LT1990

$\pm 250 \mathrm{~V}$ Input Range $G=1,10$, Micropower, Difference Amplifier DESCRIPTION

The $\mathrm{LT}^{\circledR 1} 1990$ is a micropower precision difference amplifier with a very high common mode input voltage range. It has pin selectable gains of 1 or 10 . The LT1990 operates over a $\pm 250 \mathrm{~V}$ common mode voltage range on a $\pm 15 \mathrm{~V}$ supply. The inputs are fault protected from common mode voltage transients up to $\pm 350 \mathrm{~V}$ and differential voltages up to $\pm 500 \mathrm{~V}$. The LT1990 is ideally suited for both high side and low side current or voltage monitoring.
On a single 5V supply, the LT1990 has an adjustable 85 V input range, 70 dB min CMRR and draws less than $120 \mu \mathrm{~A}$ supply current. The rail-to-rail output maximizes the dynamic range, especially important for single supplies as low as 2.7 V .

The LT1990 is specified for single $3 \mathrm{~V}, 5 \mathrm{~V}$ and $\pm 15 \mathrm{~V}$ supplies over both commercial and industrial temperature ranges. The LT1990 is available in the 8-pin S0 package.
$\overline{\boldsymbol{Q},}$, LT, LTC and LTM are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

- High Voltage Current Sensing
- Signal Acquisition in Noisy Environments
- Input Protection
- Fault Protected Front Ends
- Level Sensing
- Isolation

Full-Bridge Load Current Monitor

ABSOLUTE MAXIMUM RATINGS

(Notes 1, 2)
Total Supply Voltage (V^{+}to V^{-}) 36V
Input Voltage Range
Continuous $\pm 250 \mathrm{~V}$
Transient (0.1s) .. $\pm 350 \mathrm{~V}$
Differential $\pm 500 \mathrm{~V}$
Output Short-Circuit Duration (Note 3) Indefinite Operating Temperature Range (Note 4)

LT1990C \qquad $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT1990I .. $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT1990H .. $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Specified Temperature Range (Note 5)
LT1990C
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT1990 $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT1990H $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Junction Temperature .. $150^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec .) \qquad $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

TOP VIEW	
ReF 1	8 galin
-IN 2	$7 \mathrm{v}^{+}$
+10 3	6 OUT
v^{-4}	5 GAIN2
$\begin{gathered} \text { S8 PACKAGE } \\ \text { 8-LEAD PLASTIC SO } \\ \mathrm{T}_{\mathrm{JMAX}}=150^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=190^{\circ} \mathrm{C} / \mathrm{N} \end{gathered}$	
ORDER PART NUMBER	S8 PART MARKING
LT1990CS8	1990
LT1990IS8	19901
LT1990HS8	1990H
LT1990ACS8	1990A
LT1990AIS8	1990AI
LT1990AHS8	1990AH

Order Options Tape and Reel: Add \#TR
Lead Free: Add \#PBF Lead Free Tape and Reel: Add \#TRPBF
Lead Free Part Marking: http://www.linear.com/leadfree/
Consult LTC Marketing for parts specified with wider operating temperature ranges.

3V/5V ELECTRICAL CHARACTERISTICS

$V_{S}=3 V, O V ; V_{S}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{REF}}=$ half supply, $\mathrm{G}=1,10, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted. (Note 6)

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
G	Gain	$\begin{aligned} & \text { Pins } 5 \text { and } 8=0 \text { pen } \\ & \text { Pins } 5 \text { and } 8=V_{\text {REF }} \end{aligned}$		$\begin{gathered} 1 \\ 10 \end{gathered}$		
$\Delta \mathrm{G}$	Gain Error	$\begin{aligned} & \text { Vout }=0.5 \mathrm{~V} \text { to }(+V \mathrm{Vs})-0.75 \mathrm{~V} \\ & \text { LT1990, } \mathrm{G}=1 \\ & \text { LT1990A, } G=1 \\ & G=10, V_{S}=5 \mathrm{~V}, 0 \mathrm{~V} \end{aligned}$		$\begin{gathered} 0.4 \\ 0.07 \\ 0.2 \end{gathered}$	$\begin{gathered} 0.6 \\ 0.28 \\ 0.8 \end{gathered}$	\% \% \%
GNL	Gain Nonlinearity	$\begin{aligned} & V_{S}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V} \text { to } 4.25 \mathrm{~V} \\ & \mathrm{G}=1 \\ & \mathrm{G}=10 \end{aligned}$		$\begin{gathered} 0.001 \\ 0.01 \end{gathered}$	0.005	\%
$\mathrm{V}_{\text {CM }}$	Input Voltage Range	Guaranteed by CMRR $\begin{aligned} & V_{S}=3 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{REF}}=1.25 \mathrm{~V} \\ & V_{S}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{REF}}=1.25 \mathrm{~V} \\ & V_{S}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{REF}}=2.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -5 \\ & -5 \\ & -38 \end{aligned}$		$\begin{aligned} & 25 \\ & 80 \\ & 47 \end{aligned}$	V V V
CMRR	Common Mode Rejection Ratio RTI (Referred to Input)	$\begin{aligned} & \left.V_{S}=3 \mathrm{~V}, 0 \mathrm{~V} \text { (Note } 7\right) \\ & V_{C M}=-5 \mathrm{~V} \text { to } 25 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=1.25 \mathrm{~V} \\ & \text { LT1990 } \\ & \text { LT1990A } \end{aligned}$	$\begin{aligned} & 60 \\ & 70 \\ & \hline \end{aligned}$	$\begin{aligned} & 68 \\ & 75 \\ & \hline \end{aligned}$		dB dB
		$\begin{aligned} & V_{S}=5 \mathrm{~V}, 0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=-5 \mathrm{~V} \text { to } 80 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=1.25 \mathrm{~V} \\ & \text { LT1990 } \\ & \text { LT1990A } \end{aligned}$	$\begin{aligned} & 60 \\ & 70 \end{aligned}$	$\begin{aligned} & 68 \\ & 75 \end{aligned}$		dB dB
		$\begin{aligned} & V_{S}=5 \mathrm{~V}, 0 \mathrm{~V}(\text { Note } 7) \\ & V_{C M}=-38 \mathrm{~V} \text { to } 47 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=2.5 \mathrm{~V} \\ & \text { LT1990 } \\ & \text { LT1990A } \end{aligned}$	$\begin{aligned} & 60 \\ & 70 \end{aligned}$	$\begin{aligned} & 68 \\ & 75 \end{aligned}$		dB dB

