# IR SYNIOS P2720 (850 nm) - 120° Version 1.0

#### **SFH 4770S A01**



#### Features:

- · IR lightsource with high efficiency
- Double Stack emitter
- Low thermal resistance (Max. 9 K/W)
- Centroid wavelength 850 nm
- Superior Corrosion Robustness (see chapter package outlines)
- The product qualification test plan is based on the guidelines of AEC-Q101-REV-C, Stress Test Qualification for Automotive Grade Discrete Semiconductors.

#### **Applications**

- · Infrared Illumination for cameras
- · Eye tracking systems

#### **Notes**

Depending on the mode of operation, these devices emit highly concentrated non visible infrared light which can be hazardous to the human eye. Products which incorporate these devices have to follow the safety precautions given in IEC 60825-1 and IEC 62471.

#### **Ordering Information**

| Туре:         | Total Radiant Flux                          | Ordering Code |
|---------------|---------------------------------------------|---------------|
|               | Φ <sub>e</sub> [mW]                         |               |
|               | I <sub>F</sub> = 1A, t <sub>p</sub> = 10 ms |               |
| SFH 4770S A01 | 1140 (≥ 800)                                | Q65112A0523   |

Note: Measured with integrating sphere.



## $\underline{\text{Maximum Ratings } (T_A = 25 \, ^{\circ}\text{C})}$

| Parameter                                                      | Symbol                             | Values  | Unit |
|----------------------------------------------------------------|------------------------------------|---------|------|
| Operation and storage temperature range                        | T <sub>op</sub> ; T <sub>stg</sub> | -40 125 | °C   |
| Junction temperature                                           | T <sub>j</sub>                     | 145     | °C   |
| Forward current                                                | I <sub>F</sub>                     | 1500    | mA   |
| Surge current $(t_p \le 200 \ \mu s, \ D = 0)$                 | I <sub>FSM</sub>                   | 3       | A    |
| Power consumption                                              | P <sub>tot</sub>                   | 5800    | mW   |
| ESD withstand voltage (acc. to ANSI/ ESDA/ JEDEC JS-001 - HBM) | V <sub>ESD</sub>                   | 2       | kV   |
| Thermal resistance junction - solder point                     | R <sub>thJS</sub>                  | 9       | K/W  |

Note: For the forward current and power consumption please see "maximum permissible forward current" diagram

## **Characteristics** $(T_A = 25 \, ^{\circ}C)$

| Parameter                                                                                            |             | Symbol                          | Values                             | Unit       |
|------------------------------------------------------------------------------------------------------|-------------|---------------------------------|------------------------------------|------------|
| Peak wavelength $(I_F = 1 \text{ A}, t_p = 10 \text{ ms})$                                           | (typ)       | $\lambda_{peak}$                | 860                                | nm         |
| Centroid wavelength $(I_F = 1 \text{ A}, t_p = 10 \text{ ms})$                                       | (typ)       | $\lambda_{\text{centroid}}$     | 850                                | nm         |
| Spectral bandwidth at 50% of $I_{max}$ ( $I_F = 1 \text{ A}, t_p = 10 \text{ ms}$ )                  | (typ)       | Δλ                              | 30                                 | nm         |
| Half angle                                                                                           | (typ)       | φ                               | ± 60                               | 0          |
| Dimensions of active chip area                                                                       | (typ)       | LxW                             | 1 x 1                              | mm x<br>mm |
| Rise and fall times of $I_e$ ( 10% and 90% of $I_{e max}$ ) ( $I_F = 3 \text{ A}, R_L = 50 \Omega$ ) | (typ)       | t <sub>r</sub> / t <sub>f</sub> | 11 / 14                            | ns         |
| Forward voltage (I <sub>F</sub> = 1 A, t <sub>p</sub> = 10 ms)                                       | (typ (max)) | V <sub>F</sub>                  | 3.2 (≤ 3.6)                        | V          |
| Forward voltage $(I_F = 1.5 \text{ A}, t_p = 100 \mu\text{s})$                                       | (typ (max)) | V <sub>F</sub>                  | 3.35 (≤ 3.85)                      | V          |
| Forward voltage $(I_F = 3 \text{ A}, t_p = 100  \mu\text{s})$                                        | (typ (max)) | V <sub>F</sub>                  | 3.8 (≤ 4.7)                        | V          |
| Reverse current (V <sub>R</sub> = 5 V)                                                               |             | I <sub>R</sub>                  | not designed for reverse operation | μΑ         |
| Radiant intensity $(I_F = 1 \text{ A}, t_p = 10 \text{ ms})$                                         |             | I <sub>e, typ</sub>             | 350                                | mW/sr      |
| Radiant intensity $(I_F = 1.5 \text{ A}, t_p = 100 \mu\text{s})$                                     |             | I <sub>e, typ</sub>             | 530                                | mW/sr      |



