Address	Bit	Bit Name	Description
0x0A	[7:0]	Charge pump current control	These bits set the magnitude of the PLL charge pump current. The granularity is $\sim 3.5 \mu \mathrm{~A}$ with a full-scale magnitude of $\sim 900 \mu \mathrm{~A}$. Default is 0×80, or $\sim 448 \mu \mathrm{~A}$. Register 0x0A is ineffective unless Register 0x0B[7] = 1 .
0x0B	7	Enable SPI control of charge pump current	$\begin{aligned} & \text { Controls the functionality of Register } 0 \times 0 \mathrm{~A} \text {. } \\ & 0=\text { charge pump current based on } \mathrm{A} 3 \text { to } \mathrm{A} 0 \text { pins and } \mathrm{Y} 5 \text { to } \mathrm{Y} 0 \text { pins per Table } 16 \text { (default). } \\ & 1=\text { charge pump current defined by Register } 0 \times 0 \mathrm{~A} \text {. } \end{aligned}$
	6	Enable SPI control of antibacklash period	$\begin{aligned} & \text { Controls the functionality of Register } 0 \times 0 \mathrm{D}[7: 6] \text {. } \\ & 0=\text { the device automatically controls the antibacklash period (default). } \\ & 1=\text { antibacklash period defined by Register } 0 \times 0 \mathrm{D}[7: 6] \text {. } \end{aligned}$
	[5:4]	Charge pump mode	Controls the mode of the PLL charge pump. $00=$ tristate. 01 = pump up. 10 = pump down. 11 = normal (default).
	3	Disable charge pump	Disables the charge pump (functionally equivalent to Register $0 \times 0 B[5: 4]=00$). 0 = normal operation (default). 1 = disable charge pump.
	2	PFD feedback input edge control	Selects the polarity of the active edge of the PLL's feedback input. $\begin{aligned} & 0=\text { positive edge (default). } \\ & 1=\text { negative edge. } \end{aligned}$
	1	PFD reference input edge control	Selects the polarity of the active edge of the PLL's reference input. $0 \text { = positive edge (default). }$ $1 \text { = negative edge. }$
	0	Force VCO to midpoint frequency	Selects VCO control voltage functionality. $0=$ normal VCO operation (default). 1 = force VCO control voltage to midscale.

AD9553

Address	Bit	Bit Name	Description
0x0C	[7:3]	Unused	Unused.
	[2:0]	Charge pump clock div.	Enables the PFD clock dividers (used for test only via test mux). $000=$ test clocks disabled, normal operation (default). 001 = divide feedback clock by 2. $010=$ divide PFD reference input clock by 2. 011 = divide PFD reference input and feedback clocks by 2. $100=$ divide pump-up clock by 2. 101 = divide pump-up and feedback clocks by 2. $110=$ divide pump-up and PFD reference input clocks by 2. 111 = divide feedback, pump-up, and pump-down clocks by 2.
0x0D	[7:6]	Antibacklash control	Controls the PFD antibacklash period of the PLL. These bits are ineffective unless Register 0x0B[6] = 1 . $00=\text { minimum (default). }$ $01 \text { = low. }$ $10 \text { = high. }$ 11 = maximum.
	[5:1]	Unused	Unused.
	0	PLL lock detector power-down	Controls power-down of the PLL lock detector. $0=$ lock detector active (default). 1 = lock detector powered down.

VCO Control (Register 0x0E to Register 0x10)

Table 30.

Address	Bit	Bit Name	Description
0x0E	7	Calibrate VCO	Initiates VCO calibration (this is an autoclearing bit). This bit is ineffective unless Register $0 \times 0 \mathrm{E}[2]=1$.
	6	Enable ALC	Enables automatic level control (ALC) of the VCO. $0=$ Register 0x0F[7:2] defines the VCO level. $1=$ the device automatically controls the VCO level (default).
	[5:3]	ALC threshold	Controls the VCO ALC threshold detector level from minimum (000) to maximum (111). The default is 110 .
	2	Enable SPI control of VCO calibration	Enables the functionality of Register 0x0E[7]. $0=$ the device automatically performs VCO calibration (default). $1=$ VCO calibration controlled by Register $0 \times 0 \mathrm{E}[7]$.
	1	Boost VCO supply	Selects VCO supply voltage. $0=$ normal supply voltage (default). 1 = increase supply voltage by 100 mV .
	0	Enable SPI control of VCO band setting	Controls VCO band setting functionality. $0=$ the device automatically selects the VCO band (default). $1=$ VCO band defined by Register $0 \times 10[7: 1]$.
0x0F	[7:2]	VCO level control	Controls the VCO amplitude from minimum (00 0000) to maximum (11 1111). These bits are ineffective unless Register $0 \times 0 \mathrm{E}[6]=0$. The default is 100000.
	[1:0]	Unused	Unused.
0x10	[7:1]	VCO band control	Controls the VCO frequency band from minimum (000 0000) to maximum (111 1111). These bits are ineffective unless Register $0 \times 0 E[0]=1$. The default is 1000000.
	0	Unused	Unused.

