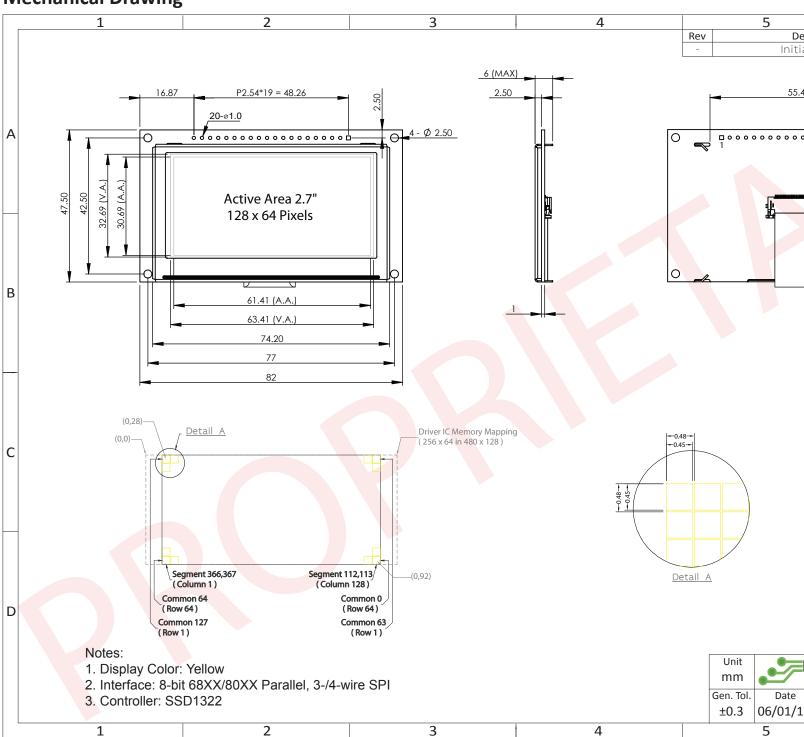




# NHD-2.7-12864WDY3

# **Graphic OLED Display Module**

NHD-Newhaven Display2.7-2.7" Diagonal Size12864-128 x 64 Pixel ResolutionWD-ModelY-Emitting Color: Yellow3-+3.3V Power Supply


Newhaven Display International, Inc. 2661 Galvin Ct. Elgin IL, 60124 Ph: 847-844-8795 Fax: 847-844-8796

### **Document Revision History**

| Revision | Date      | Description                      | Changed by |
|----------|-----------|----------------------------------|------------|
| -        | 6/2/2017  | Initial Release                  | ML         |
| 1        | 7/25/2017 | Update Storage Temperature range | ML         |

#### **Functions and Features**

- 128 x 64 pixel resolution
- Built-in SSD1322 controller
- Parallel or Serial MPU interface
- Single, low voltage power supply
- Power options via on-board jumpers
- RoHS compliant



### **Mechanical Drawing**

The information contained herein is the exclusive property of Newhaven Display International, Inc. and shall not be copied, reproduced, and/or disclosed

# Interface Description

#### **Parallel Interface:**

| Pin No. | Symbol        | External     | Function Description                                              |
|---------|---------------|--------------|-------------------------------------------------------------------|
|         | -             | Connection   |                                                                   |
| 1       | VSS           | Power Supply | Ground                                                            |
| 2       | VDD           | Power Supply | Supply Voltage for OLED module                                    |
| 3       | N.C. (BC_VDD) | -            | No Connect by default. Can be configured to provide independent   |
|         |               |              | supply voltage (2.8V – 12V DC) for boost converter.               |
|         |               |              | (refer to On-Board Jumper Options section below)                  |
| 4       | D/C           | MPU          | Data/Command select signal, D/C=0: Command, D/C=1: Data           |
| 5       | R/W or /WR    | MPU          | 6800-interface:                                                   |
|         |               |              | Read/Write select signal, R/W=1: Read, R/W=0: Write               |
|         |               |              | 8080-interface:                                                   |
|         |               |              | Active LOW Write signal                                           |
| 6       | E or /RD      | MPU          | 6800-interface:                                                   |
|         |               |              | Operation Enable signal, falling edge triggered                   |
|         |               |              | 8080-interface:                                                   |
|         |               |              | Active LOW Read signal                                            |
| 7-14    | DB0 – DB7     | MPU          | 8-bit bi-directional Data Bus                                     |
| 15      | N.C. (VCC)    | -            | No Connect by default. Can be configured for external VCC (+15V). |
|         |               |              | (refer to On-Board Jumper Options table below)                    |
| 16      | /RES          | MPU          | Active LOW Reset signal                                           |
| 17      | /CS           | MPU          | Active LOW Chip Select signal                                     |
| 18      | /SHDN (N.C.)  | MPU          | Active LOW Shutdown control pin for boost converter               |
|         |               |              | (pulled HIGH via on-board 15kΩ resistor)                          |
|         |               |              | Can be made a No Connect by removing resistor R1.                 |
| 19      | BS1           | MPU          | MPU Interface select signal                                       |
| 20      | BSO           | MPU          | MPU Interface select signal                                       |

