

NHD-2.7-12864WDW3

Graphic OLED Display Module

NHD- Newhaven Display 2.7- 2.7" Diagonal Size

12864- 128 x 64 Pixel Resolution

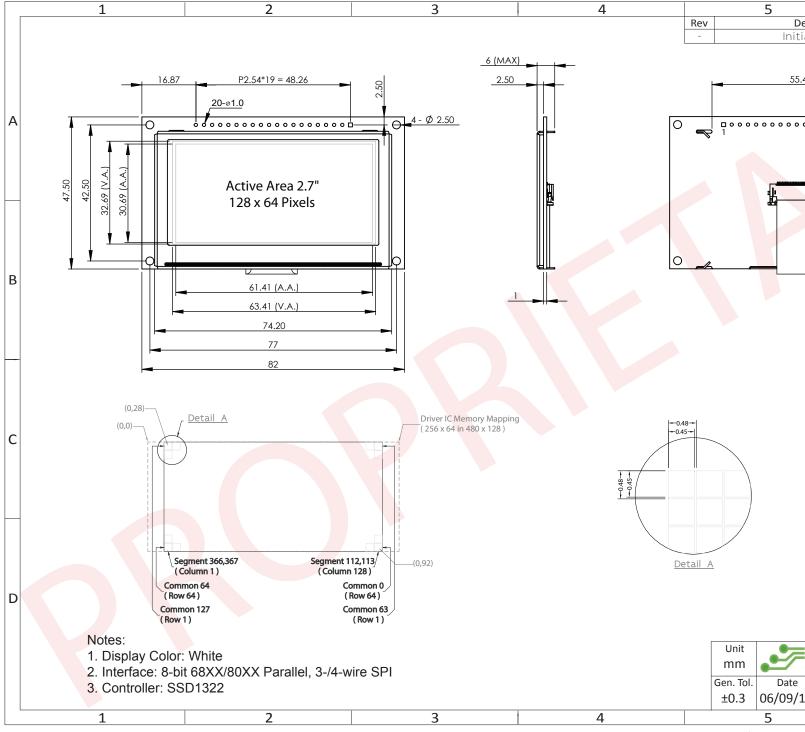
WD- Model

W- Emitting Color: White 3- +3.3V Power Supply

Newhaven Display International, Inc.

2661 Galvin Ct. Elgin IL, 60124

Ph: 847-844-8795 Fax: 847-844-8796


Document Revision History

Revision	Date	Description	Changed by
-	6/9/2017	Initial Release	ML
1	7/25/2017	Update Storage Temperature range	ML

Functions and Features

- 128 x 64 pixel resolution
- Built-in SSD1322 controller
- Parallel or Serial MPU interface
- Single, low voltage power supply
- Power options via on-board jumpers
- RoHS compliant

Mechanical Drawing

Interface Description

Parallel Interface:

Pin No.	Symbol	External	Function Description
		Connection	
1	VSS	Power Supply	Ground
2	VDD	Power Supply	Supply Voltage for OLED module
3	N.C. (BC_VDD)	-	No Connect by default. Can be configured to provide independent
			supply voltage (2.8V – 12V DC) for boost converter.
			(refer to On-Board Jumper Options section below)
4	D/C	MPU	Data/Command select signal, D/C=0: Command, D/C=1: Data
5	R/W or /WR	MPU	6800-interface:
			Read/Write select signal, R/W=1: Read, R/W=0: Write
			8080-interface:
			Active LOW Write signal
6	E or /RD	MPU	6800-interface:
			Operation Enable signal, falling edge triggered
			8080-interface:
			Active LOW Read signal
7-14	DB0 – DB7	MPU	8-bit bi-directional Data Bus
15	N.C. (VCC)	-	No Connect by default. Can be configured for external VCC (+15V).
			(refer to On-Board Jumper Options table below)
16	/RES	MPU	Active LOW Reset signal
17	/cs	MPU	Active LOW Chip Select signal
18	/SHDN (N.C.)	MPU	Active LOW Shutdown control pin for boost converter
			(pulled HIGH via on-board 15kΩ resistor)
			Can be made a No Connect by removing resistor R1.
19	BS1	MPU	MPU Interface select signal
20	BS0	MPU	MPU Interface select signal