| Parameter                                                                                    |       | Symbol           | Values | Unit   |
|----------------------------------------------------------------------------------------------|-------|------------------|--------|--------|
| Temperature coefficient of $I_e$ or $\Phi_e$ ( $I_F = 1 \text{ A}$ , $t_p = 10 \text{ ms}$ ) | (typ) | TC <sub>I</sub>  | -0.3   | % / K  |
| Temperature coefficient of $V_F$<br>( $I_F = 1 \text{ A}, t_p = 10 \text{ ms}$ )             | (typ) | TC <sub>V</sub>  | -2     | mV / K |
| Temperature coefficient of wavelength $(I_F = 1 \text{ A}, t_p = 10 \text{ ms})$             | (typ) | TC <sub>λ,</sub> | 0.3    | nm / K |

### **Grouping** $(T_A = 25 \, ^{\circ}C)$

| Group              | Min Total Radiant Flux                      | Max Total Radiant Flux          |  |
|--------------------|---------------------------------------------|---------------------------------|--|
|                    | I <sub>F</sub> = 1A, t <sub>p</sub> = 10 ms | $I_F = 1A, t_p = 10 \text{ ms}$ |  |
|                    | Φ <sub>e min</sub> [mW]                     | Φ <sub>e max</sub> [mW]         |  |
| SFH 4770S A01 - EB | 800                                         | 1250                            |  |
| SFH 4770S A01 - FA | 1000                                        | 1600                            |  |

Note: Only one group in one packing unit (variation lower 1.6:1).

### Relative Spectral Emission 1) page 12

 $I_{rel} = f(\lambda), T_A = 25 \text{ °C}, I_F = 1A, t_p = 10 \text{ ms}$   $100 \\
I_{rel} = 60$  40 20

### Relative Total Radiant Flux 1) page 12

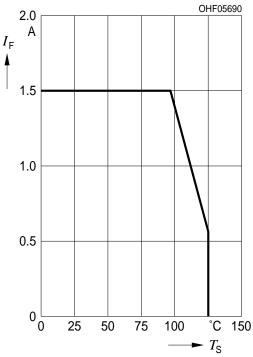
 $\Phi_{\rm e}/\Phi_{\rm e}(1{\rm A})$  = f (I<sub>F</sub>), T<sub>A</sub> = 25 °C, Single pulse, tp = 100  $\mu s$ 



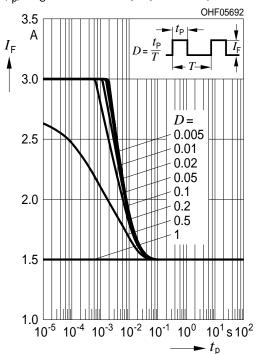
700

750

800

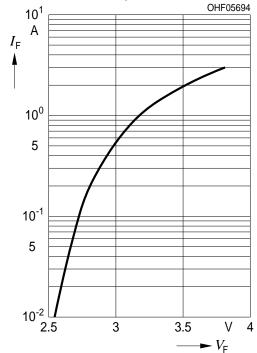

850

nm 950


→ λ

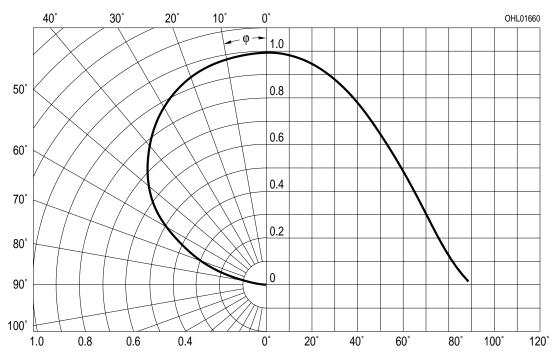
#### Max. Permissible Forward Current

 $I_F = f(T_S), R_{thJS} = 9 \text{ K/W}$ 

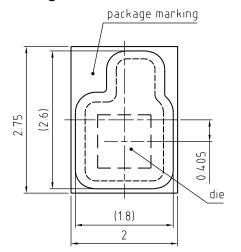


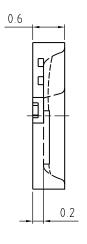

**Permissible Pulse Handling Capability**  $I_F = f(t_p)$ ,  $T_S = 85$  °C, Duty cycle D = parameter

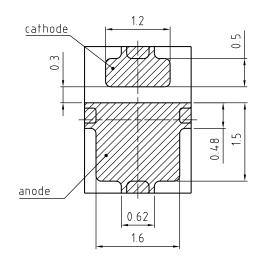



#### Forward Current 1) page 12

 $I_F = f(V_F)$ , single pulse,  $t_p = 100 \mu s$ ,  $T_A = 25^{\circ} C$ 





### Radiation Characteristics 1) page 12


 $I_{rel} = f(\phi), T_A = 25^{\circ}C$ 



#### **Package Outline**







General tolerance ±0.1 Lead finish Au

Dimensions in mm.