PLL and Output Frequency Control (Register 0x1 1 to Register 0x19)

Table 31.

Address	Bit	Bit Name	Description
0x11	[7:0]	Unused	Unused.
0x12	[7:0]	Feedback divider (N)	Bits[19:12] of the 20-bit feedback divider (N).
0x13	[7:0]	Feedback divider (N)	Bits[11:4] of the 20-bit feedback divider (N).
0x14	[7:4]	Feedback divider (N)	Bits[3:0] of the 20-bit feedback divider (N). Default is $\mathrm{N}=0 \times 80000$ (524,288). The feedback divider bits are ineffective unless Register 0x14[3] = 1 .
	3	Enable SPI control of feedback divider	Enables SPI port control of the feedback divider value (N). $0=$ the A 3 to A 0 and Y 5 to Y 0 pins define N per Table 16 (default). 1 = the 20-bit value in the feedback divider register defines N.
	2	Enable SPI control of output dividers	Enables SPI port control of the output dividers $\mathrm{P}_{0}, \mathrm{P}_{1}$, and P_{2}. $0=$ the Y 5 to Y 0 pins define the output divider values per Table 15 (default). $1=$ the SPI port registers ($0 \times 15,0 \times 16,0 \times 18$) define the output divider values.
	1	Unused	Unused.
	0	Reset PLL	Controls initialization of the PLL. $0=$ normal operation (default). 1 = resets the counters and logic associated with the PLL but does not affect the output dividers.
0x15	[7:0]	P_{1} divider	Bits[9:2] of the 11-bit P_{1} divider.
0x16	[7:6]	P_{1} divider	Bits[1:0] of the 11-bit P_{1} divider (the default P_{1} divider register value is 128 decimal). The P_{1} divider bits are ineffective unless Register 0x14[2] = 1 .
	[5:0]	P_{2} divider	Bits[9:4] of the 11-bit P_{2} divider.
0x17	[7:4]	P_{2} divider	Bits[3:0] of the 11-bit P_{2} divider. The P_{2} divider bits are ineffective unless Register 0x14[2] = 1 .
	3	Enable test port	Enables use of the LOCKED pin as a test port. $0=$ the LOCKED pin indicates PLL status (default). $1=$ the LOCKED pin outputs a test signal per Register 0x17[2:1].
	[2:1]	Test mux	Test mux select bits. $00=$ crystal oscillator output (XO). 01 = PFD pump up clock divided-by-2 (UP/2). $10=$ PFD reference input clock divided-by-2 (FPFD/2). 11 = PFD feedback clock divided-by-2 (FDBK/2).
	0	Unused	Unused.
0x18	[7:5]	P_{0} divider	Bits[2:0] of the P_{0} divider. The P_{0} divider bits are ineffective unless Register 0x14[2] = 1 . $000=$ invalid. 001 = divide-by-5. $010=$ divide-by-6. 011 = divide-by-7. $100=$ divide-by-8. 101 = divide-by-9. $110=$ divide-by-10. 111 = divide-by-11.
	[4:0]	Unused	Unused.
0x19	[7:0]	Unused	Unused.

AD9553

Input Receiver and Band Gap Control (Register 0x1A)

Table 32.

Address	Bit	Bit Name	Description
0x1A	7	Receiver reset	Input receiver reset control. This is an autoclearing bit. $0=$ normal operation (default). 1 = resets the reference input hardware (detectors, dividers, switchover control, crystal oscillator, and its associated frequency doubler).
	[6:2]	Band gap voltage adjust	Controls the band gap voltage setting from minimum (00000) to maximum (11111). Default is 00000 . The band gap voltage adjust bits are ineffective unless Register $0 \times 1 \mathrm{~A}[0]=1$.
	1	Unused	Unused.
	0	Enable SPI control of band gap voltage	Enables functionality of Register 0x1A[6:2]. $0=$ the device automatically selects receiver band gap voltage (default). $1=$ Register 0x1A[6:2] defines the receiver band gap voltage.

XTAL Control (Register 0x1B to Register 0x1E)

Table 33.