Serial Interface:

Pin No.	Symbol	External	Function Description
		Connection	
1	VSS	Power Supply	Ground
2	VDD	Power Supply	Supply Voltage for OLED module
3	N.C. (BC_VDD)	-	No Connect by default. Can be configured to provide independent
			supply voltage (2.8V – 12V DC) for boost converter.
			(refer to On-Board Jumper Options table below)
4	D/C	MPU	Data/Command select signal, D/C=0: Command, D/C=1: Data
			(tie LOW for 3-wire Serial Interface)
5-6	VSS	Power Supply	Ground
7	SCLK	MPU	Serial Clock signal
8	SDIN	MPU	Serial Data Input signal
9	N.C.	-	No Connect
10-14	VSS	Power Supply	Ground
15	N.C. (VCC)	-	No Connect by default. Can be configured for external VCC (+15V).
			(refer to On-Board Jumper Options section below)
16	/RES	MPU	Active LOW Reset signal
17	/CS	MPU	Active LOW Chip Select signal
18	/SHDN (N.C.)	MPU	Active LOW Shutdown control pin for boost converter
			(pulled HIGH via on-board 15kΩ resistor)
			Can be made a No Connect by removing resistor R1.
19	BS1	MPU	MPU Interface select signal
20	BS0	MPU	MPU Interface select signal

Interface Selection

MPU Interface Pin Selections

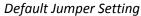
Pin Name	6800 Parallel 8-bit interface	8080 Parallel 8-bit interface	3-wire Serial Interface	4-wire Serial Interface	
BS1	1	1	0	0	
BS0	1	0	1	0	

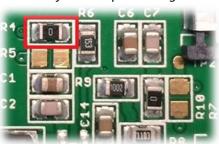
MPU Interface Pin Assignment Summery

Bus		Data/Command Interface									Control Signals						
Interface	D7	D6	D5	D4	D3	D2	D0	E	R/W	/cs	D/C	/RES					
8-bit 6800					D[7:0]			Е	R/W	/CS	D/C	/RES				
8-bit 8080					D[7:0]			/RD	/WR	/CS	D/C	/RES				
3-wire SPI		Tie LOW NC SDIN SCLK								LOW	/CS	Tie LOW	/RES				
4-wire SPI	Tie LOW NC SDIN SCLK							SCLK	Tie	LOW	/CS	D/C	/RES				

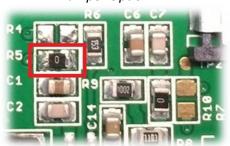
On-Board Jumper Options

Default Jumper Setting


R4	R5	R5 R7 Description							
Close	Open	Open	(default) OLED controller and boost converter + OLED panel are powered from VDD (pin #2). This allows the full module to be powered by a single low-voltage supply.						


Jumper Option #1 - Independent Supply Voltage for Boost Converter (BC_VDD)

R4	R5	R7	Description
Open	Close	Open	Boost converter + OLED panel are powered from BC_VDD (pin #3). OLED controller is still powered from VDD (pin #2). This allows for increased efficiency through the boost converter, by allowing a supply voltage up to +12V at its input, BC_VDD (pin #3).


Jumper Option #2 - External Supply Voltage for OLED Panel (VCC)

R4	R5	R7	Description
Open	Open	Close	OLED panel is powered from VCC (pin #15) – boost converter is not used. OLED controller is still powered from VDD (pin #2). This allows for maximum module efficiency, and drastically reduced total current consumption.

Jumper Option #1

Jumper Option #2

For detailed electrical information on each jumper option, please see the Electrical Characteristics table below.

Electrical Characteristics

Values for Current shown below are based on the recommended initialization provided on page 12.