Type:

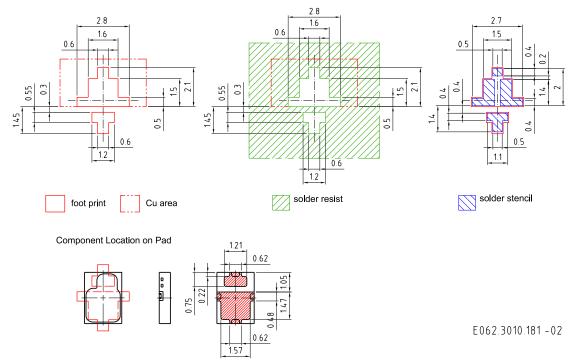
SFH 4770S A01

C67062-A0183-A1-02



#### **Package**

IR SYNIOS P2720

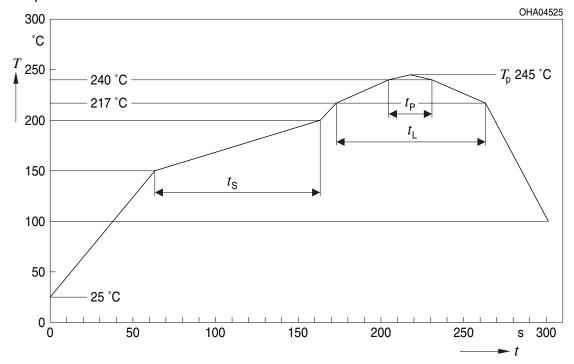

#### **Approximate Weight:**

12 mg

#### Note:

Corrosion robustness better than EN 60068-2-60 (method 4): with enhanced corrosion test: 40°C / 90%rh / 15ppm H2S / 336h

#### **Recommended Solder Pad**



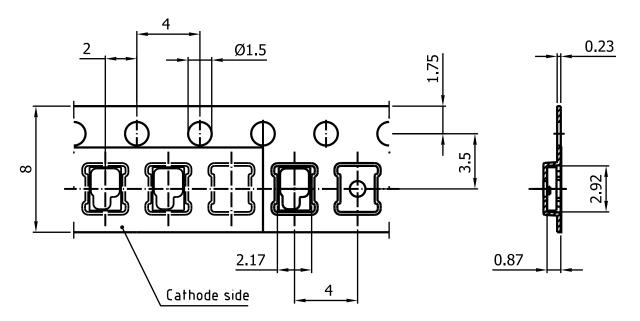

Dimensions in mm.



#### **Reflow Soldering Profile**

Product complies to MSL Level 2 acc. to JEDEC J-STD-020D.01



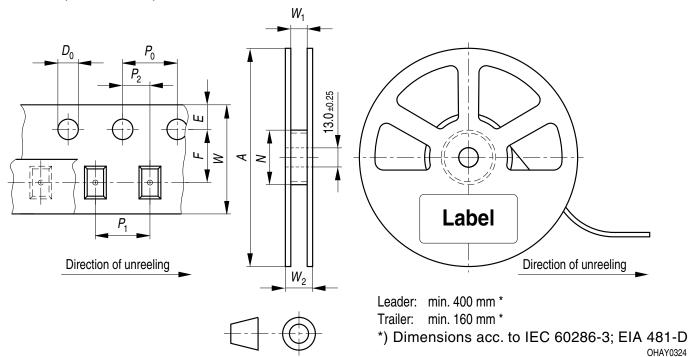

OHA04612 **Profile Feature** Pb-Free (SnAgCu) Assembly **Symbol** Unit **Profil-Charakteristik Symbol Einheit Minimum** Recommendation Maximum Ramp-up rate to preheat\*) 3 2 K/s 25 °C to 150 °C Time t<sub>S</sub> 60 100  $t_{S}$ 120 s  $T_{Smin}$  to  $T_{Smax}$ Ramp-up rate to peak\*) 2 3 K/s  $T_{Smax}$  to  $T_{P}$ Liquidus temperature  $\mathsf{T}_\mathsf{L}$ °С 217 Time above liquidus temperature 100  $t_{\rm L}$ 80 s °С Peak temperature  $T_P$ 245 260 Time within 5 °C of the specified peak 10 20 30 s temperature T<sub>P</sub> - 5 K 3 K/s 6 Ramp-down rate\*  $T_P$  to 100  $^{\circ}C$ Time 480 s 25  $^{\circ}$ C to T<sub>P</sub>

All temperatures refer to the center of the package, measured on the top of the component

\* slope calculation DT/Dt: Dt max. 5 s; fulfillment for the whole T-range



#### **Taping**




C67062-A0116-B14-04

Dimensions in mm.

