

CMPA5585030F

30 W, 5.5 - 8.5 GHz, GaN MMIC, Power Amplifier

Cree's CMPA5585030F is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC). GaN has superior properties compared to silicon or gallium arsenide, including higher breakdown voltage, higher saturated electron drift velocity and higher thermal conductivity. GaN HEMTs also offer greater power density and wider bandwidths compared to Si and GaAs transistors. This MMIC is available in a 10 lead metal/ceramic flanged package for optimal electrical and thermal performance.

PN: CMPA5585030F Package Type: 440213

Typical Performance Over 5.8-8.4 GHz (T_c = 25°C)

Parameter	5.8 GHz	6.4 GHz	7.2 GHz	7.9 GHz	8.4 GHz	Units
S21 ^{1,2}	25.9	23.8	26.5	24.5	26.7	dB
Power Gain ^{,2,5}	22.3	19.0	20.9	21.6	21.2	dB
PAE ^{1,2,4,5}	24.7	20.7	20.3	22.6	22.9	%
ACLR ^{1,2,3,5}	-37	-42	-33	-34	-40	dBC

Notes (unless otherwise specified):

- 1. At 25°C
- 2. Measurements are performed using Cree test fixture AD-938516
- 3. Under OQPSK modulated signal, 1.6 Msps, PN23, Alpha Filter = 0.2
- 4. Power Added Efficiency = (P_{OUT} P_{IN}) / PDC
- 5. Measured at P_{out} = 41 dBm

Features

- 25 dB Small Signal Gain
- 30 W Typical P_{SAT}
- Operation up to 28 V
- High Breakdown Voltage
- High Temperature Operation
- Size 1.00 x 0.385 inches

Applications

- · Point to Point Radio
- Communications
- Satellite Communication Uplink

Absolute Maximum Ratings (not simultaneous)

Parameter	Symbol	Rating	Units	Conditions
Drain-source Voltage	$V_{\scriptscriptstyle DSS}$	84	V _{DC}	25°C
Gate-source Voltage	$V_{\sf GS}$	-10, +2	V _{DC}	25°C
Power Dissipation	P _{DISS}	55	W	
Storage Temperature	T _{STG}	-65, +150	°C	
Operating Junction Temperature	T_{J}	225	°C	
Maximum Forward Gate Current	I _{GMAX}	10	mA	25°C
Soldering Temperature ¹	T_s	245	°C	
Screw Torque	τ	40	in-oz	
Thermal Resistance, Junction to Case	R _{eJC}	2.38	°C/W	CW, 85°C, P _{DISS} = 43 W
Case Operating Temperature	T _c	-40, +150	°C	

Note:

Electrical Characteristics (Frequency = 5.5 GHz to 8.5 GHz unless otherwise stated; $T_c = 25^{\circ}C$)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions	
DC Characteristics ¹							
Gate Threshold Voltage	V_{TH}	-3.8	-2.8	-2.3	V	V _{DS} = 10 V, I _{DS} = 20.6 mA	
Saturated Drain Current	I _{DS}	16.4	18.6	-	А	V_{DS} = 6.0 V, V_{GS} = 2.0 V	
Drain-Source Breakdown Voltage	$V_{_{\mathrm{BD}}}$	84	100	-	V	V _{GS} = -8 V, I _{DS} = 20.6 mA	
RF Characteristics ³							
Small Signal Gain	S21	-	26	-	dB	$V_{DD} = 28 \text{ V, } I_{DQ} = 285 \text{ mA, } P_{IN} = -20 \text{ dBm}$	
Input Return Loss	S11	-	-7	-	dB	V _{DD} = 28 V, I _{DQ} = 285 mA, P _{IN} = -20 dBm	
Output Return Loss	S22	-	-7	-	dB	V _{DD} = 28 V, I _{DQ} = 285 mA, P _{IN} = -20 dBm	
Output Mismatch Stress	VSWR	-	+	5:1	Ψ	No damage at all phase angles, V_{DD} = 28 V, I_{DQ} = 285 mA, P_{OUT} = 43 dBm	

Notes:

¹ Refer to the Application Note on soldering at <u>www.cree.com/RF/Document-Library</u>

¹ Measured on-wafer prior to packaging.