3V/5V ELECTRICAL CHARACTERISTICS

$V_{S}=3 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=10 \mathrm{~K}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{REF}}=$ half supply, $\mathrm{G}=1,10, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted. (Note 6)

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Offset Voltage, RTI	$\mathrm{G}=1,10$		0.8	3	mV
e_{n}	Input Noise Voltage, RTI	$\mathrm{f}_{0}=0.1 \mathrm{~Hz}$ to 10 Hz		22		$\mu \mathrm{V}_{\text {P-P }}$
	Noise Voltage Density, RTI	$\mathrm{f}_{0}=1 \mathrm{kHz}$		1		$\mu \mathrm{V} / \mathrm{VHz}$
$\mathrm{R}_{\text {IN }}$	Input Resistance	Differential Common Mode		$\begin{gathered} 2 \\ 0.5 \end{gathered}$		$M \Omega$ $M \Omega$
PSRR	Power Supply Rejection Ratio, RTI	$\mathrm{V}_{S}=2.7 \mathrm{~V}$ to 12.7V, $\mathrm{V}_{\text {CM }}=\mathrm{V}_{\text {REF }}=1.25 \mathrm{~V}$	80	92		dB
	Minimum Supply Voltage	Guaranteed by PSRR		2.4	2.7	V
IS	Supply Current	(Note 8)		105	120	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OL }}$	Output Voltage Swing LOW	$-\mathrm{IN}=\mathrm{V}^{+}$, IN = Half Supply (Note 8)		30	50	mV
V_{OH}	Output Voltage Swing HIGH	$\begin{aligned} & -I N=0 V,+I N=\text { Half Supply } \\ & V_{S}=3 V, 0 V \text {, Below } \mathrm{V}^{+} \\ & V_{S}=5 \mathrm{~V}, 0 \mathrm{~V} \text {, Below } \mathrm{V}^{+} \end{aligned}$		$\begin{aligned} & 100 \\ & 120 \end{aligned}$	$\begin{aligned} & 150 \\ & 175 \end{aligned}$	mV mV
ISC	Output Short-Circuit Current	Short to GND (Note 9) Short to V^{+}(Note 9)	$\begin{gathered} 4 \\ 13 \end{gathered}$	$\begin{gathered} 8 \\ 20 \end{gathered}$		mA
BW	Bandwidth (-3dB)	$\begin{aligned} & G=1 \\ & G=10 \end{aligned}$		$\begin{aligned} & 100 \\ & 6.5 \end{aligned}$		kHz kHz
SR	Slew Rate	$\mathrm{G}=1, \mathrm{~V}_{S}=5 \mathrm{~V}, 0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0.5 \mathrm{~V}$ to 4.5V		0.5		$\mathrm{V} / \mathrm{\mu s}$
	Settling Time to 0.01\%	4 V Step, $\mathrm{G}=1, \mathrm{~V}_{S}=5 \mathrm{~V}, 0 \mathrm{~V}$		45		$\mu \mathrm{S}$
$\mathrm{AV}_{\text {REF }}$	Reference Gain to Output	$\begin{aligned} & G=1 \\ & G=10 \end{aligned}$		$\begin{gathered} 1 \pm 0.0007 \\ 1 \pm 0.007 \end{gathered}$		

The • denotes the specifications which apply over the temperature range of $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$. $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$, $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {REF }}=$ half supply, $\mathrm{G}=1,10$, unless otherwise noted. (Notes 4, 6)

SYMBOL	PARAMETER	CONDITIONS		LT1990C/LT19901			UNITS
				MIN	TYP	MAX	
$\Delta \mathrm{G}$	Gain Error	$\begin{aligned} & V_{\text {OUT }}=0.5 \mathrm{~V} \text { to }\left(+V_{S}\right)-0.75 \mathrm{~V} \\ & \text { LT1990, } \mathrm{G}=1 \\ & \text { LT1990A, } \mathrm{G}=1 \\ & \mathrm{G}=10 \end{aligned}$	\bullet			$\begin{aligned} & 0.65 \\ & 0.33 \\ & 0.90 \end{aligned}$	\% \% \%
G/T	Gain vs Temperature	$\begin{aligned} & G=1(\text { Note } 10) \\ & G=10(\text { Note } 10) \end{aligned}$	\bullet		$\begin{aligned} & 2 \\ & 7 \end{aligned}$	$\begin{aligned} & 10 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{V}_{\text {CM }}$	Input Voltage Range	Guaranteed by CMRR $\begin{aligned} & V_{S}=3 \mathrm{~V}, 0 \mathrm{~V}, V_{\text {REF }}=1.25 \mathrm{~V} \\ & V_{S}=5 \mathrm{~V}, 0 \mathrm{~V}, V_{\text {REF }}=1.25 \mathrm{~V} \\ & V_{S}=5 \mathrm{~V}, 0 \mathrm{~V}, V_{\text {REF }}=2.5 \mathrm{~V} \end{aligned}$	$\stackrel{\bullet}{\bullet}$	$\begin{gathered} -5 \\ -5 \\ -37 \end{gathered}$		$\begin{aligned} & 25 \\ & 80 \\ & 48 \end{aligned}$	V V V
CMRR	Common Mode Rejection Ratio, RTI	$\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, 0 \mathrm{~V} \text { (Note 7) }$ $V_{C M}=-5 \mathrm{~V}$ to $25 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=1.25 \mathrm{~V}$ LT1990 LT1990A	\bullet	$\begin{aligned} & 58 \\ & 68 \end{aligned}$			dB $d B$
		$\begin{aligned} & V_{S}=5 \mathrm{~V}, 0 \mathrm{~V} \\ & V_{\text {CM }}=-5 \mathrm{~V} \text { to } 80 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=1.25 \mathrm{~V} \\ & \text { LT1990 } \\ & \text { LT1990A } \end{aligned}$	\bullet	$\begin{aligned} & 58 \\ & 68 \end{aligned}$			dB dB
		$\begin{aligned} & V_{S}=5 \mathrm{~V}, 0 \mathrm{~V}(\text { Note } 7) \\ & V_{\text {CM }}=-38 \mathrm{~V} \text { to } 47 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=2.5 \mathrm{~V} \\ & \text { LT1990 } \\ & \text { LT1990A } \end{aligned}$	\bullet	$\begin{aligned} & 58 \\ & 68 \end{aligned}$			dB dB
1990fb							

