

Ultralow V_F Ultrafast Rectifier, 15 A FRED Pt[®]

www.vishay.com

TO-252AA (D-PAK)

VS-15AWL06FN-M3

VS-15EWL06FN-M3

PRODUCT SUMMARY									
Package	TO-252AA (D-PAK)								
I _{F(AV)}	15 A								
V _R	600 V								
V _F at I _F	0.85 V								
t _{rr} (typ.)	60 ns								
T _J max.	175 °C								
Diode variation	Single die								

FEATURES

- Ultrafast recovery time, extremely low V_F and soft recovery
- 175 °C maximum operating junction temperature
- For PFC DCM operation
- Low leakage current
- Meets MSL level 1, per J-STD-020, LF maximum *FREE*
 peak of 260 °C
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

DESCRIPTION / APPLICATIONS

State of the art, ultralow V_F , soft-switching hyperfast rectifiers optimized for Discontinuous (Critical) Mode (DCM) Power Factor Correction (PFC).

The minimized conduction loss, optimized stored charge and low recovery current minimize the switching losses and reduce over dissipation in the switching element and snubbers.

The device is also intended for use as a freewheeling diode in power supplies and other power switching applications.

ABSOLUTE MAXIMUM RATINGS										
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS						
Peak repetitive reverse voltage	V _{RRM}		600	V						
Average rectified forward current	I _{F(AV)}	T _C = 148 °C	15							
Non-repetitive peak surge current	I _{FSM}	$T_J = 25 \ ^{\circ}C$	180	А						
Peak repetitive forward current	I _{FM}	$T_{C} = 148 \text{ °C}, f = 20 \text{ kHz}, d = 50 \text{ \%}$	30							
Operating junction and storage temperatures	T _J , T _{Stg}		-65 to +175	°C						

ELECTRICAL SPECIFICATIONS (T _J = 25 °C unless otherwise specified)									
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS			
Breakdown voltage, blocking voltage	V _{BR} , V _R	I _R = 100 μA	600	-	-				
Forward voltage	V	I _F = 15 A	-	0.99	1.05	V			
Forward voltage	V _F	I _F = 15 A, T _J = 150 °C	-	0.85	0.92				
	1	$V_{R} = V_{R}$ rated	-	-	10				
Reverse leakage current	IR	$T_J = 150 \ ^{\circ}C, V_R = V_R \text{ rated}$	-	-	120	μA			
Junction capacitance	CT	V _R = 600 V	-	11	-	pF			
Series inductance	L _S	Measured lead to lead 5 mm from package body	-	8	-	nH			

Revision: 04-Oct-16

1

Document Number: 93568

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

(e3) RoHS

COMPLIANT

VS-15AWL06FN-M3, VS-15EWL06FN-M3

www.vishay.com

Vishay Semiconductors

DYNAMIC RECOVERY CHARACTERISTICS ($T_J = 25$ °C unless otherwise specified)									
PARAMETER	SYMBOL	TEST CO	NDITIONS	MIN.	TYP.	MAX.	UNITS		
Reverse recovery time		$I_F = 1 \text{ A}, dI_F/dt = 10$	00 A/µs, V _R = 30 V	-	60	120			
	t _{rr}	$I_F = 15 \text{ A}, \text{ d}I_F/\text{d}t = 1000 \text{ cm}^{-1}$	-	190	-	ns			
		T _J = 25 °C		-	220	-	115		
		T _J = 125 °C	l _F = 15 A dL/dt = 200 A/us	-	290	-			
Peak recovery current	I _{RRM}	$T_J = 25 \text{ °C}$ $I_F = 15 \text{ A}$ $dI_F/dt = 200 \text{ A}/\mu\text{s}$		-	21	-	А		
Peak recovery current		T _J = 125 °C	$V_{\rm R} = 390 \text{ V}$	-	25	-	~		
Reverse recovery charge	0	T _J = 25 °C		-	2.6	-			
	Q _{rr}	T _J = 125 °C		-	4	-	μC		

THERMAL - MECHANICAL SPECIFICATIONS									
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS			
Maximum junction and storage temperature range	T _J , T _{Stg}		-65	-	175	°C			
Thermal resistance, junction to case per leg	R _{thJC}		-	1.4	1.8	°C/W			
Thermal resistance, junction to ambient per leg	R _{thJA}		-	-	70	C/W			
Approximate weight				0.3		g			
Approximate weight				oz.					
Marking davias		Case style TO-252AA (D-PAK)	15AWL06FN						
Marking device		Case signe 10-202AA (D-FAR)	15EWL06FN						