² Scaled from PCM data.

³ Measured in the CMPA5585030F-AMP

Electrical Characteristics Continued... (T_c = 25°C)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
RF Characteristics ^{1,2,3,4}						
Power Added Efficiency, 5.8 GHz	PAE1	-	24.8	-	%	$V_{DD} = 28 \text{ V, } I_{DQ} = 285 \text{ mA, } P_{OUT} = 41 \text{ dBm}$
Power Added Efficiency, 6.4 GHz	PAE2	-	22.4	-	%	$V_{DD} = 28 \text{ V, I}_{DQ} = 285 \text{ mA, P}_{OUT} = 41 \text{ dBm}$
Power Added Efficiency, 7.2 GHz	PAE3	-	22.0	-	%	$V_{DD} = 28 \text{ V, } I_{DQ} = 285 \text{ mA, } P_{OUT} = 41 \text{ dBm}$
Power Added Efficiency, 7.9 GHz	PAE4	-	23.9	-	%	$V_{DD} = 28 \text{ V, } I_{DQ} = 285 \text{ mA, } P_{OUT} = 41 \text{ dBm}$
Power Added Efficiency, 8.4 GHz	PAE5	-	21.8	-	%	$V_{DD} = 28 \text{ V, } I_{DQ} = 285 \text{ mA, } P_{OUT} = 41 \text{ dBm}$
Power Gain, 5.8 GHz	G _{P1}	-	22.4	-	dB	V_{DD} = 28 V, I_{DQ} = 285 mA, P_{OUT} = 41 dBm
Power Gain, 6.4 GHz	G_{P2}	-	20.2	-	dB	$V_{DD} = 28 \text{ V, I}_{DQ} = 285 \text{ mA, P}_{OUT} = 41 \text{ dBm}$
Power Gain, 7.2 GHz	G_{P3}	-	21.0	-	dB	V_{DD} = 28 V, I_{DQ} = 285 mA, P_{OUT} = 41 dBm
Power Gain, 7.9 GHz	G _{P4}	-	22.2	-	dB	$V_{DD} = 28 \text{ V, } I_{DQ} = 285 \text{ mA, } P_{OUT} = 41 \text{ dBm}$
Power Gain, 8.4 GHz	G_{P5}	-	21.8	-	dB	V_{DD} = 28 V, I_{DQ} = 285 mA, P_{OUT} = 41 dBm
OQPSK Linearity, 5.8 GHz	ACLR1	-	-42	-	dB	$V_{DD} = 28 \text{ V, } I_{DQ} = 285 \text{ mA, } P_{OUT} = 41 \text{ dBm}$
OQPSK Linearity, 6.4 GHz	ACLR2	-	-44	-	dB	V_{DD} = 28 V, I_{DQ} = 285 mA, P_{OUT} = 41 dBm
OQPSK Linearity, 7.2 GHz	ACLR3	-	-34	-	dB	$V_{DD} = 28 \text{ V, } I_{DQ} = 285 \text{ mA, } P_{OUT} = 41 \text{ dBm}$
OQPSK Linearity, 7.9 GHz	ACLR4	-	-37	-	dB	$V_{DD} = 28 \text{ V, } I_{DQ} = 285 \text{ mA, } P_{OUT} = 41 \text{ dBm}$
OQPSK Linearity, 8.4 GHz	ACLR5	-	-40	-	dB	$V_{DD} = 28 \text{ V, } I_{DQ} = 285 \text{ mA, } P_{OUT} = 41 \text{ dBm}$

Notes:

a. 5.8 GHz

b. 7.2 GHz

c. 7.9 GHz

d. 8.4 GHz

Electrostatic Discharge (ESD) Classifications

Parameter	Symbol	Class	Test Methodology
Human Body Model	НВМ	1A (> 250 V)	JEDEC JESD22 A114-D
Charge Device Model	CDM	II (200 < 500 V)	JEDEC JESD22 C101-C