Address	Bit	Bit Name	Description
0x1B	7	Disable SPI control of XTAL tuning capacitance	Disables functionality of Register 0x1B[5:0]. $0=$ tuning capacitance defined by Register $0 \times 1 \mathrm{~B}[5: 0]$. 1 = the device automatically selects XTAL tuning capacitance (default).
	6	Unused	When programming this register write a Logic 0 to this bit.
	[5:0]	XTAL tuning capacitor control	Capacitance value coded as inverted binary (0.25 pF per bit); that is, 111111 is 0 pF , 111110 is 0.25 pF , and so on. The default value, 000000 , is 15.75 pF . The XTAL tuning capacitor bits are ineffective unless Register $0 \times 1 \mathrm{~B}[7]=0$.
0x1C	[7:0]	Unused	Unused.
0x1D	[7:0]	Unused	Unused.
0x1E	[7:0]	Unused	Unused.

REFA Frequency Control (Register 0x1F to Register 0x22)
Table 34.

Address	Bit	Bit Name	Description
0x1F	[7:0]	REFA divider (R_{A})	Bits[13:6] of the 14-bit REFA divider.
0x20	[7:2]	REFA divider (R_{A})	Bits[5:0] of the 14-bit REFA divider (default: $R_{A}=4096$ decimal). The REFA divider bits are ineffective unless Register 0x20[1] = 1 .
	1	Enable SPI control of R_{A}	Enables SPI port control of the REFA divider value $\left(R_{A}\right)$. $0=$ the $A 3$ to $A 0$ pins define R_{A} per Table 14 (default). $1=$ the 14 -bit value in the REFA divider register defines R_{A}.
	0	Unused	Unused.
0x21	7	Enable SPI control of $\times 2{ }_{\text {A }}$	Enables SPI control of the REFA $\times 2$ frequency multiplier $\left(\times 2_{A}\right)$ per 0×21 [6]. $0=$ the device automatically selects $\times 2_{A}$ per Table 14 (default). $1=$ Register 0×21 [6] controls the selection of $\times 2$.
	6	Select $\times 2{ }_{\text {A }}$	Selects $\times 2_{A}$. This bit is ineffective unless Register $0 \times 21[7]=1$. $0=$ bypass $\times 2_{A}$ (default). $1=$ select $\times 2_{A}$.
	5	Enable SPI control of $\div 5{ }_{\text {A }}$	Enables SPI control of the $\div 5_{\mathrm{A}}$ prescaler per 0×21 [4]. $0=$ the device automatically selects $\div 5_{A}$ per Table 14 (default). $1=$ Register $0 \times 21[4]$ controls the selection of $\div 5_{A}$.
	4	Select $\div 5{ }_{\text {A }}$	Selects $\div 5_{A}$. This bit is ineffective unless Register $0 \times 21[5]=1$. $0=\text { bypass } \div 5_{\mathrm{A}} \text { (default) }$ $1=\text { select } \div 5_{A} \text {. }$
	[3:0]	Unused	Unused.
0x22	[7:0]	Unused	Unused.

REFB Frequency Control (Register 0x23 to Register 0x26)

Table 35.

Address	Bit	Bit Name	Description
0x23	[7:0]	REFB divider (R_{B})	Bits[13:6] of the 14-bit REFB divider.
0×24	[7:2]	REFB divider (R_{B})	Bits[5:0] of the 14-bit REFB divider (default: $R_{B}=8192$ decimal). The REFB divider bits are ineffective unless Register $0 \times 24[1]=1$.
	1	Enable SPI control of $\mathrm{R}_{\text {B }}$	Enables SPI port control of the REFB divider value $\left(R_{B}\right)$. $0=$ the $A 3$ to A0 pins define R_{B} per Table 14 (default). 1 = the 14 -bit value in the REFB divider register defines R_{B}.
	0	Unused	Unused.
0x25	7	Enable SPI control of $\times 2_{\text {B }}$	Enables SPI control of the REFB $\times 2$ frequency multiplier $\left(\times 2_{B}\right)$ per Register 0x25[6]. $0=$ the device automatically selects $\times 2_{B}$ per Table 14 (default). $1=$ Register $0 \times 25[6]$ controls the selection of $\times 2_{B}$.
	6	Select $\times 2_{\text {B }}$	Selects $\times 2_{\mathrm{B}}$. This bit is ineffective unless Register $0 \times 25[7]=1$. $\begin{aligned} & 0=\text { bypass } \times 2_{B} \text { (default). } \\ & 1=\text { select } \times 2_{B} . \end{aligned}$
	5	Enable SPI control of $\div 5$ B	Enables SPI control of the $\div 5_{B}$ prescaler per Register 0×25[4]. $0=$ the device automatically selects $\div 5_{B}$ per Table 14 (default). $1=$ Register $0 \times 25[4]$ controls the selection of $\div 5_{B}$.
	4	Select $\div 5_{\text {B }}$	Selects $\div 5_{B}$. This bit is ineffective unless Register $0 \times 25[5]=1$. $\begin{aligned} & 0=\text { bypass } \div 5_{\mathrm{B}} \text { (default). } \\ & 1=\text { select } \div 5_{\mathrm{B}} . \end{aligned}$
	[3:0]	Unused	Unused.
0×26	[7:0]	Unused	Unused.