#### **Tape and Reel**

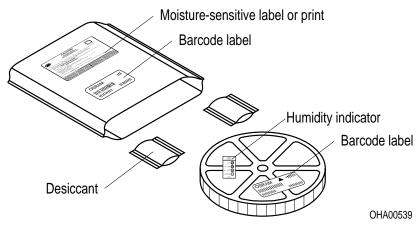
8 mm tape with 2000 pcs. on  $\varnothing$  180 mm reel





#### Tape dimensions [mm]

| W              | P <sub>0</sub> | P <sub>1</sub>            | P <sub>2</sub> | $D_0$     | E          | F              |
|----------------|----------------|---------------------------|----------------|-----------|------------|----------------|
| 8 + 0.3 / -0.1 | 4 ± 0.1        | 2 ± 0.05<br>or<br>4 ± 0.1 | 2 ± 0.05       | 1.5 ± 0.1 | 1.75 ± 0.1 | $3.5 \pm 0.05$ |

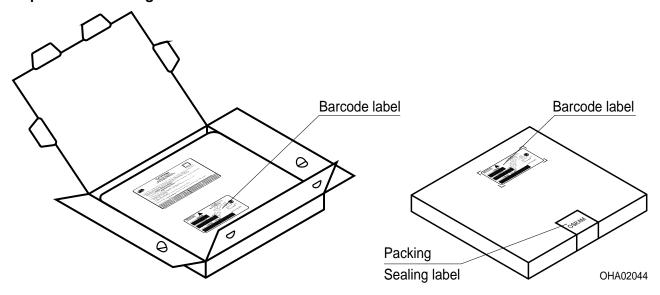

#### Reel dimensions [mm]

| Α   | W | N <sub>min</sub> | W <sub>1</sub> | W <sub>2max</sub> |
|-----|---|------------------|----------------|-------------------|
| 180 | 8 | 60               | 8.4 + 2        | 14.4              |

#### **Barcode-Product-Label (BPL)**



#### **Dry Packing Process and Materials**




#### Note:

Moisture-sensitive product is packed in a dry bag containing desiccant and a humidity card. Regarding dry pack you will find further information in the internet. Here you will also find the normative references like JEDEC.



#### **Transportation Packing and Materials**



#### Dimensions of transportation box in mm

| Width   | Length  | Height |
|---------|---------|--------|
| 200 ± 5 | 195 ± 5 | 30 ± 5 |



#### **Disclaimer**

Language english will prevail in case of any discrepancies or deviations between the two language wordings.

#### Attention please!

The information describes the type of component and shall not be considered as assured characteristics.

Terms of delivery and rights to change design reserved. Due to technical requirements components may contain dangerous substances.

For information on the types in question please contact our Sales Organization.

If printed or downloaded, please find the latest version in the Internet.

#### **Packing**

Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.

Components used in life-support devices or systems must be expressly authorized for such purpose! Critical components\* may only be used in life-support devices\*\* or systems with the express written approval of OSRAM OS.

- \*) A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or the effectiveness of that device or system.
- \*\*) Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health and the life of the user may be endangered.



#### Glossary

Typical Values: Due to the special conditions of the manufacturing processes of LED, the typical data or calculated correlations of technical parameters can only reflect statistical figures. These do not necessarily correspond to the actual parameters of each single product, which could differ from the typical data and calculated correlations or the typical characteristic line. If requested, e.g. because of technical improvements, these typ. data will be changed without any further notice.



### **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Infrared Emitters - High Power category:

Click to view products by Osram manufacturer:

Other Similar products are found below:

IR19-315C/TR8 SFH 4030 SFH 4060 HSM8-V380 HSM9-V380 SFH 5750 PK2S-2KJE-A PK2S-2LJE-A PK2S-3KJE-A PK2S-3KKE-A PK2S-3LJE-A PK2S-4KJE-A AREQ-90C0-00000 AREQ-80C0-00000 SFH 4775S A01 SST-10-IRD-B90H-S810 SFH 4727A SFH 4726AS SFH 4717AS AREQ-8020-00000 HR5P-N3FB-00000 HR5P-N2FB-00000 HR5P-N3CB-00000 HR5P-N2CB-00000 HR5P-N3CA-00000 HR5P-N3FA-00000 VSMY2853SLX01 VSMY2853RGX01 VSMY2853GX01 IN-P281ASGHIR IN-P281ASGIR QEE123 HSDL-4400#011 C3535SIR2C-2B KM-4457F3C L-53F3BT VTE1291W-2H LL-304IRC4B-2AD LL-503HIRT2E-1CC LL-503IRC2E-2AC LL-503IRC2V-2AD LL-503IRT2E-2AC LL-503IRT2E-2AE LL-503SIRC2E-1BD LL-503SIRC2H-1BE LL-S170IRC-2A SFH 4259 SFH 4542-Z