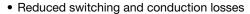

Vishay Siliconix


EL Series Power MOSFET

PRODUCT SUMMARY					
V _{DS} (V) at T _J max.	65	50			
R _{DS(on)} typ. (Ω) at 25 °C	V _{GS} = 10 V	0.155			
Q _g max. (nC)	82				
Q _{gs} (nC)	20				
Q _{gd} (nC)	13				
Configuration	Sin	Single			

FEATURES

- Low figure-of-merit (FOM) Ron x Qa
- Low input capacitance (Ciss)

- Ultra low gate charge (Q_a)
- Avalanche energy rated (UIS)
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

APPLICATIONS

- Server and telecom power supplies
- Switch mode power supplies (SMPS)
- Power factor correction power supplies (PFC)
- Lighting
 - High-intensity discharge (HID)
 - Fluorescent ballast lighting
- Industrial
 - Welding
 - Induction heating
 - Motor drives
 - Battery chargers
- Renewable energy
- Solar (PV inverters)

ORDERING INFORMATION			
Package	Thin-lead TO-220 FULLPAK		
Lead (Pb)-free and halogen-free	SiHA22N60AEL-GE3		

ABSOLUTE MAXIMUM RATINGS	$(1_{\text{C}} = 25^{\circ}\text{C}, \text{un})$	iess otnerwis	•		
PARAMETER			SYMBOL	LIMIT	UNIT
Drain-source voltage			V_{DS}	600	V
Gate-source voltage			V_{GS}	± 30	
Continuous drain current (T _J = 150 °C) ^e	V _{GS} at 10 V	$T_C = 25 ^{\circ}C$ $T_C = 100 ^{\circ}C$	- I _D	21	
	V _{GS} at 10 V	T _C = 100 °C		13	Α
Pulsed drain current ^a			I _{DM}	48	
Linear derating factor				1.7	W/°C
Single pulse avalanche energy b			E _{AS}	183	mJ
Maximum power dissipation			P _D	35	W
Operating junction and storage temperature range			T _J , T _{stg}	-55 to +150	°C
Reverse diode dv/dt d		dv/dt	50	V/ns	
Soldering recommendations (peak temperature	e) ^c For	For 10 s		260	°C

Notes

- a. Repetitive rating; pulse width limited by maximum junction temperature
- b. V_{DD} = 120 V, starting T_J = 25 °C, L = 28.2 mH, R_q = 25 Ω , I_{AS} = 3.6 A
- c. 1.6 mm from case
- d. $I_{SD} \le I_D$, di/dt = 100 A/ μ s, starting T_J = 25 °C
- e. Limited by maximum junction temperature

Vishay Siliconix

THERMAL RESISTANCE RATINGS						
PARAMETER	SYMBOL	TYP.	MAX.	UNIT		
Maximum junction-to-ambient	R _{thJA}	-	65	°C/W		
Maximum junction-to-case (drain)	R_{thJC}	-	3.6	C/VV		