¹ At 25°C

² Measurements are to be performed using Cree

³ Measured using network analyzer

⁴ Under OQPSK modulated signal, 1.6 Msps, PN23

 $^{^{5}}$ Power Added Efficiency = $(P_{OUT} - P_{IN})/PDC$

⁴ Fixture loss de-embedded using the following offset:

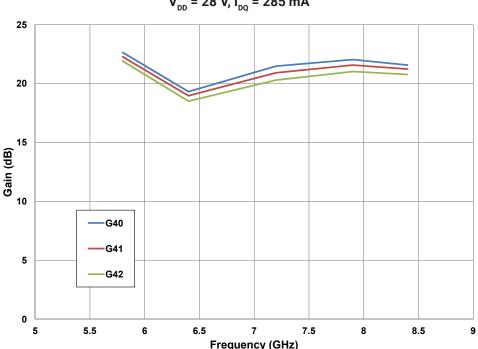


Figure 1. - Gain vs. Frequency & Output Power OQPSK 1.6 Msps $V_{_{DD}}$ = 28 V, $I_{_{DQ}}$ = 285 mA

Figure 2. - Power Added Efficiency vs. Frequency & Output Power OQPSK 1.6 Msps $V_{_{\rm DD}}$ = 28 V, $I_{_{\rm DQ}}$ = 285 mA

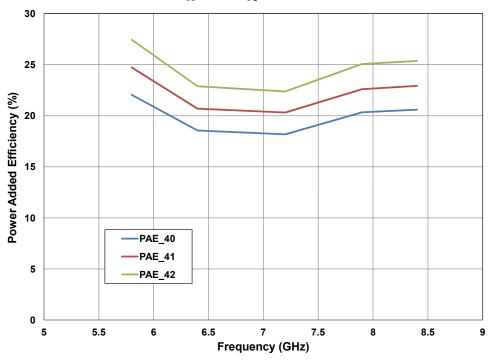


Figure 3. - ACLR vs. Frequency & Output Power OQPSK 1.6 Msps V_{DD} = 28 V, I_{DO} = 285 mA

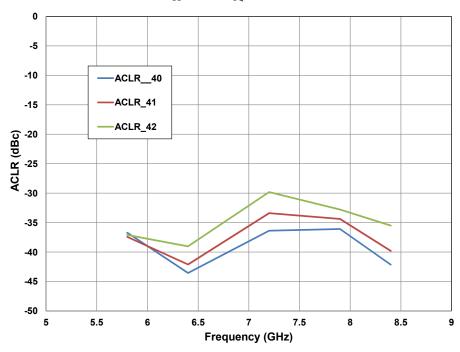
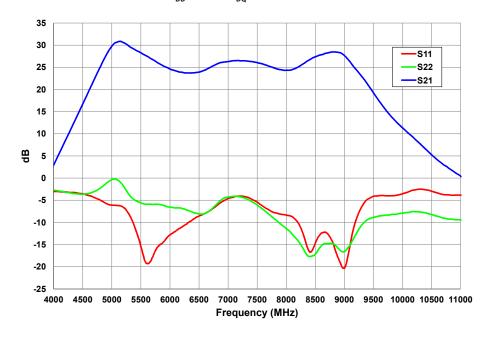



Figure 4. - Typical S-Parameters V_{DD} = 28 V, I_{DO} = 285 mA

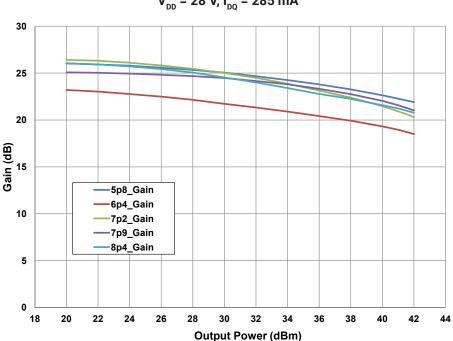


Figure 5. - Gain vs. Output Power and Frequency OQPSK 1.6 Msps $V_{\rm DD}$ = 28 V, $I_{\rm DQ}$ = 285 mA