3V/5V ELECTRICAL CHARACTERISTICS

The \bullet denotes the specifications which apply over the temperature range of $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$. $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$, $V_{C M}=V_{\text {REF }}=$ half supply, $G=1,10$, unless otherwise noted. (Notes 4, 6)

SYMBOL	PARAMETER	CONDITIONS		LT1990C/LT1990I			UNITS
				MIN	TYP	MAX	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage, RTI	$\begin{aligned} & V_{S}=3 V, 0 V \\ & G=1,10 \end{aligned}$	\bullet			4.1	mV
		$\begin{aligned} & V_{S}=5 \mathrm{~V}, 0 \mathrm{~V} \\ & \mathrm{G}=1,10 \end{aligned}$	\bullet			4.1	mV
$\mathrm{V}_{\text {OS }} / \mathrm{T}$	Input Offset Voltage Drift, RTI	(Note 10)	\bullet		5	22	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {OSH }}$	Input Offset Voltage Hysteresis, RTI	(Note 11)	\bullet		230		$\mu \mathrm{V}$
PSRR	Power Supply Rejection Ratio, RTI	$\begin{aligned} & V_{S}=2.7 \mathrm{~V} \text { to } 12.7 \mathrm{~V} \\ & V_{C M}=V_{\text {REF }}=1.25 \mathrm{~V} \\ & G=1,10 \end{aligned}$	\bullet	78			dB
	Minimum Supply Voltage	Guaranteed by PSRR	\bullet			2.7	V
Is	Supply Current	(Note 8)	\bullet			150	$\mu \mathrm{A}$
$\mathrm{V}_{0 \mathrm{~L}}$	Output Voltage Swing LOW	$-\mathrm{IN}=\mathrm{V}^{+}$, IN $=$Half Supply (Note 8)	\bullet			60	mV
V_{OH}	Output Voltage Swing HIGH	$\begin{aligned} & -I N=0 \mathrm{~V},+I \mathrm{~N}=\text { Half Supply } \\ & \mathrm{V}_{S}=3 \mathrm{~V}, 0 \mathrm{~V} \text {, Below } \mathrm{V}^{+} \\ & \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V} \text {, Below } \mathrm{V}^{+} \end{aligned}$	\bullet			$\begin{aligned} & 180 \\ & 205 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$I_{S C}$	Output Short-Circuit Current	Short to GND (Note 9) Short to V^{+}(Note 9)	\bullet	$\begin{gathered} 3 \\ 11 \end{gathered}$			$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$

The \bullet denotes the specifications which apply over the temperature range of $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$. $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$, $V_{C M}=V_{\text {REF }}=$ half supply, $G=1,10$, unless otherwise noted. (Notes 4, 6)

SYMBOL	PARAMETER	CONDITIONS		LT1990C/LT19901			UNITS
				MIN	TYP	MAX	
$\Delta \mathrm{G}$	Gain Error	$\begin{aligned} & V_{\text {OUT }}=0.5 \mathrm{~V} \text { to }\left(+V_{\mathrm{S}}\right)-0.75 \mathrm{~V} \\ & \text { LT1990, } \mathrm{G}=1 \\ & \text { LT1990A, } \mathrm{G}=1 \\ & \mathrm{G}=10 \end{aligned}$	\bullet			$\begin{aligned} & 0.67 \\ & 0.35 \\ & 0.95 \end{aligned}$	\% \% $\%$
G/T	Gain vs Temperature	$\begin{aligned} & G=1(\text { Note 10) } \\ & G=10(\text { Note } 10) \end{aligned}$	\bullet		$\begin{aligned} & 2 \\ & 7 \end{aligned}$	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{V}_{\text {CM }}$	Input Voltage Range	Guaranteed by CMRR $\begin{aligned} & V_{S}=3 \mathrm{~V}, 0 \mathrm{~V}, V_{\text {REF }}=1.25 \mathrm{~V} \\ & V_{S}=5 \mathrm{~V}, 0 \mathrm{~V}, V_{\text {REF }}=1.25 \mathrm{~V} \\ & V_{S}=5 \mathrm{~V}, 0 \mathrm{~V}, V_{\text {REF }}=2.5 \mathrm{~V} \end{aligned}$	\bullet	$\begin{gathered} -5 \\ -5 \\ -37 \end{gathered}$		$\begin{aligned} & 25 \\ & 80 \\ & 48 \end{aligned}$	V V V
CMRR	Common Mode Rejection Ratio, RTI	$\begin{aligned} & V_{S}=3 \mathrm{~V}, 0 \mathrm{~V}(\text { Note } 7) \\ & V_{\text {CM }}=-5 \mathrm{~V} \text { to } 25 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=1.25 \mathrm{~V} \\ & \text { LT1990 } \\ & \text { LT1990A } \end{aligned}$	\bullet	$\begin{aligned} & 57 \\ & 67 \end{aligned}$			dB dB
		$\begin{aligned} & V_{S}=5 \mathrm{~V}, 0 \mathrm{~V} \\ & V_{\text {CM }}=-5 \mathrm{~V} \text { to } 80 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=1.25 \mathrm{~V} \\ & \text { LT1990 } \\ & \text { LT1990A } \end{aligned}$	\bullet	$\begin{aligned} & 57 \\ & 67 \end{aligned}$			dB dB
		$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V} \text { (Note 7) }$ $\mathrm{V}_{\text {CM }}=-38 \mathrm{~V}$ to $47 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=2.5 \mathrm{~V}$ LT1990 LT1990A	\bullet	$\begin{aligned} & 57 \\ & 67 \end{aligned}$			dB dB