PARAMETER	SYMBOL	TES	TEST CONDITIONS			MAX.	UNIT
Static		-					
Drain-source breakdown voltage	V _{DS}	V _{GS} =	600	-	-	V	
V _{DS} temperature coefficient	$\Delta V_{DS}/T_{J}$	Referenc	Reference to 25 °C, I _D = 1 mA		0.68	-	V/°C
Gate-source threshold Voltage (N)	V _{GS(th)}	V _{DS} =	- V _{GS} , I _D = 250 μA	2.0	-	4.0	V
		V _{GS} = ± 20 V		-	-	± 100	nA
Gate-source leakage	I _{GSS}	,	V _{GS} = ± 30 V	-	-	± 1	μΑ
		V _{DS} =	$V_{DS} = 600 \text{ V}, V_{GS} = 0 \text{ V}$ $V_{DS} = 480 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 125 \text{ °C}$		-	1	μΑ
Zero gate voltage drain current	I _{DSS}	V _{DS} = 480 V			-	10	
Drain-source on-state resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 11 A	-	0.155	0.180	Ω
Forward transconductance	9 _{fs}	V_{DS}	V _{DS} = 8 V, I _D = 11 A		16	-	S
Dynamic							
Input capacitance	C _{iss}	$V_{GS} = 0 V$,		-	1757	-	pF
Output capacitance	C _{oss}	Τ,	V _{BS} = 0 V, V _{DS} = 100 V,		74	-	
Reverse transfer capacitance	C _{rss}	f = 1 MHz		-	6	-	
Effective output capacitance, energy related ^a	C _{o(er)}	V _{DS} = 0 V to 480 V, V _{GS} = 0 V		-	48	-	
Effective output capacitance, time related ^b	C _{o(tr)}			-	257	-	
Total gate charge	Qg			-	41	82	
Gate-source charge	Q_{gs}	V _{GS} = 10 V	$V_{GS} = 10 \text{ V}$ $I_D = 11 \text{ A}, V_{DS} = 480 \text{ V}$		10	-	nC
Gate-drain charge	Q _{gd}	7			13	-	
Turn-on delay time	t _{d(on)}				27	54	
Rise time	t _r	V _{DD} = 480 V, I _D = 11 A,		-	24	48	1
Turn-off delay time	t _{d(off)}	V _{GS} =	$V_{GS} = 10 \text{ V}, R_g = 9.1 \Omega$		86	172	ns
Fall time	t _f			-	28	56	
Gate input resistance	R_g	f = 1 MHz, open drain		3.6	7.2	14.4	Ω
Drain-Source Body Diode Characteristic	s						
Continuous source-drain diode current	I _S	MOSFET symbol showing the integral reverse p - n junction diode		-	-	21	
Pulsed diode forward current	I _{SM}			-	-	48	A
Diode forward voltage	V _{SD}	T _J = 25 °C, I _S = 11 A, V _{GS} = 0 V		-	-	1.2	V
Reverse recovery time	t _{rr}	$T_J = 25 \text{ °C}, I_F = I_S = 11 \text{ A},$ $di/dt = 100 \text{ A/µs}, V_R = 400 \text{ V}$		-	285	570	ns
Reverse recovery charge	Q _{rr}			-	4.1	8.2	μC
Reverse recovery current	I _{RRM}			_	27	_	Α

Notes

- a. $C_{oss(er)}$ is a fixed capacitance that gives the same energy as C_{oss} while V_{DS} is rising from 0 % to 80 % V_{DSS} b. $C_{oss(tr)}$ is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 % to 80 % V_{DSS}