Figure 6. - Power Added Efficiency vs. Output Power and Frequency OQPSK 1.6 Msps V_{DD} = 28 V, I_{DO} = 285 mA

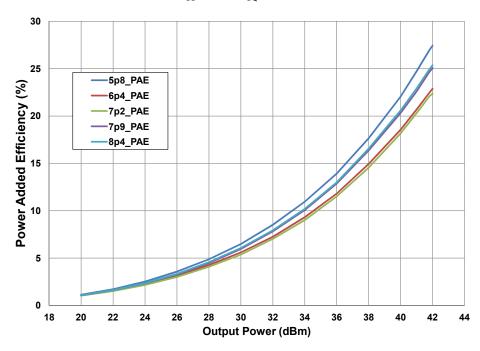


Figure 7. -ACLR vs. Output Power and Frequency OQPSK 1.6 Msps V_{DD} = 28 V, I_{DO} = 285 mA

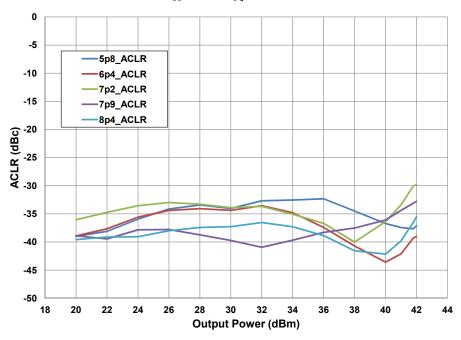
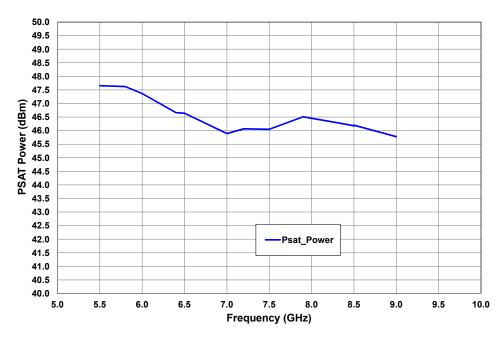



Figure 8. - PSAT Power vs. Frequency V_{DD} = 28 V, I_{DQ} = 800 mA Pulsed 100 μ s/10%

www.cree.com/rf

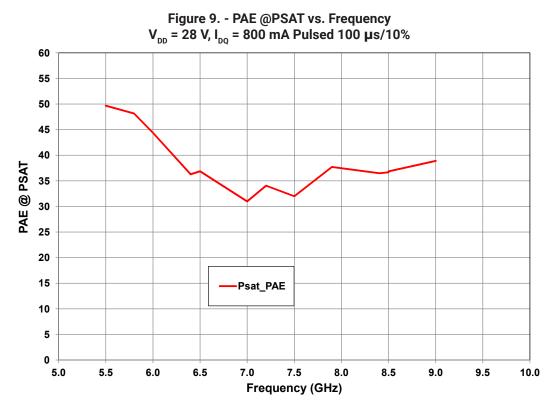
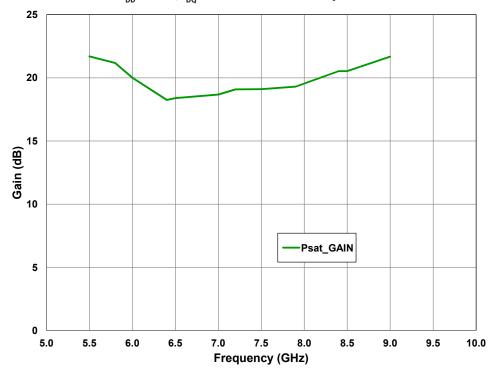



Figure 10. - Gain @PSAT vs. Frequency V_{DD} = 28 V, I_{DO} = 800 mA Pulsed 100 μ s/10%

www.cree.com/rf

Figure 11. PAE vs. Output Power and Frequency V_{DD} = 28 V, I_{DQ} = 800 mA Pulsed 100 μ s/10%