DCXO Frequency and Reference Switchover Control (Register 0x27 to Register 0x31)
Table 36.

Address	Bit	Bit Name	Description
0x27	[7:0]	XO divider (R_{X0})	Bits[13:6] of the 14-bit XO divider.
0x28	[7:2]	XO divider (R_{xo})	Bits[5:0] of the 14-bit XO divider (default: $\mathrm{R}_{\mathrm{xO}}=4096$ decimal). The XO divider bits are ineffective unless Register 0x28[1] = 1 .
	1	Enable SPI control of R_{xo}	Enables SPI port control of the XO divider value (R_{xo}). $0=$ the $A 3$ to $A 0$ pins define $R_{x o}$ per Table 14 (default). $1=$ the 14 -bit value in the XO divider register defines R_{xo}.
	0	Unused	Unused.
0x29	[7:6]	Switchover mode	Selects the switchover operating mode. $00=$ revertive switchover (default). 01 = nonrevertive switchover. $10=$ selects REFA as the active reference. $11=$ selects REFB as the active reference.
	5	REFA diff	Enables the differential input reference function. $0=$ normal single-ended operation of REFA and REFB (default). $1=$ REFA configured as a differential reference in which the REFA pin functions as one differential input and the REFB/REFA pin functions as the other differential input. In this configuration, the REFB channel and switchover functionality are both unavailable.
	[4:0]	Unused	Unused.
$\begin{aligned} & 0 \times 2 \mathrm{~A} \text { to } \\ & 0 \times 31 \end{aligned}$	[7:0]	Unused	Unused.

AD9553

OUT1 Driver Control (Register 0x32)

Table 37.

Address	Bit	Bit Name	Description
0x32	7	OUT1 drive strength	Controls the output drive capability of the OUT1 driver. $\begin{aligned} & 0=\text { weak. } \\ & 1=\text { strong (default). } \end{aligned}$
	6	OUT1 power-down	Controls power-down functionality of the OUT1 driver. $0=$ OUT1 active (default). 1 = OUT1 powered down.
	[5:3]	OUT1 mode control	```OUT1 driver mode selection. 000 = CMOS, both pins active. 001 = CMOS, positive pin active, negative pin tristate. 010= CMOS, positive pin tristate, negative pin active. 011 = CMOS, both pins tristate. 100 = LVDS. 101 = LVPECL (default). 110 = not used. 111 = not used.```
	2	OUT1 CMOS polarity	Selects the polarity of the OUT1 pins in CMOS mode. This bit is ineffective unless Bits[5:3] select CMOS mode. See the Output Driver Polarity (CMOS) section for the definition of normal and inverted polarity. $0=$ positive pin is normal polarity and negative pin is normal polarity (default). $1=$ positive pin logic is inverted polarity and negative pin is normal polarity.
	1	Unused	Unused.
	0	OUT1 mode source	Controls OUT1 driver functionality (see Figure 31). $0=$ OUT1 mode determined by the OM2 to OM0 pins (default). 1 = OUT1 mode defined by Register $0 \times 32[5: 3]$.

Reserved (Register 0x33)

Table 38.

Address	Bit	Bit Name	Description
0×33	$[7: 0]$	Unused	Unused.

OUT2 Driver Control (Register 0x34)

Table 39.