VS-15AWL06FN-M3, VS-15EWL06FN-M3

Vishay Semiconductors

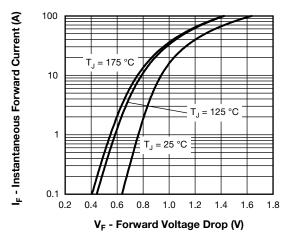
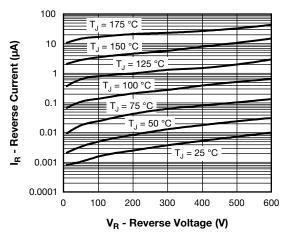
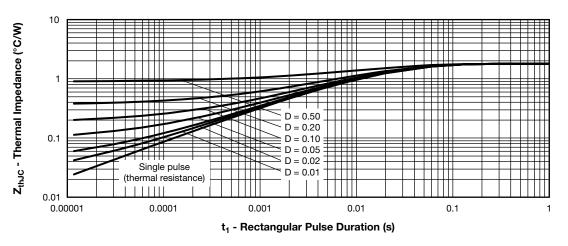
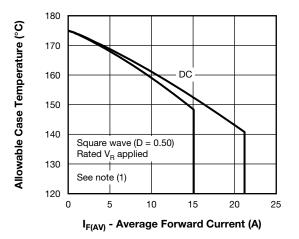


Fig. 1 - Typical Forward Voltage Drop Characteristics


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

Revision: 04-Oct-16 3 Document Number: 93568 For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

www.vishay.com

Fig. 5 - Maximum Allowable Case Temperature vs. Average Forward Current

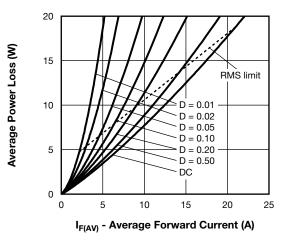


Fig. 6 - Forward Power Loss Characteristics

Note

⁽¹⁾ Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$; Pd = forward power loss = $I_{F(AV)} \times V_{FM}$ at $(I_{F(AV)}/D)$ (see fig. 6); Pd_{BEV} = inverse power loss = $V_{B1} \times I_{B} (1 - D)$; I_{B} at V_{B1} = rated V_{B1}

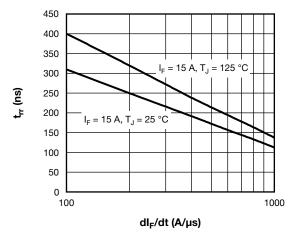


Fig. 7 - Typical Reverse Recovery Time vs. dl_F/dt

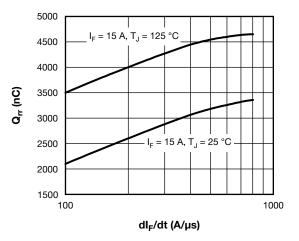


Fig. 8 - Typical Stored Charge vs. dl_F/dt

Revision: 04-Oct-16 Document Number: 93568 4 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

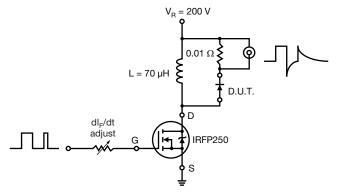


Fig. 9 - Reverse Recovery Parameter Test Circuit

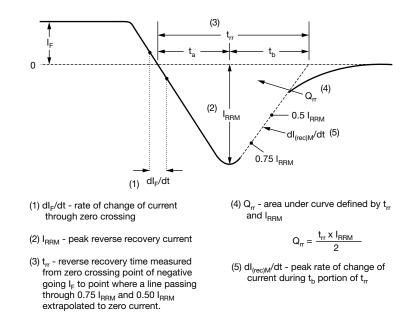
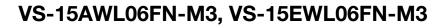



Fig. 10 - Reverse Recovery Waveform and Definitions

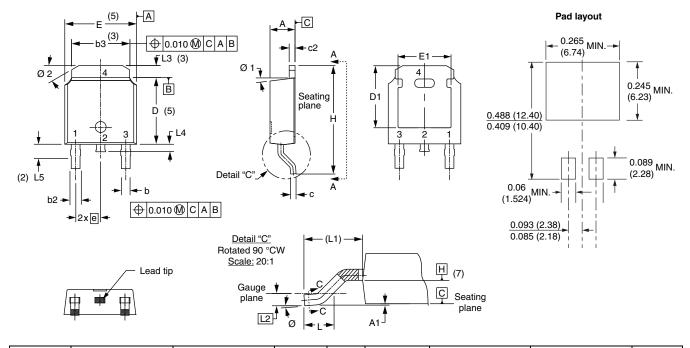
ORDERING INFORMATION TABLE

Device code	VS-	15	Α	w	L	06	FN	TRL	-M3
	1	2	3	4	5	6	7	8	9
	1 .	- Visł	nay Sem	niconduc	ctors pro	duct			
	2	- Cur	rent rati	ng (15 =	15 A)				
	3	- Circ	uit conf	iguratior	n:				
		• A	= single	e diode (2 anode	s)			
		• E = single diode							
	4	- Package identifier:							
	_	W =	D-PAK						
	5	- L=	hyperfa	st rectifi	er				
	6	- Volt	age rati	ng (06 =	: 600 V)				
	느	- FN	= TO-25	52AA					
	8	• N	one = tu	be					
		• TI	R = tape	and ree	el				
		• TI	RL = tap	e and re	eel (left o	oriented	l)		
		• TF	RR = tap	be and r	eel (righ	t oriente	ed)		
	9	- Env	ironmer	ntal digit	:				
		140	_ h = l = =			12	المحرج المحر		