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

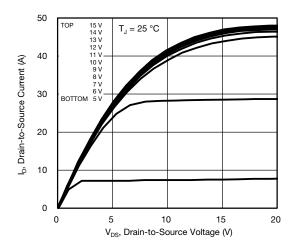


Fig. 1 - Typical Output Characteristics

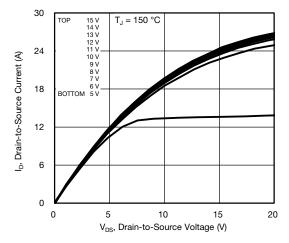


Fig. 2 - Typical Output Characteristics

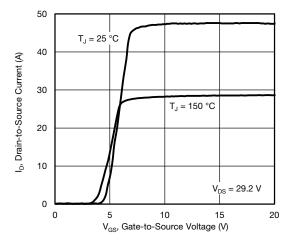


Fig. 3 - Typical Transfer Characteristics

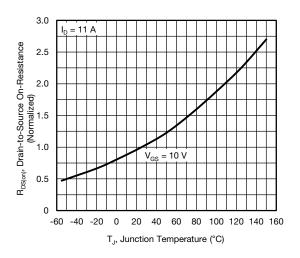


Fig. 4 - Normalized On-Resistance vs. Temperature

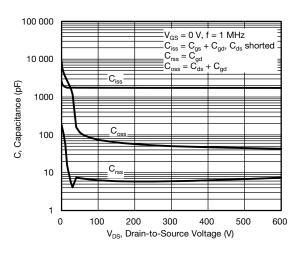


Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

Fig. 6 - C_{oss} and $E_{oss}\, vs.\, V_{DS}$

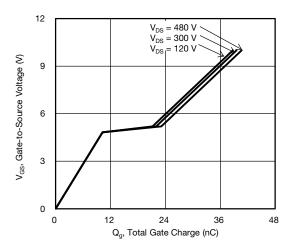


Fig. 7 - Typical Gate Charge vs. Gate-to-Source Voltage

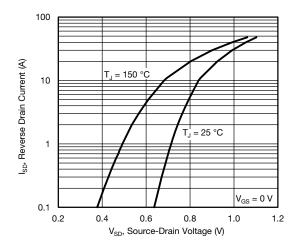


Fig. 8 - Typical Source-Drain Diode Forward Voltage

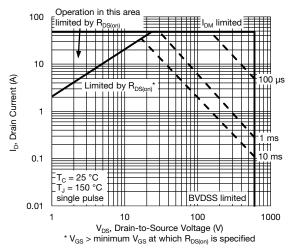


Fig. 9 - Maximum Safe Operating Area

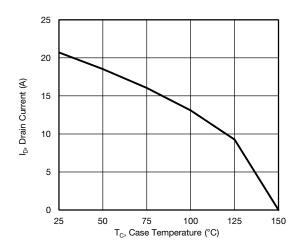


Fig. 10 - Maximum Drain Current vs. Case Temperature

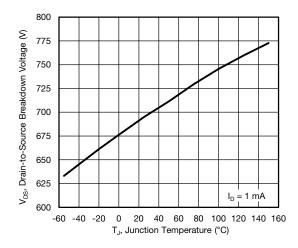


Fig. 11 - Temperature vs. Drain-to-Source Voltage

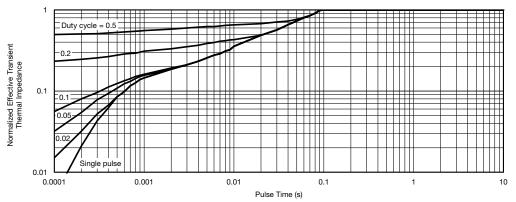


Fig. 12 - Normalized Thermal Transient Impedance, Junction-to-Case

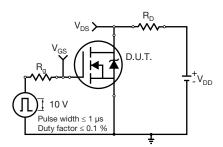


Fig. 13 - Switching Time Test Circuit

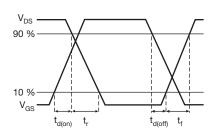


Fig. 14 - Switching Time Waveforms

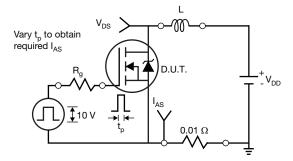


Fig. 15 - Unclamped Inductive Test Circuit

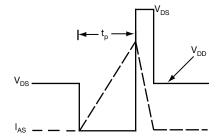


Fig. 16 - Unclamped Inductive Waveforms

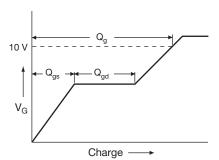


Fig. 17 - Basic Gate Charge Waveform

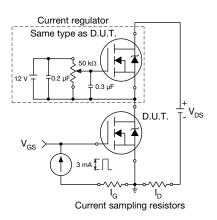
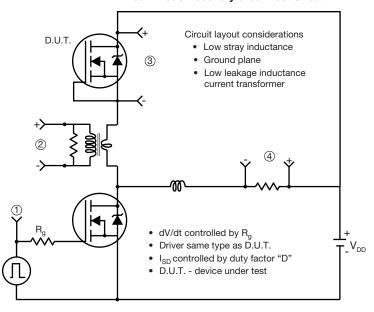



Fig. 18 - Gate Charge Test Circuit

Peak Diode Recovery dV/dt Test Circuit

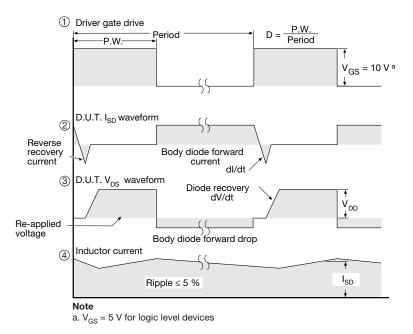


Fig. 19 - For N-Channel

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?92082.

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Vishay manufacturer:

Other Similar products are found below:

614233C 648584F MCH3443-TL-E MCH6422-TL-E FDPF9N50NZ FW231A-TL-E APT5010JVR NTNS3A92PZT5G IRF100S201

JANTX2N5237 2SK2464-TL-E 2SK3818-DL-E FCA20N60_F109 FDZ595PZ STD6600NT4G FSS804-TL-E 2SJ277-DL-E 2SK1691-DLE 2SK2545(Q,T) D2294UK 405094E 423220D MCH6646-TL-E TPCC8103,L1Q(CM 367-8430-0972-503 VN1206L 424134F 026935X 051075F SBVS138LT1G 614234A 715780A NTNS3166NZT5G 751625C 873612G IRF7380TRHR IPS70R2K0CEAKMA1

RJK60S3DPP-E0#T2 RJK60S5DPK-M0#T0 APT5010JVFR APT12031JFLL APT12040JVR DMN3404LQ-7 NTE6400 JANTX2N6796U JANTX2N6784U JANTXV2N5416U4 SQM110N05-06L-GE3 SIHF35N60E-GE3 2SK2614(TE16L1,Q)