#### Serial Interface:

| Pin No. | Symbol        | External<br>Connection | Function Description                                                                                                                                               |
|---------|---------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | VSS           | Power Supply           | Ground                                                                                                                                                             |
| 2       | VDD           | Power Supply           | Supply Voltage for OLED module                                                                                                                                     |
| 3       | N.C. (BC_VDD) | -                      | No Connect by default. Can be configured to provide independent supply voltage (2.8V – 12V DC) for boost converter. (refer to On-Board Jumper Options table below) |
| 4       | D/C           | MPU                    | Data/Command select signal, D/C=0: Command, D/C=1: Data (tie LOW for 3-wire Serial Interface)                                                                      |
| 5-6     | VSS           | Power Supply           | Ground                                                                                                                                                             |
| 7       | SCLK          | MPU                    | Serial Clock signal                                                                                                                                                |
| 8       | SDIN          | MPU                    | Serial Data Input signal                                                                                                                                           |
| 9       | N.C.          | -                      | No Connect                                                                                                                                                         |
| 10-14   | VSS           | Power Supply           | Ground                                                                                                                                                             |
| 15      | N.C. (VCC)    | -                      | No Connect by default. Can be configured for external VCC (+15V).<br>(refer to On-Board Jumper Options section below)                                              |
| 16      | /RES          | MPU                    | Active LOW Reset signal                                                                                                                                            |
| 17      | /CS           | MPU                    | Active LOW Chip Select signal                                                                                                                                      |
| 18      | /SHDN (N.C.)  | MPU                    | Active LOW Shutdown control pin for boost converter                                                                                                                |
|         |               |                        | (pulled HIGH via on-board 15kΩ resistor)                                                                                                                           |
|         |               |                        | Can be made a No Connect by removing resistor R1.                                                                                                                  |
| 19      | BS1           | MPU                    | MPU Interface select signal                                                                                                                                        |
| 20      | BSO           | MPU                    | MPU Interface select signal                                                                                                                                        |

### **Interface Selection**

#### **MPU Interface Pin Selections**

| Pin<br>Name | 6800 Parallel<br>8-bit interface | 8080 Parallel<br>8-bit interface | 3-wire<br>Serial<br>Interface | 4-wire<br>Serial<br>Interface |
|-------------|----------------------------------|----------------------------------|-------------------------------|-------------------------------|
| BS1         | 1                                | 1                                | 0                             | 0                             |
| BS0         | 1                                | 0                                | 1                             | 0                             |

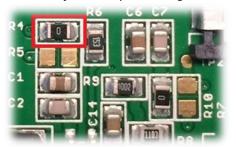
#### **MPU Interface Pin Assignment Summery**

| Bus        | Data/Command Interface  |        |  |  |  |    |      |      |         | Control Signals |     |         |      |  |  |
|------------|-------------------------|--------|--|--|--|----|------|------|---------|-----------------|-----|---------|------|--|--|
| Interface  | D7 D6 D5 D4 D3 D2 D1 D0 |        |  |  |  |    |      |      |         | R/W             | /CS | D/C     | /RES |  |  |
| 8-bit 6800 |                         | D[7:0] |  |  |  |    |      |      |         | R/W             | /CS | D/C     | /RES |  |  |
| 8-bit 8080 |                         | D[7:0] |  |  |  |    |      |      |         | /WR             | /CS | D/C     | /RES |  |  |
| 3-wire SPI | Tie LOW                 |        |  |  |  | NC | SDIN | SCLK | Tie LOW |                 | /CS | Tie LOW | /RES |  |  |
| 4-wire SPI | Tie LOW NC SDIN SCLK    |        |  |  |  |    |      | SCLK | Tie     | LOW             | /CS | D/C     | /RES |  |  |

### **On-Board Jumper Options**

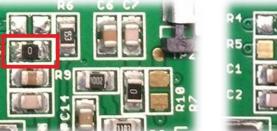
#### Default Jumper Setting

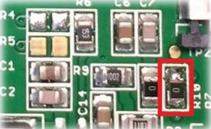
| R4    | R5   | R7   | Description                                                                                                                                                                |
|-------|------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Close | Open | Open | <b>(default)</b> OLED controller and boost converter + OLED panel are powered from VDD (pin #2). This allows the full module to be powered by a single low-voltage supply. |


#### Jumper Option #1 - Independent Supply Voltage for Boost Converter (BC\_VDD)

| R4   | R5    | R7   | Description                                                                                                                                                                                                                                                 |
|------|-------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Open | Close | Open | Boost converter + OLED panel are powered from BC_VDD (pin #3). OLED controller is still powered from VDD (pin #2). This allows for increased efficiency through the boost converter, by allowing a supply voltage up to +12V at its input, BC_VDD (pin #3). |

#### Jumper Option #2 – External Supply Voltage for OLED Panel (VCC)


| R4   | R5   | R7    | Description                                                                                                                                                                                                                     |
|------|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Open | Open | Close | OLED panel is powered from VCC (pin #15) – boost converter is not used.<br>OLED controller is still powered from VDD (pin #2). This allows for maximum module<br>efficiency, and drastically reduced total current consumption. |


#### Default Jumper Setting



Jumper Option #1







For detailed electrical information on each jumper option, please see the Electrical Characteristics table below.

### **Electrical Characteristics**

Values for Current shown below are based on the recommended initialization provided on page 12.