3V/5V ELECTRICAL CHARACTERISTICS

The \bullet denotes the specifications which apply over the temperature range of $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$. $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, 0 \mathrm{~V}$; $\mathrm{V}_{S}=5 \mathrm{~V}$, 0 V ;
$R_{L}=10 \mathrm{k}, \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {REF }}=$ half supply, $\mathrm{G}=1,10$, unless otherwise noted. (Notes 4,6)

SYMBOL	PARAMETER	CONDITIONS		LT1990C/LT19901			UNITS
				MIN	TYP	MAX	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage, RTI	$\begin{aligned} & V_{S}=3 V, 0 V \\ & G=1,10 \end{aligned}$	\bullet			4.5	mV
		$\begin{aligned} & V_{S}=5 \mathrm{~V}, 0 \mathrm{~V} \\ & \mathrm{G}=1,10 \end{aligned}$	\bullet			4.5	mV
$\mathrm{V}_{\text {OS }} / \mathrm{T}$	Input Offset Voltage Drift, RTI	(Note 10)	\bullet		5	22	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {OSH }}$	Input Offset Voltage Hysteresis, RTI	(Note 11)	\bullet		230		$\mu \mathrm{V}$
PSRR	Power Supply Rejection Ratio, RTI	$\begin{aligned} & V_{S}=2.7 \mathrm{~V} \text { to } 12.7 \mathrm{~V} \\ & V_{C M}=V_{\text {REF }}=1.25 \mathrm{~V} \end{aligned}$	\bullet	76			dB
	Minimum Supply Voltage	Guaranteed by PSRR	\bullet			2.7	V
IS	Supply Current	(Note 8)	\bullet			170	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OL }}$	Output Voltage Swing LOW	$-\mathrm{IN}=\mathrm{V}^{+},+\mathrm{IN}=$ Half Supply (Note 8)	\bullet			70	mV
V_{OH}	Output Voltage Swing HIGH	$\begin{aligned} & -\mathrm{IN}=0 \mathrm{~V},+\mathrm{IN}=\text { Half Supply } \\ & \mathrm{V}_{S}=3 \mathrm{~V}, 0 \mathrm{~V} \text {, Below } \mathrm{V}^{+} \\ & \mathrm{V}_{S}=5 \mathrm{~V}, 0 \mathrm{~V} \text {, Below } \mathrm{V}^{+} \end{aligned}$	\bullet			$\begin{aligned} & 200 \\ & 275 \end{aligned}$	mV mV
$I_{S C}$	Output Short-Circuit Current	Short to GND (Note 9) Short to V^{+}(Note 9)	\bullet	$\begin{aligned} & 2 \\ & 8 \end{aligned}$			mA mA

3V/5V ELECTRICAL CHARACTERISTICS

The \bullet denotes the specifications which apply over the temperature range of $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{OV} ; \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$,
$V_{C M}=V_{\text {REF }}=$ half supply, $G=1,10$, unless otherwise noted. (Notes 4,6)

SYMBOL	PARAMETER	CONDITIONS		MIN $\begin{gathered}\text { LT1990H } \\ \text { TYP }\end{gathered}$			UNITS
$\Delta \mathrm{G}$	Gain Error	$\begin{aligned} & V_{\text {OUT }}=0.5 \mathrm{~V} \text { to }\left(+V_{S}\right)-0.75 \mathrm{~V} \\ & \text { LT1990, } G=1 \\ & \text { LT1990A, } G=1 \\ & G=10 \end{aligned}$	$\stackrel{\bullet}{\bullet}$			$\begin{aligned} & 0.69 \\ & 0.37 \\ & 0.97 \end{aligned}$	\% $\%$ $\%$
G/T	Gain vs Temperature	$\begin{aligned} & G=1(\text { Note } 10) \\ & G=10(\text { Note } 10) \end{aligned}$	\bullet		$\begin{aligned} & 2 \\ & 7 \end{aligned}$	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
$V_{C M}$	Input Voltage Range	Guaranteed by CMRR $\begin{aligned} & V_{S}=3 \mathrm{~V}, 0 \mathrm{~V}, V_{R E F}=1.25 \mathrm{~V} \\ & V_{S}=5 \mathrm{~V}, 0 \mathrm{~V}, V_{R E F}=1.25 \mathrm{~V} \\ & V_{S}=5 \mathrm{~V}, 0 \mathrm{~V}, V_{\text {REF }}=2.5 \mathrm{~V} \end{aligned}$	\bullet	$\begin{gathered} -5 \\ -5 \\ -37 \end{gathered}$		$\begin{aligned} & 25 \\ & 80 \\ & 48 \end{aligned}$	V V V
CMRR	Common Mode Rejection Ratio, RTI	$\begin{aligned} & V_{S}=3 \mathrm{~V}, 0 \mathrm{~V}(\text { Note } 7) \\ & V_{\text {CM }}=-5 \mathrm{~V} \text { to } 25 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=1.25 \mathrm{~V} \\ & \text { LT19900 } \\ & \text { LT1990A } \end{aligned}$	\bullet	$\begin{aligned} & 56 \\ & 66 \end{aligned}$			dB dB
		$\begin{aligned} & V_{S}=5 \mathrm{~V}, 0 \mathrm{~V} \\ & \mathrm{~V}_{\text {CM }}=-5 \mathrm{~V} \text { to } 80 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=1.25 \mathrm{~V} \\ & \text { LT1990 } \\ & \text { LT1990A } \end{aligned}$	\bullet	$\begin{aligned} & 56 \\ & 66 \end{aligned}$			dB dB
		$\begin{aligned} & V_{S}=5 \mathrm{~V}, 0 \mathrm{~V}(\text { Note } 7) \\ & \mathrm{V}_{\text {CM }}=-38 \mathrm{~V} \text { to } 47 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=2.5 \mathrm{~V} \\ & \text { LT1990 } \\ & \text { LT1990A } \end{aligned}$	\bullet	$\begin{aligned} & 56 \\ & 66 \end{aligned}$			dB dB

3V/5V ELECTRICAL CHARACTERISTICS

The \bullet denotes the specifications which apply over the temperature range of $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$, $V_{C M}=V_{\text {REF }}=$ half supply, $G=1,10$, unless otherwise noted. (Notes 4,6)