Item	Symbol	Condition	Min.	Тур.	Max.	Unit				
Operating Temperature Range	Top	Absolute Max	-40	-	+85	°C				
Storage Temperature Range	T_{st}	Absolute Max	-40	-	+85	°C				
Default Jumper Setting										
Supply Voltage for Module	VDD	-	2.8	3.3	3.5	V				
Supply Current for Module	IDD	VDD=3.3V, 50% ON	-	215	235	mA				
Supply Culterit for Module	טטו	VDD=3.3V, 100% ON	-	345	375	mA				
		Jumper Option #1								
Supply Voltage for Module	VDD	-	2.8	3.3	3.5	V				
Supply Voltage for Boost Converter	BC_VDD	-	2.8	-	12	V				
Supply Current for Module	IDD	VDD=3.3V	-	190	305	μΑ				
		BC_VDD=5.0V, 50% ON	-	135	150	mA				
Supply Current for Doost Convertor	IDD _{BC}	BC_VDD=5.0V, 100% ON	-	200	215	mA				
Supply Current for Boost Converter	IDDBC	BC_VDD=12.0V, 50% ON	-	60	70	mA				
		BC_VDD=12.0V, 100% ON	-	80	90	mA				
		Jumper Option #2								
Supply Voltage for Module	VDD	-	2.8	3.3	3.5	V				
Supply Voltage for OLED Panel	VCC	-	14.5	15	15.5	V				
Supply Current for Module	IDD	VDD=3.3V	-	180	300	μΑ				
Cumply Current for OLED Danel	ICC	VCC=15V, 50% ON	-	45	50	mA				
Supply Current for OLED Panel	ICC	VCC=15V, 100% ON	-	60	70	mA				
				2=	100					
Sleep Mode Current	IDD _{SLEEP}	-	-	25	120	μΑ				
"H" Level input	V_{ih}	-	0.8*VDD	-	VDD	V				
"L" Level input	V _{il}	-	VSS	-	0.2*VDD	V				
"H" Level output	V_{oh}	-	0.9*VDD	-	VDD	V				
"L" Level output	Vol	-	VSS	-	0.1*VDD	V				

Note: The electrical characteristics shown above for Jumper Option #1 and Jumper Option #2 apply only when the on-board jumpers are configured accordingly. By default, only Default Jumper Setting supply voltage and current (in bold) need to be considered. For details, see On-Board Jumper Options section on previous page.

Optical Characteristics

Values for Brightness shown below are based on the recommended initialization provided on page 12.

	Ite	em	Symbol	Condition	Min.	Тур.	Max.	Unit
Outined	Top)	φΥ+		-	85	-	0
Optimal Viewing Angles	Bot	ttom	φΥ-		-	85	-	0
	Lef	t	θХ-	-	-	85	-	0
	Rig	ht	θX+		-	85	-	0
Contrast Rat	io		Cr	Cr - >10,000:1				-
Dospopso Tiv	~~ ~	Rise	Tr	-	-	15	-	ns
Response Tir	ne	Fall	T _f	-	-	15	-	ns
Brightness		L _{br}	50% ON (checkerboard)	60	60 80		cd/m ²	
Lifetime		-	T _a =25°C, L _{br} =80cd/m ²	30,000	-	-	hrs	
Lifetime			-	T _a =25°C, L _{br} =60cd/m ²	50,000	-	-	hrs

Note: Lifetime at typical temperature is based on accelerated high-temperature operation. Lifetime is tested at average 50% pixels on and is rated as Hours until **Half-Brightness**. To extend the life of the display, lower values may be used for the contrast setting registers – see below table of commands for details.

Controller Information

Built-in SSD1322 controller.