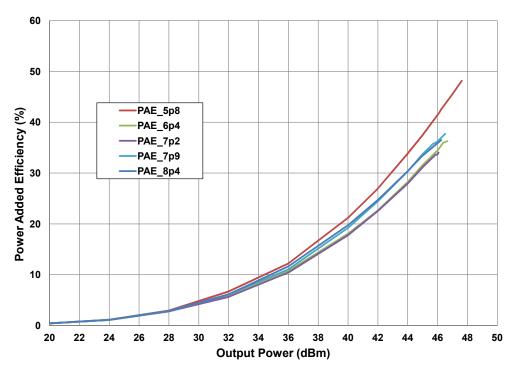
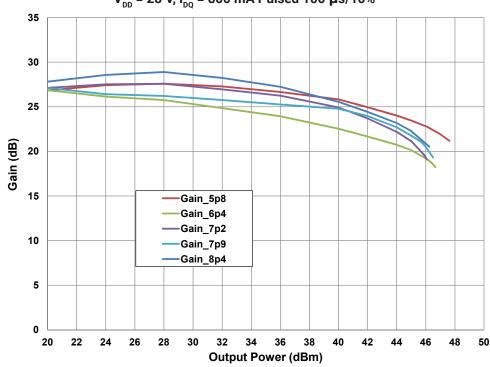
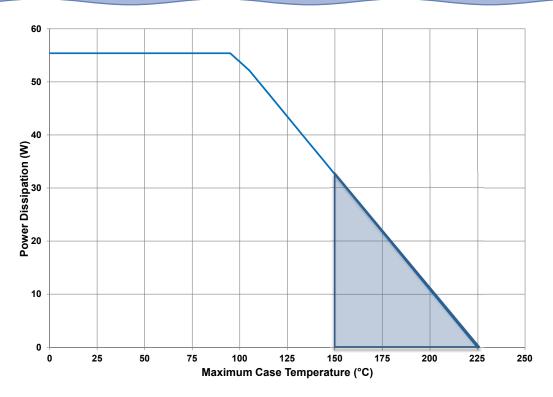
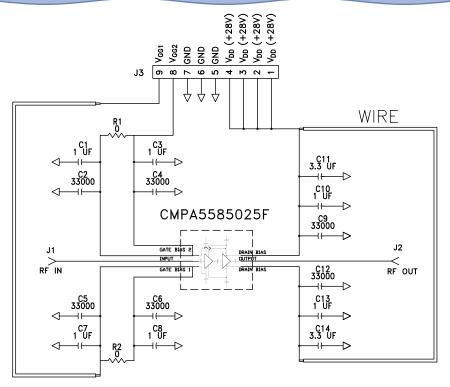




Figure 12. Gain vs. Output Power and Frequency V_{DD} = 28 V, I_{DO} = 800 mA Pulsed 100 μ s/10%

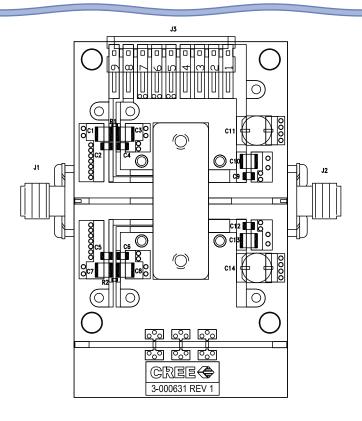
CMPA5585030F Power Dissipation De-rating Curve

Note 1. Area exceeds Maximum Case Operating Temperature (See Page 2).