SYMBOL	PARAMETER	CONDITIONS		LT1990H			UNITS
				MIN	TYP	MAX	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage, RTI	$\begin{aligned} & V_{S}=3 V, 0 V \\ & G=1,10 \end{aligned}$	\bullet			5.2	mV
		$\begin{aligned} & V_{S}=5 \mathrm{~V}, 0 \mathrm{~V} \\ & \mathrm{G}=1,10 \end{aligned}$	\bullet			5.2	mV
$\mathrm{V}_{0 S} / \mathrm{T}$	Input Offset Voltage Drift, RTI	(Note 10)	\bullet		5	22	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {OSH }}$	Input Offset Voltage Hysteresis, RTI	(Note 11)	\bullet		250		$\mu \mathrm{V}$
PSRR	Power Supply Rejection Ratio, RTI	$\begin{aligned} & V_{S}=2.7 \mathrm{~V} \text { to } 12.7 \mathrm{~V} \\ & V_{C M}=V_{\text {REF }}=1.25 \mathrm{~V} \end{aligned}$	\bullet	75			dB
	Minimum Supply Voltage	Guaranteed by PSRR	\bullet			2.7	V
I_{S}	Supply Current	(Note 8)	\bullet			200	$\mu \mathrm{A}$
$\mathrm{V}_{0 \mathrm{~L}}$	Output Voltage Swing LOW	$-\mathrm{IN}=\mathrm{V}^{+},+\mathrm{IN}=$ Half Supply (Note 8)	\bullet			80	mV
V_{OH}	Output Voltage Swing HIGH	$\begin{aligned} & -\mathrm{IN}=0 \mathrm{~V},+\mathrm{IN}=\text { Half Supply } \\ & \mathrm{V}_{S}=3 \mathrm{~V}, 0 \mathrm{~V} \text {, Below } \mathrm{V}^{+} \\ & \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V} \text {, Below } \mathrm{V}^{+} \\ & \hline \end{aligned}$	\bullet			$\begin{aligned} & 230 \\ & 275 \end{aligned}$	mV mV
$I_{S C}$	Output Short-Circuit Current	Short to GND (Note 9) Short to V^{+}(Note 9)	\bullet	$\begin{aligned} & 1 \\ & 5 \end{aligned}$			mA mA

$\pm 15 V$ ELECTRICAL CHARACTGRISTICS

$V_{S}= \pm 15 V, R_{L}=10 k, V_{C M}=V_{\text {REF }}=0 V, G=1,10, T_{A}=25^{\circ} \mathrm{C}$, unless otherwise noted. (Note 6)

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
G	Gain	Pins 5 and $8=0$ pen Pins 5 and $8=V_{\text {REF }}$		$\begin{gathered} 1 \\ 10 \end{gathered}$		
$\Delta \mathrm{G}$	Gain Error	$\begin{aligned} & \text { Vout }= \pm 10 \mathrm{~V} \\ & \text { LT1990, } G=1 \\ & \text { LT1990A, } G=1 \\ & G=10 \end{aligned}$		$\begin{gathered} 0.4 \\ 0.07 \\ 0.2 \\ \hline \end{gathered}$	$\begin{gathered} 0.6 \\ 0.28 \\ 0.8 \\ \hline \end{gathered}$	\% \% \%
GNL	Gain Nonlinearity	$\begin{aligned} & V_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & G=1 \\ & G=10 \end{aligned}$		$\begin{gathered} 0.0008 \\ 0.005 \end{gathered}$	$\begin{gathered} 0.002 \\ 0.02 \end{gathered}$	\%
$\mathrm{V}_{\text {CM }}$	Input Voltage Range	Guaranteed by CMRR	-250		250	V
CMRR	Common Mode Rejection Ratio, RTI	$\begin{aligned} & \text { VCM }=-250 \mathrm{~V} \text { to } 250 \mathrm{~V} \\ & \text { LT1990 } \\ & \text { LT1990A } \end{aligned}$	$\begin{aligned} & 60 \\ & 70 \end{aligned}$	$\begin{aligned} & 68 \\ & 75 \end{aligned}$		dB dB
$\mathrm{V}_{\text {OS }}$	Offset Voltage, RTI	$\mathrm{G}=1,10$		0.9	5.2	mV
e_{n}	Input Noise Voltage, RTI	$\mathrm{f}_{0}=0.1 \mathrm{~Hz}$ to 10 Hz		22		$\mu \mathrm{VP}_{\text {P-P }}$
	Noise Voltage Density, RTI	$\mathrm{f}_{0}=1 \mathrm{kHz}$		1		$\mu \mathrm{V} / \sqrt{\mathrm{Hz}}$
$\mathrm{R}_{\text {IN }}$	Input Resistance	Differential Common Mode		$\begin{gathered} 2 \\ 0.5 \end{gathered}$		$\begin{aligned} & M \Omega \\ & M \Omega \Omega \end{aligned}$
PSRR	Power Supply Rejection Ratio, RTI	$\mathrm{V}_{\mathrm{S}}= \pm 1.35 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$	82	100		dB
	Minimum Supply Voltage	Guaranteed by PSRR		± 1.2	± 1.35	V
I_{S}	Supply Current			140	180	$\mu \mathrm{A}$
V OUT	Output Voltage Swing		± 14.5	± 14.79		V

$\pm 15 V$ ELECTRICAL CHARACTERISTICS

$V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{REF}}=\mathrm{OV}, \mathrm{G}=1,10, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted. (Note 6)

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
ISC	Output Short-Circuit Current	Short to V^{-} Short to V^{+}	$\begin{gathered} 6 \\ 15 \end{gathered}$	$\begin{gathered} 9 \\ 22 \end{gathered}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
BW	Bandwidth	$\begin{aligned} & G=1 \\ & G=10 \end{aligned}$		$\begin{gathered} 105 \\ 7 \end{gathered}$		$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$
SR	Slew Rate	$\mathrm{G}=1, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}$	0.3	0.55		V/ $/ \mathrm{s}$
	Settling Time to 0.01\%	10V Step, G = 1		60		$\mu \mathrm{S}$
AV REF	Reference Gain to Output	$\begin{aligned} & G=1 \\ & G=10 \end{aligned}$		$\begin{gathered} 1 \pm 0.0007 \\ 1 \pm 0.007 \end{gathered}$		

