3.3V, 10-Bit, 2-Port, NanoSwitch ${ }^{\mathrm{TM}}$

Features

\rightarrow Near-Zero propagation delay
$\rightarrow 5$-ohm switches connect inputs to outputs
\rightarrow Fast Switching Speed: 4.5ns (max.)
\rightarrow Ultra Low Quiescent Power ($0.1 \mu \mathrm{~A}$ typical)

- Ideally suited for notebook applications
\rightarrow Packaging (Pb -free \& Green):
- 24-pin 150-mil wide plastic QSOP (Q)

Block Diagram

Truth Table ${ }^{(1)}$

Function	$\overline{\mathbf{B E}}$	A0-9
Disconnect	H	Hi-Z
Connect	L	B0-9
Note: \quadH L	= High Voltage Level Hi-Z	$=$ High Voltage Level

Description

Pericom Semiconductor's PI3B3861 is a 10-bit, 3.3 volt, 2-port bus switch designed with a low On-Resistance (5-ohm) allowing inputs to be connected directly to outputs. The bus switch creates no additional propagational delay or additional ground bounce noise. The switches are turned ON by the Bus Enable $(\overline{\mathrm{BE}})$ input signal.

Pin Configuration

Pin Description

Pin Name	Description
$\overline{\mathrm{BE}}$	Bus Enable Input (Active LOW)
A0-9	Bus A
B0-9	Bus B
GND	Ground
V_{CC}	Power

Absolute Maximum Ratings

Parameter	Min.	Max.	Units
Storage Temperature	-65	150	${ }^{\circ} \mathrm{C}$
Ambient Temperature with Power Applied	-40	85	${ }^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5	4.6	V
DC Input Voltage	-0.5	4.6	V
DC Output Current	-	120	mA
Power Dissipation	-	0.5	W

Stress beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.
DC Electrical Characteristics (Over the Operating Range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 10 \%$)

Parameters	Description	Test Conditions ${ }^{(1)}$	Min	Typ ${ }^{(2)}$	Max	Units
V_{IH}	Input HIGH Voltage	Guaranteed Logic HIGH Level	2.0			V
VIL	Input LOW Voltage	Guaranteed Logic LOW Level	-0.5		0.8	V
I_{IH}	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$			± 1	$\mu \mathrm{A}$
IIL	Input LOW Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {IN }}=\mathrm{GND}$			± 1	$\mu \mathrm{A}$
IoZH	High Impedance Output Current	$0 \leq \mathrm{A}, \mathrm{B} \leq \mathrm{V}_{\mathrm{CC}}$			± 1	$\mu \mathrm{A}$
VIK	Clamp Diode Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$			-1.2	V
$\mathrm{R}_{\text {ON }}$	Switch On Resistance ${ }^{(3)}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{V}_{\mathrm{IN}}=0.0 \mathrm{~V}, \mathrm{I}_{\mathrm{ON}}=48 \mathrm{~mA}$ or 64 mA		5	8	Ω
		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{ION}=15 \mathrm{~mA}$		10	17	

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Measured by the voltage drop between A and B pin at indicated current through the switch. ON resistance is determined by the lower of the voltages on the two (A, B) pins.

Capacitance $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}\right)$

Parameters $^{(1)}$	Description	Test Conditions	Typ	Units
C IN	Input Capacitance	$V_{\text {IN }}=0 \mathrm{~V}$	3.0	pF
C OFF	A/B Capacitance, Switch Off	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	8.0	pF
CON	A/B Capacitance, Switch On	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	16.0	pF

Notes:

1. This parameter is determined by device characterization but is not production tested.

Power Supply Characteristics

Parameters	Description	Test Conditions ${ }^{(1)}$		Min	Typ ${ }^{(2)}$	Max	Units
I_{CC}	Quiescent Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max.	$\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$ or V_{CC}		0.1	3.0	$\mu \mathrm{~A}$
Δ_{ICC}	Supply Current per Input @ TTL HIGH	$\mathrm{V}_{\mathrm{CC}}=$ Max.	$\mathrm{V}_{\mathrm{IN}}=3.0 \mathrm{~V}^{(3)}$			750	$\mu \mathrm{~A}$

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device.
2. Typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
3. Per TTL driven input (control input only); A and B pins do not contribute to ICC.