-M3 = halogen-free, RoHS-compliant and terminations lead (Pb)-free

ORDERING INFORMATION (Example)									
PREFERRED P/N	QUANTITY PER T/R	MINIMUM ORDER QUANTITY	PACKAGING DESCRIPTION						
VS-15AWL06FN-M3	75	3000	Antistatic plastic tube						
VS-15EWL06FN-M3	13	3000	Antistatic plastic tube						
VS-15AWL06FNTR-M3	2000	2000	13" diameter reel						
VS-15EWL06FNTR-M3	2000	2000							
VS-15AWL06FNTRL-M3	3000	3000	13" diameter reel						
VS-15EWL06FNTRL-M3	3000	3000	13" diameter reel						
VS-15AWL06FNTRR-M3	3000	3000	12" diamatar raal						
VS-15EWL06FNTRR-M3	3000	3000	13" diameter reel						

LINKS TO RELATED DOCUMENTS								
Dimensions	www.vishay.com/doc?95627							
Part marking information	www.vishay.com/doc?95176							
Packaging information	www.vishay.com/doc?95033							
SPICE model	www.vishay.com/doc?95372							


Revision: 04-Oct-16 6 Document Number: 93568 For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

D-PAK (TO-252AA) "M"

DIMENSIONS in millimeters and inches

SYMBOL	MILLIMETERS		INCHES		NOTES		SYMBOL	MILLIN	IETERS	INC	HES	NOTES
STNIDUL	MIN.	MAX.	MIN.	MAX.	NOTES	NOTED	STIVIDUL	MIN.	MAX.	MIN.	MAX.	NOTES
А	2.18	2.39	0.086	0.094			е	2.29	BSC	0.090	BSC	
A1	-	0.13	-	0.005			Н	9.40	10.41	0.370	0.410	
b	0.64	0.89	0.025	0.035			L	1.40	1.78	0.055	0.070	
b2	0.76	1.14	0.030	0.045			L1	2.74	BSC	0.108	REF.	
b3	4.95	5.46	0.195	0.215	3		L2	0.51 BSC		0.51 BSC 0.020 BSC		
с	0.46	0.61	0.018	0.024			L3	0.89	1.27	0.035	0.050	3
c2	0.46	0.89	0.018	0.035			L4	-	1.02	-	0.040	
D	5.97	6.22	0.235	0.245	5		L5	1.14	1.52	0.045	0.060	2
D1	5.21	-	0.205	-	3		Ø	0°	10°	0°	10°	
E	6.35	6.73	0.250	0.265	5		Ø1	0°	15°	0°	15°	
E1	4.32	-	0.170	-	3		Ø2	25°	35°	25°	35°	

Notes

⁽¹⁾ Dimensioning and tolerancing as per ASME Y14.5M-1994

⁽²⁾ Lead dimension uncontrolled in L5

⁽³⁾ Dimension D1, E1, L3 and b3 establish a minimum mounting surface for thermal pad

(4) Section C - C dimension apply to the flat section of the lead between 0.13 and 0.25 mm (0.005 and 0.10") from the lead tip

(5) Dimension D, and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body

⁽⁶⁾ Dimension b1 and c1 applied to base metal only

⁽⁷⁾ Datum A and B to be determined at datum plane H

⁽⁸⁾ Outline conforms to JEDEC[®] outline TO-252AA

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Rectifiers category:

Click to view products by Vishay manufacturer:

Other Similar products are found below :

D91A DA24F4100L DD89N1600K-A DD89N16K-K RL252-TP DSEI2X30-06C 1N4005-TR BAV199-TP UFS120Je3/TR13 JANS1N6640US DD89N16K DD89N16K-A 481235F 067907F MS306 ND104N08K SPA2003-B-D-A01 US2JFL-TP UFS105Je3/TR13 A1N5404G-G ACGRA4007-HF ACGRB207-HF RF301B2STL RF501B2STL UES1302 BAV199E6433HTMA1 ACGRC307-HF ACEFC304-HF JANTXV1N5660A UES1106 GS2K-LTP D126A45C D251N08B SCHJ22.5K SM100 SCPA2 SDHD5K STTH20P035FP VS-8EWS12S-M3 VS-12FL100S10 ACGRA4001-HF MUR420GP-TP 1N5404GP-E3/54 ND89N08K D1821SH45T PR D1251S45T JANTX1N3890 SKN20/16 SKN70/16 1N3660R