The \bullet denotes the specifications which apply over the temperature range of $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$. $\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{~K}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{REF}}=0 \mathrm{~V}$, $G=1,10$, unless otherwise noted. (Notes 4, 6)

SYMBOL	PARAMETER	CONDITIONS		LT1990C/LT1990I			UNITS
				MIN	TYP	MAX	
$\Delta \mathrm{G}$	Gain Error	$\begin{aligned} & V_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & \text { LT1990, } G=1 \\ & \text { LT1990A, } G=1 \\ & G=10 \end{aligned}$	\bullet			$\begin{gathered} 0.65 \\ 0.33 \\ 0.9 \end{gathered}$	\% $\%$ $\%$
GNL	Gain Nonlinearity	$\begin{aligned} & V_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & G=1 \\ & G=10 \end{aligned}$	\bullet			$\begin{aligned} & 0.0025 \\ & 0.025 \end{aligned}$	\%
G/T	Gain vs Temperature	$\begin{aligned} & G=1 \text { (Note 10) } \\ & G=10 \text { (Note 10) } \end{aligned}$	\bullet		$\begin{aligned} & 2 \\ & 7 \end{aligned}$	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{V}_{\text {CM }}$	Input Voltage Range	Guaranteed by CMRR	\bullet	-250		250	V
CMRR	Common Mode Rejection Ratio, RTI	$V_{C M}=-250 \mathrm{~V}$ to 250 V LT1990 LT1990A	\bullet	$\begin{aligned} & 59 \\ & 68 \end{aligned}$			$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
$\mathrm{V}_{0 S}$	Input Offset Voltage, RTI	$\mathrm{G}=1,10$	\bullet			6.2	mV
$\mathrm{V}_{\text {OS }} / \mathrm{T}$	Input Offset Voltage Drift, RTI	(Note 10)	\bullet		5	22	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {OSH }}$	Input Offset Voltage Hysteresis, RTI	(Note 11)	\bullet		250		$\mu \mathrm{V}$
PSRR	Power Supply Rejection Ratio, RTI	$\mathrm{V}_{S}= \pm 1.35 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$	\bullet	80			dB
	Minimum Supply Voltage	Guaranteed by PSRR	\bullet			± 1.35	V
Is	Supply Current		\bullet			230	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OUT }}$	Output Voltage Swing		\bullet	± 14.4			V
ISC	Output Short-Circuit Current	Short to V^{-} Short to V^{+}	\bullet	$\begin{gathered} \hline 5 \\ 13 \end{gathered}$			$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
SR	Slew Rate	$\mathrm{G}=1, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}$	\bullet	0.25			$\mathrm{V} / \mu \mathrm{s}$

LT1990

$\pm 15 V$ ELECTRICAL CHARACTGRISTICS

The \bullet denotes the specifications which apply over the temperature range of $-40^{\circ} \mathrm{C} \leq T_{A} \leq 85^{\circ} \mathrm{C} . \mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{V}_{\mathrm{CM}}=V_{\text {REF }}=0 \mathrm{~V}$, $\mathrm{G}=1,10$, unless otherwise noted. (Notes 4, 6)

SYMBOL	PARAMETER	CONDITIONS		LT1990C/LT19901			UNITS
				MIN	TYP	MAX	
$\Delta \mathrm{G}$	Gain Error	$\begin{aligned} & \text { Vout }= \pm 10 \mathrm{~V} \\ & \text { LT1990, } G=1 \\ & \text { LT1990A, } G=1 \\ & G=10 \end{aligned}$	\bullet			$\begin{aligned} & 0.67 \\ & 0.35 \\ & 0.95 \end{aligned}$	\%
GNL	Gain Nonlinearity	$\begin{aligned} & V_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & G=1 \\ & G=10 \end{aligned}$	\bullet			$\begin{gathered} 0.003 \\ 0.03 \end{gathered}$	\%
G/T	Gain vs Temperature	$\begin{aligned} & G=1(\text { Note } 10) \\ & G=10(\text { Note } 10) \end{aligned}$	\bullet		$\begin{aligned} & 2 \\ & 7 \end{aligned}$	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{V}_{\text {CM }}$	Input Voltage Range	Guaranteed by CMRR	\bullet	-250		250	V
CMRR	Common Mode Rejection Ratio, RTI	$V_{\text {CM }}=-250 \mathrm{~V}$ to 250 V LT1990 LT1990A	\bullet	$\begin{aligned} & 58 \\ & 67 \end{aligned}$			dB dB
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage, RTI	$\mathrm{G}=1,10$	\bullet			6.7	mV
$\mathrm{V}_{0 S} / T$	Input Offset Voltage Drift, RTI	(Note 10)	\bullet		5	22	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {OSH }}$	Input Offset Voltage Hysteresis, RTI	(Note 11)	\bullet		250		$\mu \mathrm{V}$
PSRR	Power Supply Rejection Ratio, RTI	$\mathrm{V}_{S}= \pm 1.35 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$	\bullet	78			dB
	Minimum Supply Voltage	Guaranteed by PSRR	\bullet			± 1.35	V
Is	Supply Current		\bullet			280	$\mu \mathrm{A}$
$V_{\text {OUT }}$	Output Voltage Swing		\bullet	± 14.3			V
ISC	Output Short-Circuit Current	Short to V^{-} Short to V^{+}	\bullet	3 10			mA mA
SR	Slew Rate	$\mathrm{G}=1, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}$	\bullet	0.2			$\mathrm{V} / \mathrm{\mu s}$

$\pm 15 V$ ELECTRICAL CHARACTGRISTICS

The \bullet denotes the specifications which apply over the temperature range of $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{REF}}=0 \mathrm{~V}$, $\mathrm{G}=1,10$, unless otherwise noted. (Notes 4, 6)