For details, view full datasheet at http://www.newhavendisplay.com/app notes/SSD1322.pdf

Table of Commands

					Cod	e					Do- minking
Instruction	D/C	HEX	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description
Enable Grayscale	0	00	0	0	0	0	0	0	0	0	Enable the Grayscale table settings. (see con
Table											
Set Column	0	15	0	0	0	1	0	1	0	1	Set column start and end address
Address	1	A[6:0]	*	A6	A5	A4	А3	A2	A1	A0	A[6:0]: Column start address. Range: 0-119d
	1	B[6:0]	*	В6	В5	В4	В3	B2	B1	В0	B[6:0]: Column end address. Range: 0-119d
Write RAM	0	5C	0	1	0	1	1	1	0	0	Enable MCU to write Data into RAM
Command											
Read RAM	0	5D	0	1	0	1	1	1	0	1	Enable MCU to read Data from RAM
Command											
Set Row Address	0	75	0	1	1	1	0	1	0	1	Set row start and end address
	1	A[6:0]	*	A6	A5	A4	А3	A2	A1	A0	A[6:0]: Row start address. Range: 0-127d
	1	B[6:0]	*	В6	В5	В4	В3	В2	B1	В0	B[6:0]: Row end address. Range: 0-127d
Set Re-map	0	Α0	1	0	1	0	0	0	0	0	A[0] = 0; Horizontal Address Increment
·	1	A[5:0]	0	0	A5	A4	0	A2	A1	A0	A[0] = 1; Vertical Address Increment
	1	B[4]	*	*	0	В4	0	0	0	1	A[1] = 0; Disable Column Address remap
											A[1] = 1; Enable Column Address remap
											A[2] = 0; Disable Nibble remap
											A[2] = 1; Enable Nibble remap A[4] = 0; Scan from COM0 to COM[N-1]
											A[4] = 0; Scan from COM0 to COM[N-1] A[4] = 1; Scan from COM[N-1] to COM0
											A[5] = 0; Disable COM split Odd/Even
											A[5] = 1; Enable COM split Odd/Even
											B[4] = 0; Disable Dual COM mode
											B[4] = 1; Enable Dual COM mode
											Note: A[5] must be 0 if B[4] is 1.
Set Display Start	0	A1	1	0	1	0	0	0	0	1	Set display RAM display start line register fro
Line	1	A[6:0]	*	A6	A5	A4	А3	A2	A1	A0	
Set Display Offset	0	A2	1	0	1	0	0	0	1	0	Set vertical shift by COM from 0~127.
	1	A[6:0]	*	A6	A5	A4	А3	A2	A1	A0	
Display Mode	0	A4~A7	1	0	1	0	0	X2	X1	X0	0xA4 = Entire display OFF
											0xA5 = Entire display ON, all pixels Grayscale
											0xA6 = Normal display
											0xA7 = Inverse display
Enable Partial	0	A8	1	0	1	0	1	0	0	0	Turns ON partial mode.
Display	1	A[6:0]	0	A6	A5	A4	А3	A2	A1	A0	A[6:0] = Address of start row
	1	B[6:0]	0	В6	B5	В4	В3	B2	B1	В0	B[6:0] = Address of end row (B[6:0] > A[6:0])
Exit Partial Display	0	A9	1	0	1	0	1	0	0	1	Exit Partial Display mode
Function Selection	0	AB	1	0	1	0	1	0	1	1	A[0] = 0; External VDD
	1	A[0]	0	0	0	0	0	0	0	Α0	A[0] = 1; Internal VDD regulator