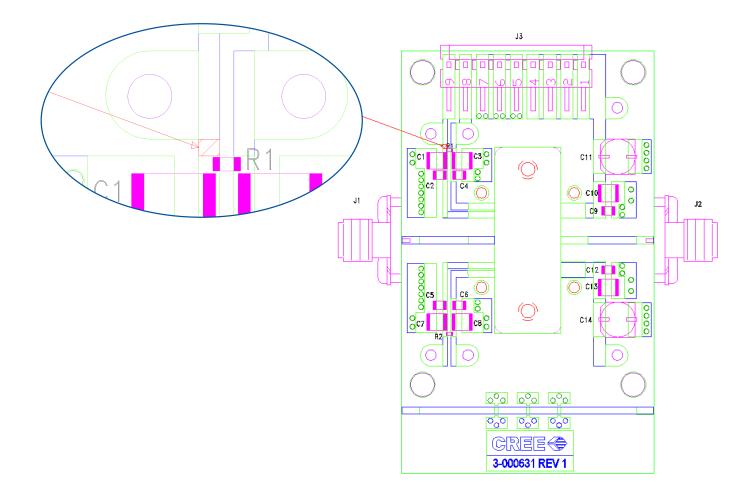
CMPA5585030F-AMP Demonstration Amplifier Circuit Bill of Materials

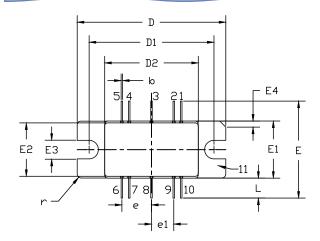

Designator	Description	Qty
C1, C3, C7, C8, C10, C13	CAP, 1.0 uF, +/-10%, 1210, 100V, X7R	6
C2, C4, C5, C6, C9, C12	CAP, 33000 pF, 0805, 100V, X7R	6
C11, C14	CAP ELECT 3.3UF 80V FK SMD	2
R1, R2	RES 0.0 OHM 1/16W 0402 SMD	2
J1,J2	CONN, SMA, PANEL MOUNT JACK, FLANGE, 4-HOLE, BLUNT POST, 20MIL	2
J3	CONNECTOR, HEADER, RT>PLZ .1CEN LK 9POS	1
-	PCB, TACONIC, RF-35P-0200-CL1/CL1	1
Q1	CMPA5585030F	1

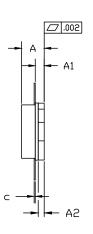
CMPA5585030F-AMP Demonstration Amplifier Circuit



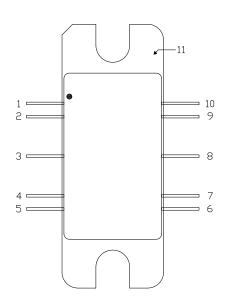
CMPA5585030F-AMP Demonstration Amplifier Circuit


CMPA5585030F-AMP Demonstration Amplifier Circuit Outline


CMPA5585030F-AMP Demonstration Amplifier Circuit


To configure the CMPA5585030F test fixture to enable independent $V_{\rm G1}$ / $V_{\rm G2}$ control of the device, a cut must be made to the microstrip line just above the R1 resistor as shown. Pin 9 will then supply $V_{\rm G1}$ and Pin 8 will supply $V_{\rm G2}$.

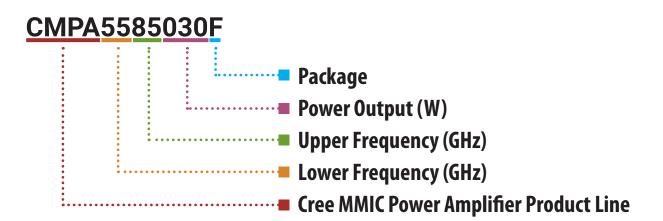
Product Dimensions CMPA5585030F (Package Type - 440213)


PIN 1: GATE BIAS 6: DRAIN BIAS 2: GATE BIAS 7: DRAIN BIAS 3: RF IN 8: RF DUT 4: GATE BIAS 9: DRAIN BIAS 5: GATE BIAS 10: DRAIN BIAS 11: SDURCE

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M $-\,$ 1994.
- 2. CONTROLLING DIMENSION: INCH.
- 3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020" BEYOND EDGE OF LID.
- 4. LID MAY BE MISALIGNED TO THE BODY OF PACKAGE BY A MAXIMUM OF 0.008" IN ANY DIRECTION.