SYMBOL	PARAMETER	CONDITIONS		MIN $\begin{gathered}\text { LT1990H } \\ \text { TYP }\end{gathered}$			UNITS
$\Delta \mathrm{G}$	Gain Error	$\begin{aligned} & \text { Vout }= \pm 10 \mathrm{~V} \\ & \text { LT1990, } G=1 \\ & \text { LT1990A, } G=1 \\ & G=10 \end{aligned}$	\bullet			$\begin{aligned} & 0.69 \\ & 0.37 \\ & 0.97 \end{aligned}$	\% \%
GNL	Gain Nonlinearity	$\begin{aligned} & V_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & G=1 \\ & G=10 \end{aligned}$	\bullet			$\begin{aligned} & 0.0035 \\ & 0.035 \end{aligned}$	\%
G/T	Gain vs Temperature	$\begin{aligned} & \mathrm{G}=1 \text { (Note } 10) \\ & \mathrm{G}=10 \text { (Note 10) } \end{aligned}$	\bullet		$\begin{aligned} & 2 \\ & 7 \end{aligned}$	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	ppm $/{ }^{\circ} \mathrm{C}$ ppm $/{ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {CM }}$	Input Voltage Range	Guaranteed by CMRR	\bullet	-250		250	V
CMRR	Common Mode Rejection Ratio, RTI	$\begin{aligned} & \mathrm{V}_{\text {CM }}=-250 \mathrm{~V} \text { to } 250 \mathrm{~V} \\ & \text { LT1990 } \\ & \text { LT1990A } \end{aligned}$	\bullet	$\begin{aligned} & 57 \\ & 66 \end{aligned}$			dB dB
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage, RTI	$\mathrm{G}=1,10$	\bullet			7.4	mV
$\mathrm{V}_{\text {OS }} / \mathrm{T}$	Input Offset Voltage Drift, RTI	(Note 10)	\bullet		5	22	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$

$\pm 15 V$ ELECTRICAL CHARACTERISTICS

The \bullet denotes the specifications which apply over the temperature range of $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C} . \mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{~K}, \mathrm{~V}_{\mathrm{CM}}=V_{\mathrm{REF}}=0 \mathrm{~V}$, $\mathrm{G}=1,10$, unless otherwise noted. (Notes 4, 6)

| SYMBOL | PARAMETER | CONDITIONS | LT1990H
 TYP | | MAX |
| :--- | :--- | :--- | :--- | ---: | ---: | UNITS

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: ESD (Electrostatic Discharge) sensitive device. Extensive use of ESD protection devices are used internal to the LT1990, however, high electrostatic discharge can damage or degrade the device. Use proper ESD handling precautions.
Note 3: A heat sink may be required to keep the junction temperature below absolute maximum.
Note 4: The LT1990C/LT1990l are guaranteed functional over the operating temperature range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. The LT1990H is guaranteed functional over the operating temperature range of $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.
Note 5: The LT1990C is guaranteed to meet the specified performance from $0^{\circ} \mathrm{C} t 070^{\circ} \mathrm{C}$ and is designed, characterized and expected to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ but is not tested or QA
sampled at these temperatures. The LT19901 is guaranteed to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. The LT1990H is guaranteed to meet specified performance from $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.
Note 6: $G=10$ limits are guaranteed by correlation to $G=1$ tests and gain error tests at $\mathrm{G}=10$.
Note 7: Limits are guaranteed by correlation to -5 V to 80 V CMRR tests.
Note 8: $\mathrm{V}_{S}=3 \mathrm{~V}$ limits are guaranteed by correlation to $\mathrm{V}_{S}=5 \mathrm{~V}$ and $V_{S}= \pm 15 \mathrm{~V}$ tests.
Note 9: $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$ limits are guaranteed by correlation to $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$ and $V_{S}= \pm 15 \mathrm{~V}$ tests.
Note 10: This parameter is not 100% tested.
Note 11: Hysteresis in offset voltage is created by package stress that differs depending on whether the IC was previously at a higher or lower temperature. Offset voltage hysteresis is always measured at $25^{\circ} \mathrm{C}$, but the IC is cycled to $85^{\circ} \mathrm{C} \mathrm{I}$-grade ($70^{\circ} \mathrm{C} \mathrm{C}$-grade or $125^{\circ} \mathrm{C} \mathrm{H}$-grade) or $-40^{\circ} \mathrm{C}$ I / H-grade ($0^{\circ} \mathrm{C} \mathrm{C}$-grade) before successive measurement.

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PGRFORMANCE CHARACTERISTICS

TYPICAL PGRFORmANCE CHARACTERISTICS

1990 G19

1990 G22

Power Supply Rejection Ratio
vs Frequency

Settling Time vs Output Step,

1990 G23

0.01 to 1Hz Noise Voltage

Voltage Noise Density vs Frequency

1990 G24

1990 G25

TYPICAL PGRFORMANCE CHARACTERISTICS

BLOCK DIAGRAM

PIn functions

REF (Pin 1): Reference Input. Sets the output level when the difference between the inputs is zero.
-IN (Pin 2): Inverting Input. Connects a $1 \mathrm{M} \Omega$ resistor to the op amp's inverting input. Designed to permit high voltage operation.
+IN (Pin 3): Noninverting Input. Connects a $1 \mathrm{M} \Omega$ resistor to the op amp's noninverting input. Designed to permit high voltage operation.
\mathbf{V}^{-}(Pin 4): Negative Power Supply. Can be either ground (in single supply applications) or a negative voltage (in split supply applications).

GAIN2 (Pin 5): Gain = 10 Select Input. Configures the
amplifier for a gain of 10 when connected to the GAIN1 pin and the REF pin. The gain is equal to one when both GAIN2 and GAIN1 are open. See Applications section for additional functions.

OUT (Pin 6): Output. $\mathrm{V}_{\text {OUT }}=\mathrm{G} \bullet\left(\mathrm{V}_{+ \text {IN }}-\mathrm{V}_{- \text {IN }}\right)+\mathrm{V}_{\text {REF }}$, in the basic configuration.
\mathbf{V}^{+}(Pin 7): Positive Power Supply. Can range from 2.7V to 36 V above the V^{-}voltage.
GAIN1 (Pin 8): Gain = 10 Select Input. Configures the amplifier for a gain of 10 when connected to the GAIN2 pin and the REF pin. The gain is equal to one when both GAIN1 and GAIN2 are open. See Applications section for additional functions.