| Values for Current shown below are based on the recommended initialization provided on page 12.           Item         Symbol         Condition         Min.         Typ.         Max.         Un |                      |                        |         |      |         |      |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------|---------|------|---------|------|--|--|--|--|
| Item                                                                                                                                                                                              | Symbol               | Condition              |         | Тур. | Max.    | Unit |  |  |  |  |
| Operating Temperature Range                                                                                                                                                                       | Top                  | Absolute Max           | -40     | -    | +85     | °C   |  |  |  |  |
| Storage Temperature Range                                                                                                                                                                         | T <sub>st</sub>      | Absolute Max           | -40     | -    | +85     | °C   |  |  |  |  |
|                                                                                                                                                                                                   |                      | Default Jumper Setting |         |      |         |      |  |  |  |  |
| Supply Voltage for Module                                                                                                                                                                         | VDD                  | -                      | 2.8     | 3.3  | 3.5     | v    |  |  |  |  |
| Supply Current for Module                                                                                                                                                                         | IDD                  | VDD=3.3V, 50% ON       | -       | 200  | 220     | mA   |  |  |  |  |
| Supply current for Module                                                                                                                                                                         | 100                  | VDD=3.3V, 100% ON      | -       | 330  | 360     | mA   |  |  |  |  |
|                                                                                                                                                                                                   |                      | Jumper Option #1       |         |      |         |      |  |  |  |  |
| Supply Voltage for Module                                                                                                                                                                         | VDD                  | -                      | 2.8     | 3.3  | 3.5     | V    |  |  |  |  |
| Supply Voltage for Boost Converter                                                                                                                                                                | BC_VDD               | -                      | 2.8     | -    | 12      | V    |  |  |  |  |
| Supply Current for Module                                                                                                                                                                         | IDD                  | VDD=3.3V               | -       | 180  | 295     | μΑ   |  |  |  |  |
|                                                                                                                                                                                                   |                      | BC_VDD=5.0V, 50% ON    | -       | 125  | 140     | mA   |  |  |  |  |
| Sumply Comment for Depart Convertor                                                                                                                                                               | 100                  | BC_VDD=5.0V, 100% ON   | -       | 190  | 205     | mA   |  |  |  |  |
| Supply Current for Boost Converter                                                                                                                                                                | IDD <sub>BC</sub>    | BC_VDD=12.0V, 50% ON   | -       | 50   | 60      | mA   |  |  |  |  |
|                                                                                                                                                                                                   |                      | BC_VDD=12.0V, 100% ON  | -       | 70   | 80      | mA   |  |  |  |  |
|                                                                                                                                                                                                   | •                    | Jumper Option #2       |         |      |         |      |  |  |  |  |
| Supply Voltage for Module                                                                                                                                                                         | VDD                  | -                      | 2.8     | 3.3  | 3.5     | V    |  |  |  |  |
| Supply Voltage for OLED Panel                                                                                                                                                                     | VCC                  | -                      | 14.5    | 15   | 15.5    | V    |  |  |  |  |
| Supply Current for Module                                                                                                                                                                         | IDD                  | VDD=3.3V               | -       | 180  | 300     | μΑ   |  |  |  |  |
|                                                                                                                                                                                                   | 166                  | VCC=15V, 50% ON        | -       | 35   | 40      | mA   |  |  |  |  |
| Supply Current for OLED Panel                                                                                                                                                                     | ICC                  | VCC=15V, 100% ON       | -       | 50   | 60      | mA   |  |  |  |  |
| Class Marda Comparet                                                                                                                                                                              |                      |                        |         | 25   | 420     |      |  |  |  |  |
| Sleep Mode Current                                                                                                                                                                                | IDD <sub>SLEEP</sub> | -                      | -       | 25   | 120     | μΑ   |  |  |  |  |
| "H" Level input                                                                                                                                                                                   | Vih                  | -                      | 0.8*VDD | -    | VDD     | V    |  |  |  |  |
| "L" Level input                                                                                                                                                                                   | Vil                  | -                      | VSS     | -    | 0.2*VDD | V    |  |  |  |  |
| "H" Level output                                                                                                                                                                                  | Voh                  | -                      | 0.9*VDD | -    | VDD     | V    |  |  |  |  |
| "L" Level output                                                                                                                                                                                  | Vol                  | -                      | VSS     | -    | 0.1*VDD | V    |  |  |  |  |

**Note:** The electrical characteristics shown above for Jumper Option #1 and Jumper Option #2 apply only when the on-board jumpers are configured accordingly. By default, only Default Jumper Setting supply voltage and current (in bold) need to be considered. For details, see On-Board Jumper Options section on previous page.

### **Optical Characteristics**

Values for Brightness shown below are based on the recommended initialization provided on page 12.

|                              | lte  | m    | Symbol                            | Condition                                                  | Min.      | Тур. | Max. | Unit              |  |
|------------------------------|------|------|-----------------------------------|------------------------------------------------------------|-----------|------|------|-------------------|--|
| Ontineal                     | Тор  | )    | φY+                               |                                                            | -         | 85   | -    | 0                 |  |
| Optimal<br>Viewing<br>Angles | Bot  | tom  | φΥ-                               |                                                            | -         | 85   | -    | 0                 |  |
|                              | Left | t    | θΧ-                               | -                                                          | -         | 85   | -    | 0                 |  |
|                              | Rig  | ht   | θX+                               |                                                            | -         | 85   | -    | 0                 |  |
| Contrast Rat                 | io   |      | Cr                                | -                                                          | >10,000:1 | -    | -    | -                 |  |
| Despense Tir                 | 20   | Rise | Tr                                | -                                                          | -         | 15   | -    | ns                |  |
| Response Tir                 | ne   | Fall | T <sub>f</sub>                    | -                                                          | -         | 15   | -    | ns                |  |
| Brightness                   |      |      | L <sub>br</sub>                   | 50% ON (checkerboard)                                      | 70        | 100  | 150  | cd/m <sup>2</sup> |  |
|                              |      | -    | Ta=25°C, Lbr=100cd/m <sup>2</sup> | 60,000                                                     | -         | -    | hrs  |                   |  |
| Lifetime                     |      |      | -                                 | T <sub>a</sub> =25°C, L <sub>br</sub> =80cd/m <sup>2</sup> | 100,000   | -    | -    | hrs               |  |

**Note**: Lifetime at typical temperature is based on accelerated high-temperature operation. Lifetime is tested at average 50% pixels on and is rated as Hours until **Half-Brightness**. To extend the life of the display, lower values may be used for the contrast setting registers – see below table of commands for details.

### **Controller Information**

Built-in SSD1322 controller.