	INC	HES	MILLIN	IETERS	NOTES
DIM	MIN	MAX	MIN	MAX	
Α	0.148	0.168	3.76	4.27	
A1	0.055	0.065	1.40	1.65	
A2	0.035	0.045	0.89	1.14	
b	0.01	TYP	0.254	TYP	10x
С	0.007	0.009	0.18	0.23	
D	0.995	1.005	25.27	25.53	
D1	0.835	0.845	21.21	21.46	
D2	0.623	0.637	15.82	16.18	
Ε	0.653	TYP	16.59 TYP		
E1	0.380	0.390	9.65	9.91	
E2	0.355	0.365	9.02	9.27	
E3	0.120	0.130	3.05	3.30	
E4	0.035	0.045	0.89	1.14	45° CHAMFER
е	0.20	O TYP	5.08	TYP	4x
e1	0.15) TYP	3.81 TYP		4×
L	0.115	0.155	2.92	3.94	10x
r	0.02	5 TYP	.635	TYP	3x


Pin Number	Qty
1	Gate Bias for Stage 2
2	Gate Bias for Stage 2
3	RF In
4	Gate Bias for Stage 1
5	Gate Bias for Stage 1
6	Drain Bias
7	Drain Bias
8	RF Out
9	Drain Bias
10	Drain Bias
11	Source

www.cree.com/rf

Part Number System

Parameter	Value	Units
Lower Frequency	5.5	GHz
Upper Frequency ¹	8.5	GHz
Power Output	30	W
Package	Flange	-

Table 1.

Note¹: Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Character Code	Code Value		
А	0		
В	1		
С	2		
D	3		
E	4		
F	5		
G	6		
Н	7		
J	8		
K	9		
Examples:	1A = 10.0 GHz 2H = 27.0 GHz		

Table 2.

Product Ordering Information

Order Number	 Description	Unit of Measure	lmage
CMPA5585030F	GaN MMIC	Each	CRIEFE COOP CMP A55885080F CMP A55885080F
CMPA5585030F-TB	Test board without GaN MMIC	Each	
CMPA5585030F-AMP	Test board with GaN MMIC installed	Each	

Disclaimer

Specifications are subject to change without notice. Cree, Inc. believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Cree for its use or for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Cree. Cree makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Cree in large quantities and are provided for information purposes only. These values can and do vary in different applications, and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Cree products are not designed, intended, or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Cree product could result in personal injury or death, or in applications for the planning, construction, maintenance or direct operation of a nuclear facility. CREE and the CREE logo are registered trademarks of Cree, Inc.

For more information, please contact:

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 www.cree.com/RF

Sarah Miller Marketing Cree, RF Components 1.919.407.5302

Ryan Baker Marketing & Sales Cree, RF Components 1.919.407.7816

Tom Dekker Sales Director Cree, RF Components 1.919.407.5639

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Amplifier category:

Click to view products by Wolfspeed manufacturer:

Other Similar products are found below:

ADPA7006AEHZ CXE2089ZSR MGA-43828-BLKG A82-1 RF2878TR7 BGA 728L7 E6327 BGB719N7ESDE6327XTMA1 HMC1126-SX HMC342 HMC561-SX HMC598-SX HMC-ALH382-SX HMC-ALH476-SX SE2433T-R SE2622L-R SMA3101-TL-E SMA39 SMA70-1 A66-1 A66-3 A67-1 LX5535LQ LX5540LL HMC3653LP3BETR HMC395 HMC549MS8GETR HMC576-SX HMC754S8GETR HMC-ALH435-SX SMA101 SMA181 SMA32 SMA411 SMA531 SST12LP17E-XX8E SST12LP19E-QX6E TGA2598 WPM0510A HMC5929LS6TR HMC5879LS7TR HMC906A-SX HMC1127 HMC544A HMC1126 HMC1110-SX HMC1087F10 HMC1086 HMC1016 MMZ25332B4T1 AMC-143SMA