Switching Characteristics over Operating Range

Parameters	Description	Test Conditions ${ }^{(1)}$	Com.		Units
			Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay ${ }^{(2,3)}$ Ax to Bx, Bx to Ax	$\begin{aligned} & \mathrm{CL}=50 \mathrm{pF} \\ & \mathrm{RL}=500 \Omega \end{aligned}$		0.25	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Bus Enable Time $\overline{\mathrm{BE}}$ to Ax or Bx		1	4.5	
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Bus Disable Time $\overline{\mathrm{BE}}$ to Ax or Bx		1	4.5	

Notes:

1. See test circuit and wave forms.
2. This parameter is guaranteed but not tested on Propagation Delays.
3. The bus switch contributes no propagational delay other than the RC delay of the On-Resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25 ns for 50 pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagational delay to the system. Propagational delay of the bus switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

Applications Information

Logic Inputs

The logic control inputs can be driven up to +3.6 V regardless of the supply voltage. For example, given a +3.3 V supply, IN may be driven low to 0 V and high to 3.6 V . Driving IN Rail-to-Rail ${ }^{{ }^{\circ}}$ minimizes power consumption.

Power-Supply Sequencing and Hot-Plug Information

Proper power-supply sequencing is recommended for all CMOS devices. Always apply $V_{C C}$ and $G N D$ before applying signals to input/output or control pins.

Rail-to-Rail is a registeredtrademark of Nippon Motorola, Ltd.

Test Circuits

Enable and Disable Timing

Switch Position

Test	Switch
Disable LOW	6 V
Enable LOW	6 V
Disable HIGH	GND
Enable HIGH	GND
$t_{\text {PD }}$	Open

Definitions:
$\mathrm{CL}=$ Load capacitance (includes jig and probe capacitance)
RT $=$ Termination resistance (should be equal to ZOUT of the pulse generator)

Propagation Delay

Packaging Mechanical: 24-pin QSOP (Q)

07-0475

Ordering Information

Ordering Code	Package Code	Package Type
PI3B3861QE	Q	Pb-free \& Green, 24-pin QSOP

1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Digital Bus Switch ICs category:
Click to view products by Diodes Incorporated manufacturer:
Other Similar products are found below :
MT8986AE1 MT90812AP1 MT90869AG2 CA91L8260B-100CEV TC7MPB9307FT(EL) MT8986AP1 72V8985JG8 732757E
ZL50020QCG1 ZL50012QCG1 PI3C32X384BE PI5C3861QEX ZL50023GAG2 MT8986AL1 MT8981DP1 PI3VT3245-ALE
ZL50016GAG2 TC7MBL3257CFT(EL) PI3CH800QE MT90823AB1 ZL50075GAG2 PI5C32X245BEX PI5C3126QEX PI5C3125QEX
PI3VT3245-AQE PI3CH800QEX PI3C3384QE PI3C3305UEX PI3B3861QEX PI3B3861QE PI3B32X245BEX PI3B3245QEX PI3B3245QE PI3CH800ZHEX PI3CH1000LE PI3CH400ZBEX 728981JG8 TC7MBL3257CFK(EL) 728985JG8 PI3CH401LE PI3CH401LEX FST3126DR2G QS34X245Q3G8 QS3VH125S1G8 TC7WBL3305CFK(5L,F 74CB3Q3125DBQRE4 74FST6800PGG8 74CB3Q3244DBQRE4 74CBTLV3125PGG8 TC7MBL3125CFT(EL)