For details, view full datasheet at http://www.newhavendisplay.com/app\_notes/SSD1322.pdf

### **Table of Commands**

| Instruction          |     |        |       |         | Description |     |     |         |     |          |                                                                              |
|----------------------|-----|--------|-------|---------|-------------|-----|-----|---------|-----|----------|------------------------------------------------------------------------------|
| Instruction          | D/C | HEX    | DB7   | DB6     | DB5         | DB4 | DB3 | DB2     | DB1 | DB0      | Description                                                                  |
| Enable Grayscale     | 0   | 00     | 0     | 0       | 0           | 0   | 0   | 0       | 0   | 0        | Enable the Grayscale table settings. (see con                                |
| Table                |     | l      | '     |         |             | ·   | '   |         |     |          |                                                                              |
| Set Column           | 0   | 15     | 0     | 0       | 0           | 1   | 0   | 1       | 0   | 1        | Set column start and end address                                             |
| Address              | 1   | A[6:0] | *     | A6      | A5          | A4  | A3  | A2      | A1  | A0       | A[6:0]: Column start address. Range: 0-119d                                  |
|                      | 1   | B[6:0] | *     | B6      | B5          | B4  | B3  | B2      | B1  | В0       | B[6:0]: Column end address. Range: 0-119d                                    |
| Write RAM            | 0   | 5C     | 0     | 1       | 0           | 1   | 1   | 1       | 0   | 0        | Enable MCU to write Data into RAM                                            |
| Command              |     | l      | '     |         |             |     | '   |         |     |          |                                                                              |
| Read RAM             | 0   | 5D     | 0     | 1       | 0           | 1   | 1   | 1       | 0   | 1        | Enable MCU to read Data from RAM                                             |
| Command              |     | l      | 1 _ ' |         |             | '   | _ ' |         |     |          |                                                                              |
| Set Row Address      | 0   | 75     | 0     | 1       | 1           | 1   | 0   | 1       | 0   | 1        | Set row start and end address                                                |
|                      | 1   | A[6:0] | *     | A6      | A5          | A4  | A3  | A2      | A1  | A0       | A[6:0]: Row start address. Range: 0-127d                                     |
|                      | 1   | B[6:0] | *     | B6      | В5          | B4  | B3  | B2      | B1  | В0       | B[6:0]: Row end address. Range: 0-127d                                       |
| Set Re-map           | 0   | A0     | 1     | 0       | 1           | 0   | 0   | 0       | 0   | 0        | A[0] = 0; Horizontal Address Increment                                       |
|                      | 1   | A[5:0] | 0     | 0       | A5          | A4  | 0   | A2      | A1  | A0       | A[0] = 1; Vertical Address Increment                                         |
|                      | 1   | B[4]   | *     | *       | 0           | B4  | 0   | 0       | 0   | 1        | A[1] = 0; Disable Column Address remap                                       |
|                      |     | ,<br>I | 1     |         |             |     | '   |         |     |          | A[1] = 1; Enable Column Address remap                                        |
|                      |     | 1      | 1     |         |             |     | '   |         |     |          | A[2] = 0; Disable Nibble remap                                               |
|                      |     | 1      | 1     |         |             |     | 1   |         |     |          | A[2] = 1; Enable Nibble remap                                                |
|                      |     | 1      | 1     |         |             |     | 1   |         |     |          | A[4] = 0; Scan from COM0 to COM[N-1]<br>A[4] = 1; Scan from COM[N-1] to COM0 |
|                      |     | 1      | 1     |         |             |     | '   |         |     |          | A[4] = 1; Scan from COM[N-1] to COMU<br>A[5] = 0; Disable COM split Odd/Even |
|                      |     | 1      | 1     |         |             |     | '   |         |     |          | A[5] = 0; Disable COM split Odd/Even<br>A[5] = 1; Enable COM split Odd/Even  |
|                      |     | 1      | 1     |         |             |     | '   |         |     |          | B[4] = 0; Disable Dual COM mode                                              |
|                      |     | 1      | 1     |         |             |     | '   |         |     |          | B[4] = 0, Disable Dual COM mode<br>B[4] = 1; Enable Dual COM mode            |
|                      |     | 1      | 1     |         |             |     | '   |         |     |          | Note: $A[5]$ must be 0 if $B[4]$ is 1.                                       |
| Set Display Start    | 0   | A1     | 1     | 0       | 1           | 0   | 0   | 0       | 0   | 1        | Set display RAM display start line register fro                              |
| Line                 | 1   | A[6:0] | *     | A6      | A5          | A4  | A3  | A2      | A1  | A0       |                                                                              |
| Set Display Offset   | 0   | A2     | 1     | 0       | 1           | 0   | 0   | 0       | 1   | 0        | Set vertical shift by COM from 0~127.                                        |
| ·                    | 1   | A[6:0] | *     | A6      | A5          | A4  | A3  | A2      | A1  | A0       |                                                                              |
| Display Mode         | 0   | A4~A7  | 1     | 0       | 1           | 0   | 0   | X2      | X1  | X0       | 0xA4 = Entire display OFF                                                    |
|                      |     | 1      | 1     |         |             |     | '   |         |     |          | 0xA5 = Entire display ON, all pixels Grayscale                               |
|                      |     | 1      | 1     |         |             |     | '   |         |     |          | 0xA6 = Normal display                                                        |
|                      |     | ا<br>ا | ļ'    | <b></b> |             | ·'  | ·'  | <b></b> |     | <b>_</b> | 0xA7 = Inverse display                                                       |
| Enable Partial       | 0   | A8     | 1     | 0       | 1           | 0   | 1   | 0       | 0   | 0        | Turns ON partial mode.                                                       |
| Display              | 1   | A[6:0] | 0     | A6      | A5          | A4  | A3  | A2      | A1  | A0       | A[6:0] = Address of start row                                                |
|                      | 1   | B[6:0] | 0     | B6      | B5          | B4  | B3  | B2      | B1  | B0       | B[6:0] = Address of end row (B[6:0] > A[6:0]                                 |
| Exit Partial Display | 0   | A9     | 1     | 0       | 1           | 0   | 1   | 0       | 0   | 1        | Exit Partial Display mode                                                    |
| Function Selection   | 0   | AB     | 1     | 0       | 1           | 0   | 1   | 0       | 1   | 1        | A[0] = 0; External VDD                                                       |
|                      | 1   | A[0]   | 0     | 0       | 0           | 0   | 0   | 0       | 0   | A0       | A[0] = 1; Internal VDD regulator                                             |