Set Sleep Mode ON/OFF	0	AE~AF	1	0	1	0	1	1	1	X0	0xAE = Sleep Mode ON (display OFF) 0xAF = Sleep Mode OFF (display ON)
Set Phase Length	0	B1	1	0	1	1	0	0	0	1	A[3:0] = P1. Phase 1 period of 5-31 DCLK clo
get i iluse zeligeli	1	A[7:0]	A7	A6	A5	A4	А3	A2	A1	A0	A[7:4] = P2. Phase 2 period of 3-15 DCLK clo
Set Display Clock	0	B3	1	0	1	1	0	0	1	1	A[3:0] = 0000; divide by 1
Divide Ratio /	1	A[7:0]	A7	A6	A5	Α4	А3	A2	A1	A0	A[3:0] = 0001; divide by 2
Oscillator											A[3:0] = 0010; divide by 4
Frequency											A[3:0] = 0011; divide by 8
,											A[3:0] = 0100; divide by 16
											A[3:0] = 0101; divide by 32
											A[3:0] = 0110; divide by 64
											A[3:0] = 0111; divide by 128
											A[3:0] = 1000; divide by 256
											A[3:0] = 1001; divide by 512
											A[3:0] = 1010; divide by 1024
											A[3:0] >= 1011; invalid
											A[7:4] = Set the Oscillator Frequency. Frequency of A[7:4]. Range 0000b~1111b.
VSL / Display	0	B4	1	0	1	1	0	1	0	0	A[1:0] = 00b; Enable external VSL
Enhancement			1	0	1	0	0	0	A1	A0	A[1:0] = 10b; Internal VSL
Ennancement	1	A[1:0]									B[7:3] = 11111b; Enhanced low GS display q
	1	B[7:3]	В7	В6	B5	B4	В3	1	0	1	B[7:3] = 10110b; Normal
Set GPIO	0	B5	1	0	1	1	0	1	0	1	A[1:0] = 00; GPIO0 input disabled
	1	A[3:0]	*	*	*	*	А3	A2	A1	A0	A[1:0] = 01; GPIO0 input enabled
	_										A[1:0] = 10; GPIO0 output LOW
											A[1:0] = 11; GPIO0 output HIGH
											A[3:2] = 00; GPIO1 input disabled
											A[3:2] = 01; GPIO1 input enabled
											A[3:2] = 10; GPIO1 output LOW
											A[3:2] = 11; GPIO1 output HIGH
Set Second Pre-	0	В6	1	0	1	1	0	1	1	0	Sets the second precharge period
charge Period	1	A[3:0]	*	*	*	*	А3	A2	A1	A0	A[3:0] = DCLKs
Set Grayscale	0	В8	1	0	1	1	1	0	0	0	Sets the gray scale pulse width in units of De
Table	1	A1[7:0]	A1 ₇	A1 ₆	A1 ₅	A1 ₄	A1 ₃	A1 ₂	A1 ₁	A1 ₀	A1[7:0] = Gamma Setting for GS1
	1	A2[7:0]	A2 ₇	A2 ₆	A2 ₅	A2 ₄	A2 ₃	A2 ₂	A2 ₁	A2 ₀	A2[7:0] = Gamma Setting for GS2
	1	•		.				.			
	1	•		.				.			
	1										
	1	A14[7:0]	A14 ₇	A14 ₆	A14 ₅	A14 ₄	A14 ₃	A14 ₂	A14 ₁	A14 ₀	A14[7:0] = Gamma Setting for GS14
	1	A15[7:0]	A15 ₇	A15 ₆	A15 ₅	A15 ₄	A15 ₃	A15 ₂	A15 ₁	A15 ₀	A15[7:0] = Gamma Setting for GS15
											Note: 0 < GS1 < GS2 < GS3 < GS14 < GS15
											The setting must be followed by command