Address	Bit	Bit Name	Description
0x34	7	OUT2 drive strength	Controls the output drive capability of the OUT2 driver. $\begin{aligned} & 0=\text { weak. } \\ & 1=\text { strong (default). } \end{aligned}$
	6	OUT2 power-down	Controls power-down functionality of the OUT2 driver. $0=$ OUT2 active (default). 1 = OUT2 powered down.
	[5:3]	OUT2 mode control	```OUT2 driver mode selection. \(000=\) CMOS, both pins active. \(001=\) CMOS, positive pin active, negative pin tristate. \(010=\) CMOS, positive pin tristate, negative pin active. 011 = CMOS, both pins tristate. 100 = LVDS. 101 = LVPECL (default). \(110=\) not used. 111 = not used.```
	2	OUT2 CMOS polarity	Selects the polarity of the OUT2 pins in CMOS mode. This bit is ineffective unless Bits[5:3] select CMOS mode. See the Output Driver Polarity (CMOS) section for the definition of normal and inverted polarity. $0=$ positive pin is normal polarity and negative pin is normal polarity (default). $1=$ positive pin logic is inverted polarity and negative pin is normal polarity.
	1	Unused	Unused.
	0	OUT1 mode source	Controls OUT2 driver functionality (see Figure 31). $0=$ OUT2 mode determined by the OM2 to OM0 pins (default). 1 = OUT2 mode defined by Register 0x34[5:3].

AD9553

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-220-WHHD.
1
Figure 42. 32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]
$5 \mathrm{~mm} \times 5 \mathrm{~mm}$ Body, Very, Very Thin Quad
(CP-32-7)
Dimensions shown in millimeters

ORDERING GUIDE	Temperature Range	Package Description	Package Option
Model 1	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]	CP-32-7
AD9553BCPZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]	CP-32-7
AD9553BCPZ-REEL7	Evaluation Board		
AD9553/PCBZ			

[^5]NOTES

AD9553

NOTES

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Drivers \& Distribution category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
8501BYLF 854S015CKI-01LF 8T33FS6221EPGI NB7V72MMNHTBG Si53314-B-GMR 4RCD0124KC0ATG P9090-0NLGI8 $\underline{\text { SY100EP33VKG } 850 \text { S1201BGILF } 8004 \mathrm{AC}-13-33 \mathrm{E}-125.00000 \mathrm{X} \text { ISPPAC-CLK5520V-01T100C8P 4RCD0124KC0ATG8 854110AKILF }}$ PI6C4931504-04LIE SI53305-B-GMR 83210AYLF NB6VQ572MMNG 4RCD0229KB1ATG PI6C4931502-04LIEX 8SLVD1212ANLGI PI6C4931504-04LIEX AD9508BCPZ-REEL7 NBA3N200SDR2G 8T79S308NLGI SI53315-B-GMR NB7NQ621MMUTWG 49FCT3805DPYGI8 49FCT805BTPYG 49FCT805PYGI RS232-S5 542MILFT 6ES7390-1AF30-0AA0 74FCT3807PYGI SY89873LMG SY89875UMG-TR 853S011BGILFT 853S9252BKILF 8P34S1102NLGI8 8T53S111NLGI CDCVF2505IDRQ1 CDCUA877ZQLT CDCE913QPWRQ1 CDC2516DGGR 8SLVP2104ANBGI/W 8S73034AGILF LV5609LP-E 5T9950PFGI STCD2400F35F 74FCT3807QGI8 74FCT3807PYGI8

[^0]: ${ }^{1}$ The listed values are for the slower edge (rise or fall).

[^1]: ${ }^{1} \mathrm{I}=$ input, $\mathrm{I} / \mathrm{O}=$ input/output, $\mathrm{O}=$ output, $\mathrm{P}=$ power, and $\mathrm{P} / \mathrm{O}=$ power/output.

[^2]: ${ }^{1}$ For divide-by- 5 and $\times 2$ frequency scalers, "On" indicates active.
 ${ }^{2}$ Using A0 to A3 = 0110 to yield a 25 MHz to 125 MHz conversion provides a loop bandwidth of 170 Hz . An alternate 25 MHz to 125 MHz conversion uses A 0 to $\mathrm{A} 3=1110$, which provides a loop bandwidth of 20 kHz .
 ${ }^{3}$ Pin A3 to Pin A0 $=1101$ only works with Pin Y5 to Pin Y0 $=101101$ through 110010.
 ${ }^{4} \operatorname{Pin} \mathrm{~A} 3$ to $\mathrm{Pin} \mathrm{A} 0=1110$ only works with Pin Y 5 to $\mathrm{Pin} \mathrm{Y} 0=110011$ or 111111.

[^3]: ${ }^{1} \mathrm{fo}=39,191.04 / 59 \mathrm{MHz}$.

[^4]: ${ }^{1}$ Results are from simulations. The PCB is a JEDEC multilayer type. Thermal performance for actual applications requires careful inspection of the conditions in the application to determine whether they are similar to those assumed in these calculations.

[^5]: ${ }^{1} Z=$ RoHS Compliant Part.