| Set Sleep Mode<br>ON/OFF | 0 | AE~AF     | 1    | 0                      | 1    | 0           | 1    | 1    | 1           | X0   | 0xAE = Sleep Mode ON (display OFF)<br>0xAF = Sleep Mode OFF (display ON)           |
|--------------------------|---|-----------|------|------------------------|------|-------------|------|------|-------------|------|------------------------------------------------------------------------------------|
| Set Phase Length         | 0 | B1        | 1    | 0                      | 1    | 1           | 0    | 0    | 0           | 1    | A[3:0] = P1. Phase 1 period of 5-31 DCLK clo                                       |
| -                        | 1 | A[7:0]    | A7   | A6                     | A5   | A4          | A3   | A2   | A1          | A0   | A[7:4] = P2. Phase 2 period of 3-15 DCLK clo                                       |
| Set Display Clock        | 0 | B3        | 1    | 0                      | 1    | 1           | 0    | 0    | 1           | 1    | A[3:0] = 0000; divide by 1                                                         |
| Divide Ratio /           | 1 | A[7:0]    | A7   | A6                     | A5   | A4          | A3   | A2   | A1          | A0   | A[3:0] = 0001; divide by 2                                                         |
| Oscillator               |   | • -       |      |                        |      |             |      |      |             |      | A[3:0] = 0010; divide by 4                                                         |
| Frequency                |   |           |      |                        |      |             |      |      |             |      | A[3:0] = 0011; divide by 8                                                         |
|                          |   |           |      |                        |      |             |      |      |             |      | A[3:0] = 0100; divide by 16                                                        |
|                          |   |           |      |                        |      |             |      |      |             |      | A[3:0] = 0101; divide by 32                                                        |
|                          |   |           |      |                        |      |             |      |      |             |      | A[3:0] = 0110; divide by 64                                                        |
|                          |   |           |      |                        |      |             |      |      |             |      | A[3:0] = 0111; divide by 128                                                       |
|                          |   |           |      |                        |      |             |      |      |             |      | A[3:0] = 1000; divide by 256                                                       |
|                          |   |           |      |                        |      |             |      |      |             |      | A[3:0] = 1001; divide by 512<br>A[3:0] = 1010; divide by 1024                      |
|                          |   |           |      |                        |      |             |      |      |             |      | A[3:0] = 1010; divide by 1024<br>A[3:0] >= 1011; invalid                           |
|                          |   |           |      |                        |      |             |      |      |             |      | A[7:4] = Set the Oscillator Frequency. Freque                                      |
|                          |   |           |      |                        |      |             |      |      |             |      | value of A[7:4]. Range 0000b~1111b.                                                |
| VSL / Display            | 0 | B4        | 1    | 0                      | 1    | 1           | 0    | 1    | 0           | 0    | A[1:0] = 00b; Enable external VSL                                                  |
| Enhancement              | 1 | A[1:0]    | 1    | 0                      | 1    | 0           | 0    | 0    | A1          | A0   | A[1:0] = 10b; Internal VSL                                                         |
| Lindhoement              | 1 | B[7:3]    | B7   | B6                     | B5   | B4          | B3   | 1    | 0           | 1    | B[7:3] = 11111b; Enhanced low GS display q                                         |
|                          | - | 5[,.0]    |      |                        |      |             | 20   | -    |             | -    | B[7:3] = 10110b; Normal                                                            |
| Set GPIO                 | 0 | B5        | 1    | 0                      | 1    | 1           | 0    | 1    | 0           | 1    | A[1:0] = 00; GPIO0 input disabled                                                  |
|                          | 1 | A[3:0]    | *    | *                      | *    | *           | A3   | A2   | A1          | A0   | A[1:0] = 01; GPIO0 input enabled                                                   |
|                          |   |           |      |                        |      |             |      |      |             |      | A[1:0] = 10; GPIO0 output LOW                                                      |
|                          |   |           |      |                        |      |             |      |      |             |      | A[1:0] = 11; GPIO0 output HIGH<br>A[2:2] = 00; GPIO1 input disabled                |
|                          |   |           |      |                        |      |             |      |      |             |      | A[3:2] = 00; GPIO1 input disabled<br>A[3:2] = 01; GPIO1 input enabled              |
|                          |   |           |      |                        |      |             |      |      |             |      | A[3:2] = 01; GPIO1 input enabled<br>A[3:2] = 10; GPIO1 output LOW                  |
|                          |   |           |      |                        |      |             |      |      |             |      | A[3:2] = 10; GPIO1 output LOW<br>A[3:2] = 11; GPIO1 output HIGH                    |
|                          |   |           |      |                        |      |             |      |      |             |      | A[5,2] - 11, 51 101 500put                                                         |
| Set Second Pre-          | 0 | B6        | 1    | 0                      | 1    | 1           | 0    | 1    | 1           | 0    | Sets the second precharge period                                                   |
| charge Period            | 1 | A[3:0]    | *    | *                      | *    | *           | A3   | A2   | A1          | A0   | A[3:0] = DCLKs                                                                     |
| Set Grayscale            | 0 | B8        | 1    | 0                      | 1    | 1           | 1    | 0    | 0           | 0    | Sets the gray scale pulse width in units of DO                                     |
| Table                    | 1 | A1[7:0]   | A17  | <b>A1</b> <sub>6</sub> | A15  | <b>A1</b> 4 | A13  | A12  | <b>A1</b> 1 | A10  | A1[7:0] = Gamma Setting for GS1                                                    |
|                          | 1 | A2[7:0]   | A27  | A2 <sub>6</sub>        | A25  | A24         | A23  | A22  | A21         | A20  | A2[7:0] = Gamma Setting for GS2                                                    |
|                          | 1 |           |      |                        |      |             |      |      |             |      |                                                                                    |
|                          | 1 |           | Ι.   |                        | Ι.   | .           |      | Ι.   | Ι.          | .    |                                                                                    |
|                          | 1 |           | Ι.   |                        | Ι.   | .           |      | .    | Ι.          | .    |                                                                                    |
|                          | 1 | A14[7:0]  | A147 | A14 <sub>6</sub>       | A145 | A144        | A143 | A142 | A141        | A140 | A14[7:0] = Gamma Setting for GS14                                                  |
|                          | 1 | A15[7:0]  | A157 | A15 <sub>6</sub>       | A155 | A154        | A153 | A152 | A151        | A150 | A15[7:0] = Gamma Setting for GS15                                                  |
|                          | 1 | //10[//0] |      | - 0                    | -    | 1           |      | -    | 1           | -    |                                                                                    |
|                          | T | //20[//0] |      |                        |      |             |      |      |             |      | Note: 0 < GS1 < GS2 < GS3 < GS14 < GS15<br>The setting must be followed by command |