Select Default	0	В9	1	0	1	1	1	0	0	1	Sets Linear Grayscale table
Linear Gray Scale											GS0 pulse width = 0
Table											GS0 pulse width = 0
											GS0 pulse width = 8
											GS0 pulse width = 16
											•
											GS0 pulse width = 104
											GSO pulse width = 104 GSO pulse width = 112
Set Pre-charge	0	BB	1	0	1	1	1	0	1	1	Set precharge voltage level.
Voltage	1	A[4:0]	*	*	*	A4	A3	A2	A1	A0	A[4:0] = 0x00; 0.20*VCC
VOitage	1	A[4.U]	-	-	-	A4	AS	AZ	AI	AU	
											A[4:0] = 0x3E; 0.60*VCC
Set VCOMH	0	BE	1	0	1	1	1	1	1	0	Sets the VCOMH voltage level
Voltage	1	A[3:0]	*	*	*	*	А3	A2	A1	A0	A[3:0] = 0x00; 0.72*VCC
•											
											A[3:0] = 0x04; 0.8*VCC
											•
											A[3:0] = 0x07; 0.86*VCC
Set Contrast	0	C1	1	1	0	0	0	0	0	1	Double byte command to select 1 out of 256
Control	1	A[7:0]	A7	A6	A5	A4	A3	A2	A1	Α0	Contrast increases as the value increases.
Master Contrast	0	C7	1	1	0	0	0	1	1	1	A[3:0] = 0x00; Reduce output for all colors to
Control	1	A[3:0]	*	*	*	*	A3	A2	A1	A0	A[3:0] = 0x01; Reduce output for all colors to
Control	_	٦[٥.٥]					73	72		۸٥	
											A[3:0] = 0x0E; Reduce output for all colors to
											A[3:0] = 0x0F; no change
Set Multiplex	0	CA	1	1	0	0	1	0	1	0	Set MUX ratio to N+1 MUX
Ratio	1	A[6:0]	*	A6	A5	A4	А3	A2	A1	A0	N=A[6:0]; from 16MUX to 128MUX (0 to 14
Set Command	0	FD	1	1	1	1	1	1	0	1	A[2] = 0; Unlock OLED to enable commands
Lock	1	A[2]	0	0	0	1	0	A2	1	0	A[2] = 1; Lock OLED from entering command

For detailed instruction information, view full SSD1322 datasheet here (pages 32-47):

http://www.newhavendisplay.com/app_notes/SSD1322.pdf

MPU Interface

6800-MPU Parallel Interface

The parallel interface consists of 8 bi-directional data pins, R/W, D/C, E, and /CS.

A LOW on R/W indicates write operation, and HIGH on R/W indicates read operation.

A LOW on D/C indicates "Command" read or write, and HIGH on D/C indicates "Data" read or write.

The E input serves as data latch signal, while /CS is LOW. Data is latched at the falling edge of E signal.

Function	E	R/W	/cs	D/C
Write Command	\rightarrow	0	0	0
Read Status	\downarrow	1	0	0
Write Data	\downarrow	0	0	1
Read Data	\downarrow	1	0	1

8080-MPU Parallel Interface

The parallel interface consists of 8 bi-directional data pins, /RD, /WR, D/C, and /CS.

A LOW on D/C indicates "Command" read or write, and HIGH on D/C indicates "Data" read or write.

A rising edge of /RS input serves as a data read latch signal while /CS is LOW.

A rising edge of /WR input serves as a data/command write latch signal while /CS is LOW.

Function	/RD	/WR	/cs	D/C
Write Command	1		0	0
Read Status	\uparrow	1	0	0
Write Data	1	\uparrow	0	1
Read Data	\uparrow	1	0	1

Serial Interface (4-wire)

The 4-wire serial interface consists of Serial Clock (SCLK), Serial Data (SDIN), Data/Command (D/C), and Chip Select (/CS). D0 acts as SCLK and D1 acts as SDIN. D2 must be left as a No Connect D3~D7, E, and R/W should be connected to GND.

Function	/RD	/WR	/cs	D/C	D0
Write Command	Tie LOW	Tie LOW	0	0	\uparrow
Write Data	Tie LOW	Tie LOW	0	1	1

SDIN is shifted into an 8-bit shift register on every rising edge of SCLK in the order of D7, D6,...D0. D/C is sampled on every eighth clock and the data byte in the shift register is written to the GDDRAM or command register in the same clock.

Note: Read functionality is not available in serial mode.

Serial Interface (3-wire)

The 3-wire serial interface consists of Serial Clock (SCLK), Serial Data In (SDIN), and Chip Select (/CS). D0 acts as SCLK and D1 acts as SDIN. D2 must be left as a No Connect. D3~D7, E, R/W, and D/C should be connected to Ground.