| Calact Default    | 0 | DO     | 4  | •  | 4  | 4  | 4  | •  | •  | 4  | Sets Linear Grayscale table                    |
|-------------------|---|--------|----|----|----|----|----|----|----|----|------------------------------------------------|
| Select Default    | 0 | B9     | 1  | 0  | 1  | 1  | 1  | 0  | 0  | 1  | GS0 pulse width = 0                            |
| Linear Gray Scale |   |        |    |    |    |    |    |    |    |    | GSO pulse width = 0                            |
| Table             |   |        |    |    |    |    |    |    |    |    | GS0 pulse width = 8                            |
|                   |   |        |    |    |    |    |    |    |    |    | GSO pulse width = 16                           |
|                   |   |        |    |    |    |    |    |    |    |    | GSO puise width - 10                           |
|                   |   |        |    |    |    |    |    |    |    |    |                                                |
|                   |   |        |    |    |    |    |    |    |    |    |                                                |
|                   |   |        |    |    |    |    |    |    |    |    | GS0 pulse width = 104                          |
|                   |   |        |    |    |    |    |    |    |    |    | GS0 pulse width = 112                          |
| Set Pre-charge    | 0 | BB     | 1  | 0  | 1  | 1  | 1  | 0  | 1  | 1  | Set precharge voltage level.                   |
| Voltage           | 1 | A[4:0] | *  | *  | *  | A4 | A3 | A2 | A1 | A0 | A[4:0] = 0x00; 0.20*VCC                        |
| 1011202           | - |        |    |    |    |    |    |    |    |    |                                                |
|                   |   |        |    |    |    |    |    |    |    |    |                                                |
|                   |   |        |    |    |    |    |    |    |    |    | A[4:0] = 0x3E; 0.60*VCC                        |
| Set VCOMH         | 0 | BE     | 1  | 0  | 1  | 1  | 1  | 1  | 1  | 0  | Sets the VCOMH voltage level                   |
| Voltage           | 1 | A[3:0] | *  | *  | *  | *  | A3 | A2 | A1 | A0 | A[3:0] = 0x00; 0.72*VCC                        |
|                   |   |        |    |    |    |    |    |    |    |    |                                                |
|                   |   |        |    |    |    |    |    |    |    |    |                                                |
|                   |   |        |    |    |    |    |    |    |    |    | A[3:0] = 0x04; 0.8*VCC                         |
|                   |   |        |    |    |    |    |    |    |    |    |                                                |
|                   |   |        |    |    |    |    |    |    |    |    | A[3:0] = 0x07; 0.86*VCC                        |
| Set Contrast      | 0 | C1     | 1  | 1  | 0  | 0  | 0  | 0  | 0  | 1  | Double byte command to select 1 out of 256     |
| Control           | 1 | A[7:0] | A7 | A6 | A5 | A4 | A3 | A2 | A1 | A0 | Contrast increases as the value increases.     |
| Master Contrast   | 0 | C7     | 1  | 1  | 0  | 0  | 0  | 1  | 1  | 1  | A[3:0] = 0x00; Reduce output for all colors to |
| Control           | 1 | A[3:0] | *  | *  | *  | *  | A3 | A2 | A1 | AO | A[3:0] = 0x01; Reduce output for all colors to |
| 00111.01          | - | []     |    |    |    |    |    |    |    |    |                                                |
|                   |   |        |    |    |    |    |    |    |    |    |                                                |
|                   |   |        |    |    |    |    |    |    |    |    | A[3:0] = 0x0E; Reduce output for all colors to |
|                   |   |        |    |    |    |    |    |    |    |    | A[3:0] = 0x0F; no change                       |
| Set Multiplex     | 0 | CA     | 1  | 1  | 0  | 0  | 1  | 0  | 1  | 0  | Set MUX ratio to N+1 MUX                       |
| Ratio             | 1 | A[6:0] | *  | A6 | A5 | A4 | A3 | A2 | A1 | A0 | N=A[6:0]; from 16MUX to 128MUX (0 to 14        |
| Set Command       | 0 | FD     | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 1  | A[2] = 0; Unlock OLED to enable commands       |
| Lock              | 1 | A[2]   | 0  | 0  | 0  | 1  | 0  | A2 | 1  | 0  | A[2] = 1; Lock OLED from entering command      |

For detailed instruction information, view full SSD1322 datasheet here (pages 32-47): http://www.newhavendisplay.com/app\_notes/SSD1322.pdf

### **MPU Interface**

#### 6800-MPU Parallel Interface

The parallel interface consists of 8 bi-directional data pins, R/W, D/C, E, and /CS.

A LOW on R/W indicates write operation, and HIGH on R/W indicates read operation.

A LOW on D/C indicates "Command" read or write, and HIGH on D/C indicates "Data" read or write.

The E input serves as data latch signal, while /CS is LOW. Data is latched at the falling edge of E signal.

| Function      | Е            | R/W | /CS | D/C |
|---------------|--------------|-----|-----|-----|
| Write Command | $\downarrow$ | 0   | 0   | 0   |
| Read Status   | $\downarrow$ | 1   | 0   | 0   |
| Write Data    | $\downarrow$ | 0   | 0   | 1   |
| Read Data     | $\downarrow$ | 1   | 0   | 1   |

#### 8080-MPU Parallel Interface

The parallel interface consists of 8 bi-directional data pins, /RD, /WR, D/C, and /CS. A LOW on D/C indicates "Command" read or write, and HIGH on D/C indicates "Data" read or write. A rising edge of /RS input serves as a data read latch signal while /CS is LOW.