Function	/RD	/WR	/cs	D/C	D0
Write Command	Tie LOW	Tie LOW	0	Tie LOW	\rightarrow
Write Data	Tie LOW	Tie LOW	0	Tie LOW	\uparrow

SDIN is shifted into an 9-bit shift register on every rising edge of SCLK in the order of D/C, D7, D6,...D0. D/C (first bit of the sequential data) will determine if the following data byte is written to the Display Data RAM (D/C = 1) or the command register (D/C = 0).

Note: Read functionality is not available in serial mode.

For detailed timing information for each interface mode, view full SSD1322 datasheet here (pages 50-54): http://www.newhavendisplay.com/app_notes/SSD1322.pdf

Recommended Initialization

```
void NHD12864WDY3 Init(void){
        digitalWrite(RES, LOW);
                                         //pull /RES (pin #16) low
                                         //keep /RES low for minimum 200µs
        delayUS(200);
        digitalWrite(RES, HIGH);
                                         //pull /RES high
                                         //wait minimum 200µs before sending commands
        delayUS(200);
        writeCommand(OxAE);
                                         //display OFF
        writeCommand(0xB3);
                                         //set CLK div. & OSC freq.
        writeData(0x91);
        writeCommand(OxCA);
                                         //set MUX ratio
        writeData(0x3F);
        writeCommand(0xA2);
                                         //set offset
        writeData(0x00);
        writeCommand(OxAB);
                                         //function selection
        writeData(0x01);
        writeCommand(0xA0);
                                         //set re-map
        writeData(0x16);
        writeData(0x11);
        writeCommand(0xC7);
                                         //master contrast current
        writeData(OxOF);
                                         //set contrast current
        writeCommand(0xC1);
        writeData(0x9F);
        writeCommand(0xB1);
                                         //set phase length
        writeData(0xF2);
                                         //set pre-charge voltage
        writeCommand(0xBB);
        writeData(Ox1F);
                                         //set VSL
        writeCommand(0xB4);
        writeData(0xA0);
        writeData(OxFD);
        writeCommand(0xBE);
                                         //set VCOMH
        writeData(0x04);
        writeCommand(0xA6);
                                         //set display mode
        writeCommand(OxAF);
                                         //display ON
```

Example Software Routines

```
void setColumn(unsigned char xStart, unsigned char xEnd){
                             //set column (x-axis) start/end address
  writeCommand(0x15);
                             //column start; 28 is left-most column
  writeData(xStart);
                             //column end; 91 is right-most column
  writeData(xEnd);
void setRow(unsigned char yStart, unsigned char yEnd){
  writeCommand(0x75);
                             //set row (y-axis) start/end address
                             //row start; 0 is top row
  writeData(yStart);
  writeData(yEnd);
                             //row end; 63 is bottom row
void clearDisplay(void){
  unsigned int i;
                             //set column (x-axis) start/end address
  setColumn(28,91);
                             //set row (y-axis) start/end address
  setRow(0,63);
  writeRAM();
                             //single byte command (0x5C) to initiate pixel data write to GDDRAM;
  for(i=0;i<4096;i++){}
                             // ((91-28)+1)*((63-0)+1)
   writeData(0x00);
   writeData(0x00);
void write2Pixels(unsigned char xPos, unsigned char yPos, unsigned char pixel1, unsigned char pixel2){
  if(pixel1>=1) pixel1 = 0xFF;
                                       //set 1st pixel value to ON
  else pixel1 = 0x00;
                                       //set 1st pixel value to OFF
  if(pixel2>=1) pixel2 = 0xFF;
                                       //set 2nd pixel value to ON
  else pixel2 = 0x00;
                                       //set 2nd pixel value to OFF
                                       //boundary check (MIN xPos = 0, MAX xPos = 127)
  if(xPos>127) xPos = 127;
  xPos = xPos/2;
                                       //account for GDDRAM address mapping
                                       //account for GDDRAM address mapping
  xPos+=28;
  if(yPos>63) yPos = 63;
                                       //boundary check (MIN yPos = 0, MAX yPos = 63)
  setColumn(xPos,xPos);
                                       //set column (x-axis) start/end address
  setRow(yPos,yPos);
                                       //set row (y-axis) start/end address
                                       //single byte command (0x5C) to initiate pixel data write to GDDRAM;
  writeRAM();
  writeData(pixel1);
                                       //write 1st of 2 pixels to the display
                                       //write 2nd of 2 pixels to the display
  writeData(pixel2);
void displayArray12864(const unsigned char arr[]){
                                                           //display 128x64 monochrome bitmap, horizontal pixel arrangement, 8-pixels per byte
  unsigned int i, j;
  setColumn(28,91);
                                       //set column (x-axis) start/end address
                                       //set row (y-axis) start/end address
  setRow(0,63);
                                       //single byte command (0x5C) to initiate pixel data write to GDDRAM;
  writeRAM();
  for(i=0;i<1024;i++){
                                       //translate each byte/bit into pixel data
   for(j=0;j<8;j++){
    if(((arr[i] << j) &0x80) == 0x80){
     writeData(OxFF);
    else{
     writeData(0x00);
```