A rising edge of /WR input serves as a data/command write latch signal while /CS is LOW.

| Function      | /RD        | /WR           | /CS | D/C |
|---------------|------------|---------------|-----|-----|
| Write Command | 1          | $\leftarrow$  | 0   | 0   |
| Read Status   | $\uparrow$ | 1             | 0   | 0   |
| Write Data    | 1          | $\rightarrow$ | 0   | 1   |
| Read Data     | $\uparrow$ | 1             | 0   | 1   |

#### Serial Interface (4-wire)

The 4-wire serial interface consists of Serial Clock (SCLK), Serial Data (SDIN), Data/Command (D/C), and Chip Select (/CS). D0 acts as SCLK and D1 acts as SDIN. D2 must be left as a No Connect D3~D7, E, and R/W should be connected to GND.

| Function      | /RD     | /WR     | /CS | D/C | D0         |
|---------------|---------|---------|-----|-----|------------|
| Write Command | Tie LOW | Tie LOW | 0   | 0   | $\uparrow$ |
| Write Data    | Tie LOW | Tie LOW | 0   | 1   | $\uparrow$ |

SDIN is shifted into an 8-bit shift register on every rising edge of SCLK in the order of D7, D6,...D0. D/C is sampled on every eighth clock and the data byte in the shift register is written to the GDDRAM or command register in the same clock.

Note: Read functionality is not available in serial mode.

#### Serial Interface (3-wire)

The 3-wire serial interface consists of Serial Clock (SCLK), Serial Data In (SDIN), and Chip Select (/CS). D0 acts as SCLK and D1 acts as SDIN. D2 must be left as a No Connect. D3~D7, E, R/W, and D/C should be connected to Ground.

| Function      | /RD     | /WR     | /CS | D/C     | D0         |
|---------------|---------|---------|-----|---------|------------|
| Write Command | Tie LOW | Tie LOW | 0   | Tie LOW | $\uparrow$ |
| Write Data    | Tie LOW | Tie LOW | 0   | Tie LOW | $\uparrow$ |

SDIN is shifted into an 9-bit shift register on every rising edge of SCLK in the order of D/C, D7, D6,...D0. D/C (first bit of the sequential data) will determine if the following data byte is written to the Display Data RAM (D/C = 1) or the command register (D/C = 0).

Note: Read functionality is not available in serial mode.

For detailed timing information for each interface mode, view full SSD1322 datasheet here (pages 50-54): <a href="http://www.newhavendisplay.com/app\_notes/SSD1322.pdf">http://www.newhavendisplay.com/app\_notes/SSD1322.pdf</a>

### **Recommended Initialization**

| void NHD12864WDY3_Init(void){      |                                              |
|------------------------------------|----------------------------------------------|
| digitalWrite(RES, LOW);            | //pull /RES (pin #16) low                    |
| delayUS( <mark>200</mark> );       | //keep /RES low for minimum 200µs            |
| digitalWrite(RES, HIGH);           | //pull /RES high                             |
| delayUS( <mark>200</mark> );       | //wait minimum 200µs before sending commands |
| writeCommand(OxAE);                | //display OFF                                |
| writeCommand(0xB3);                | //set CLK div. & OSC freq.                   |
| writeData( <mark>0x91</mark> );    |                                              |
| writeCommand( <mark>0xCA</mark> ); | //set MUX ratio                              |
| writeData( <mark>0x3F</mark> );    |                                              |
| writeCommand(0xA2);                | //set offset                                 |
| writeData( <mark>0x00</mark> );    |                                              |
| writeCommand(OxAB);                | //function selection                         |
| writeData( <mark>0x01</mark> );    |                                              |
| writeCommand( <mark>0xA0</mark> ); | //set re-map                                 |
| writeData( <mark>0x16</mark> );    |                                              |
| writeData( <mark>0x11</mark> );    |                                              |
| writeCommand( <mark>0xC7</mark> ); | //master contrast current                    |
| writeData( <mark>0x0F</mark> );    |                                              |
| writeCommand( <mark>0xC1</mark> ); | //set contrast current                       |
| writeData( <mark>0x9F</mark> );    |                                              |
| writeCommand( <mark>0xB1</mark> ); | //set phase length                           |
| writeData( <mark>0xF2);</mark>     |                                              |
| writeCommand( <mark>0xBB</mark> ); | //set pre-charge voltage                     |
| writeData( <mark>0x1F</mark> );    |                                              |
| writeCommand(0xB4);                | //set VSL                                    |
| writeData(0xA0);                   |                                              |
| writeData(0xFD);                   |                                              |
| writeCommand( <mark>0xBE</mark> ); | //set VCOMH                                  |
| writeData(0x04);                   |                                              |
| writeCommand( <mark>0xA6</mark> ); | //set display mode                           |
| writeCommand(OxAF);                | //display ON                                 |
| }                                  |                                              |

### **Example Software Routines**

```
void setColumn(unsigned char xStart, unsigned char xEnd){
                             //set column (x-axis) start/end address
  writeCommand(0x15);
                             //column start; 28 is left-most column
  writeData(xStart);
                             //column end; 91 is right-most column
  writeData(xEnd);
void setRow(unsigned char yStart, unsigned char yEnd){
  writeCommand(0x75);
                             //set row (y-axis) start/end address
                             //row start; 0 is top row
  writeData(yStart);
  writeData(yEnd);
                             //row end; 63 is bottom row
void clearDisplay(void){
  unsigned int i;
                             //set column (x-axis) start/end address
  setColumn(28,91);
                             //set row (y-axis) start/end address
  setRow(0,63);
  writeRAM();
                             //single byte command (0x5C) to initiate pixel data write to GDDRAM;
  for(i=0;i<4096;i++){
                             // ((91-28)+1)*((63-0)+1)
   writeData(0x00);
   writeData(0x00);
  }
void write2Pixels(unsigned char xPos, unsigned char yPos, unsigned char pixel1, unsigned char pixel2){
  if(pixel1>=1) pixel1 = OxFF;
                                       //set 1st pixel value to ON
  else pixel1 = 0x00;
                                       //set 1st pixel value to OFF
  if(pixel2>=1) pixel2 = 0xFF;
                                       //set 2nd pixel value to ON
  else pixel2 = 0x00;
                                       //set 2nd pixel value to OFF
                                       //boundary check (MIN xPos = 0, MAX xPos = 127)
  if(xPos>127) xPos = 127;
  xPos = xPos/2;
                                       //account for GDDRAM address mapping
                                       //account for GDDRAM address mapping
  xPos+=28;
  if(yPos>63) yPos = 63;
                                       //boundary check (MIN yPos = 0, MAX yPos = 63)
  setColumn(xPos,xPos);
                                       //set column (x-axis) start/end address
  setRow(yPos,yPos);
                                       //set row (y-axis) start/end address
                                       //single byte command (0x5C) to initiate pixel data write to GDDRAM;
  writeRAM();
  writeData(pixel1);
                                       //write 1st of 2 pixels to the display
                                       //write 2nd of 2 pixels to the display
  writeData(pixel2);
void displayArray12864(const unsigned char arr[]){
                                                           //display 128x64 monochrome bitmap, horizontal pixel arrangement, 8-pixels per byte
  unsigned int i, j;
  setColumn(28,91);
                                       //set column (x-axis) start/end address
                                       //set row (y-axis) start/end address
  setRow(0,63);
                                       //single byte command (0x5C) to initiate pixel data write to GDDRAM;
  writeRAM();
  for(i=0;i<1024;i++){
                                       //translate each byte/bit into pixel data
   for(j=0;j<8;j++){
    if(((arr[i]<<j)&0x80)==0x80){
     writeData(OxFF);
    }
    else{
     writeData(0x00);
    }
   }
  }
```

### **Quality Information**

| Test Item                 | Content of Test                              | Test Condition                 | Note |
|---------------------------|----------------------------------------------|--------------------------------|------|
| High Temperature storage  | Test the endurance of the display at high    | +85°C, 240hrs                  | 2    |
|                           | storage temperature.                         |                                |      |
| Low Temperature storage   | Test the endurance of the display at low     | -40°C, 240hrs                  | 1,2  |
|                           | storage temperature.                         |                                |      |
| High Temperature          | Test the endurance of the display by         | +85°C, 240hrs                  | 2    |
| Operation                 | applying electric stress (voltage & current) |                                |      |
|                           | at high temperature.                         |                                |      |
| Low Temperature           | Test the endurance of the display by         | -40°C, 240hrs                  | 1,2  |
| Operation                 | applying electric stress (voltage & current) |                                |      |
|                           | at low temperature.                          |                                |      |
| High Temperature /        | Test the endurance of the display by         | +60°C, 90% RH, 240hrs          | 1,2  |
| Humidity Operation        | applying electric stress (voltage & current) |                                |      |
|                           | at high temperature with high humidity.      |                                |      |
| Thermal Shock resistance  | Test the endurance of the display by         | -40°C, 30min -> +25°C, 5min -> |      |
|                           | applying electric stress (voltage & current) | +85°C, 30min = 1 cycle         |      |
|                           | during a cycle of low and high               | 100 cycles                     |      |
|                           | temperatures.                                |                                |      |
| Vibration test            | Test the endurance of the display by         | 10-22Hz, 15mm amplitude.       | 3    |
|                           | applying vibration to simulate               | 22-500Hz, 1.5G                 |      |
|                           | transportation and use.                      | 30min in each of 3 directions  |      |
|                           |                                              | X,Y,Z                          |      |
| Atmospheric Pressure test | Test the endurance of the display by         | 115mbar, 40hrs                 | 3    |
|                           | applying atmospheric pressure to simulate    |                                |      |
|                           | transportation by air.                       |                                |      |
| Static electricity test   | Test the endurance of the display by         | VS=800V, RS=1.5kΩ, CS=100pF    |      |
|                           | applying electric static discharge.          | One time                       |      |

**Note 1:** No condensation to be observed.

Note 2: Conducted after 2 hours of storage at 25°C, 0%RH.

Note 3: Test performed on product itself, not inside a container.

#### **Evaluation Criteria:**

- 1: Display is fully functional during operational tests and after all tests, at room temperature.
- 2: No observable defects.
- 3: Luminance >50% of initial value.
- 4: Current consumption within 50% of initial value

### Precautions for using OLEDs/LCDs/LCMs

See Precautions at <u>www.newhavendisplay.com/specs/precautions.pdf</u>

### **Warranty Information**

See Terms & Conditions at <a href="http://www.newhavendisplay.com/index.php?main\_page=terms">http://www.newhavendisplay.com/index.php?main\_page=terms</a>

## **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for OLED Displays & Accessories category:

Click to view products by Newhaven Display manufacturer:

Other Similar products are found below :

 OLED-100H008A-RPP5N0000
 OLED-100H016B-RPP5N0000
 OLED-200H016A-LPP5N0000
 OLED-100H008A-GPP5N0000
 OLED-100H008A-GPP5N0000
 OLED-100H016A-LPP5N0000
 OLED-100H016A-RPP5N0000
 OLED-128Y064C-LPP3N0000
 OLED-128Y064C-LPP3N0000
 OLED-128Y064C-LPP3N0000
 OLED-128Y064C-LPP3N0000
 OLED-128Y064C-LPP3N0000
 OLED-128Y064C-LPP3N0000
 OLED-016N02B-RPF5N0000
 OLED-016N02B-RPF5N0000
 OLED-016N02B-RPF5N00000
 OLED-100H016C-RPF5N00000
 OLED-100H016C-RPF5N00000
 OLED-100H016C-