Quality Information

Test Item	Content of Test	Test Condition	Note
High Temperature storage	Test the endurance of the display at high storage temperature.	+85°C, 240hrs	2
Low Temperature storage	Test the endurance of the display at low storage temperature.	-40°C, 240hrs	1,2
High Temperature Operation	Test the endurance of the display by applying electric stress (voltage & current) at high temperature.	+85°C, 240hrs	2
Low Temperature Operation	Test the endurance of the display by applying electric stress (voltage & current) at low temperature.	-40°C, 240hrs	1,2
High Temperature / Humidity Operation	Test the endurance of the display by applying electric stress (voltage & current) at high temperature with high humidity.	+60°C, 90% RH, 240hrs	1,2
Thermal Shock resistance	Test the endurance of the display by applying electric stress (voltage & current) during a cycle of low and high temperatures.	-40°C, 30min -> +25°C, 5min -> +85°C, 30min = 1 cycle 100 cycles	
Vibration test	Test the endurance of the display by applying vibration to simulate transportation and use.	10-22Hz, 15mm amplitude. 22-500Hz, 1.5G 30min in each of 3 directions X,Y,Z	3
Atmospheric Pressure test	Test the endurance of the display by applying atmospheric pressure to simulate transportation by air.	115mbar, 40hrs	3
Static electricity test	Test the endurance of the display by applying electric static discharge.	VS=800V, RS=1.5k Ω , CS=100pF One time	

Note 1: No condensation to be observed.

Note 2: Conducted after 2 hours of storage at 25°C, 0%RH.

Note 3: Test performed on product itself, not inside a container.

Evaluation Criteria:

- 1: Display is fully functional during operational tests and after all tests, at room temperature.
- 2: No observable defects.
- 3: Luminance >50% of initial value.
- 4: Current consumption within 50% of initial value

Precautions for using OLEDs/LCDs/LCMs

See Precautions at www.newhavendisplay.com/specs/precautions.pdf

Warranty Information

See Terms & Conditions at http://www.newhavendisplay.com/index.php?main_page=terms

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for OLED Displays & Accessories category:

Click to view products by Newhaven Display manufacturer:

Other Similar products are found below:

```
OLED-100H008A-RPP5N00000 OLED-100H016B-RPP5N00000 OLED-200H016A-LPP5N00000 OLED-100H008A-GPP5N00000 OLED-100H008A-LPP5N00000 OLED-100H032A-BPP5N00000 OLED-100H016F-RPP5N00000 OLED-100H016A-BPP5N00000 OLED-100H016A-BPP3N00000 OLED-016N002B-BPP5N00000 OLED-016N002B-BPP5N00000 OLED-016N002B-BPP5N00000 OLED-016N002B-BPP5N00000 OLED-100H016A-BPP5N00000 OLED-100H016B-BPP5N00000 OLED-100H016B-BPP5N00
```