APPLICATIONS Information

Primary Features

The LT1990 is a complete gain-block solution for high input common mode voltage applications, incorporating a Iow power precision operational amplifier providing rail-to-rail output swing along with on-chip precision thin-film resistors for high accuracy. The Block Diagram shows the internal architecture of the part. The on-chip resistors form a modified difference amplifier including a reference port for introducing offset or other additive waveforms. With pin-strapping alone either unity gain or gain of 10 is produced with high precision. The resistor network is designed to produce internal common-mode voltage division of 27 so that a very large input range is available compared to the power supply voltage(s) used by the LT1990 itself. The LT1990 is ideally suited to situations where relatively small signals need to be extracted from high voltage circuits, as is the case in many current monitoring instrumentation applications for example. With the ability to accept a range of input voltages well outside the limits of the local power rails and its greater than $1 \mathrm{M} \Omega$ input impedances, development of precision low power over-the-top and under-the-bottom instrumentation designs is greatly simplified with the LT1990 single chip solution over conventional discrete implementations.

Classic Difference Amplifier

Used in the basic difference amplifier topology where the gain G is pin-strap configurable to be unity or ten, the following relationship is realized:

$$
V_{0}=G \cdot\left(V_{+I N}-V_{-I N}\right)+V_{R E F}
$$

To operate in unity gain, the GAIN1 and GAIN2 pins are left disconnected. For G = 10 operation, the GAIN1 and GAIN2 pins are simply connected to the REF pin.
The input common mode range capability is up to $\pm 250 \mathrm{~V}$, governed by the following relationships:
For $\mathrm{G}=1$ and $\mathrm{G}=10$ where GAIN1 and GAIN2 are only tied together (not grounded,etc):

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{CM}+} \leq 27 \cdot \mathrm{~V}^{+}-26 \cdot \mathrm{~V}_{\mathrm{REF}}-23 \\
& \mathrm{~V}_{\mathrm{CM}} \geq 27 \cdot \mathrm{~V}^{-}-26 \cdot \mathrm{~V}_{\mathrm{REF}}+27
\end{aligned}
$$

For $\mathrm{G}=10$ where GAIN1 and GAIN2 are tied to a common potential $\mathrm{V}_{\mathrm{GAIN}}$:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{CM}+} \leq 27 \cdot \mathrm{~V}^{+}-26 \cdot \mathrm{~V}_{\mathrm{REF}}-23-\mathrm{V}_{\mathrm{GAIN}} \\
& \mathrm{~V}_{\mathrm{CM}-} \geq 27 \cdot \mathrm{~V}^{-}-26 \cdot \mathrm{~V}_{\mathrm{REF}}+27-\mathrm{V}_{\mathrm{GAIN}}
\end{aligned}
$$

For split supplies over about $\pm 11 \mathrm{~V}$, the full $\pm 250 \mathrm{~V}$ common mode range is normally available (with $\mathrm{V}_{\text {REF }}$ a small fraction of the supply). With lower supply voltages, an appropriate selection of $\mathrm{V}_{\text {REF }}$ can tailor the input common mode range to a specific requirement. As an example, the following low supply voltage scenarios are readily implemented with the LT1990:

Supply	$\mathbf{V}_{\text {REF }}$	$\mathbf{V}_{\text {CM }}$ Range
+3 V	1.25 V	-5 V to 25 V (e.g. 12 V automotive environment)
+5 V	1.25 V	-5 V to 80 V (e.g. 42 V automotive environment)
+5 V	4.00 V	-77 V to 8 V (e.g. telecom environment; use downward signaling)

Configuring Other Gains

An intermediate gain G ranging between 1 and 10 may be produced by placing an adjustable resistance between the GAIN1 and GAIN2 pins according to the following nominal relationship:

$$
\mathrm{R}_{\mathrm{GAIN}} \approx(180 \mathrm{k} /(\mathrm{G}-1))-20 \mathrm{k}
$$

While the expression is exact, the value is approximate because the absolute resistance of the internal network could vary on a unit-to-unit basis by as much as $\pm 30 \%$ from the nominal figures and the external gain resistance is required to accommodate that deviation. Once adjusted, however, the gain stability is excellent by virtue of the $-30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typical temperature coefficient offered by the on-chip thin-film resistor process.

Preserving and Enhancing Common Mode Rejection

The basic difference amplifier topology of the LT1990 requires that source impedances seen by the input pins +IN and -IN, should be matched to within a few tens of ohms to avoid increasing common mode induced errors beyond the basic production limits of the part. Known source imbalances beyond that level should be compensated for by the addition of series resistance to the lowerimpedance source. Also the source impedance of a signal connected to the REF pin must be on the order of a few ohms or less to preserve the high accuracy of the LT1990.

APPLICATIONS InFORMATION

While the LT1990 comes from the factory with an excellent CMRR, some precision applications with a large applied common mode voltage may require a method to trim out residual common mode error. This is easily accomplished by adding series resistance to each input, +IN and -IN, such that an adjustable resistance difference of $\pm 1 \mathrm{k} \Omega$ is provided. This is most easily realized by adding a fixed $1 \mathrm{k} \Omega$ in series with one of the inputs, and a $2 \mathrm{k} \Omega$ trimmer in series with the other as shown in Figure 1. The trim range of this configuration is $\pm 0.1 \%$ for the internal gain resistor matching, so a much more finely resolved correction is available using the LT1990 than is realizable with ordinary discrete solutions. In applications where the input common mode voltage is relatively constant and large (perhaps at or beyond the supply range), this same configuration can be treated as an offset adjustment.

Figure 1. Optional CMRR Trim

Dual Differential-Input Arithmetic Block

The internal resistor network topology of the LT1990 allows the GAIN1 and GAIN2 pins to be used as another differential input in addition to the normal +IN and -IN port. This can be a very useful function for implementing servo-loop differential error amplifiers, for example. In this mode of operation, the output is governed by the
following relationship:

$$
V_{0}=10 \bullet\left(V_{+I N}-V_{-I N}+V_{G A I N 2}-V_{G A I N 1}\right)+V_{R E F}
$$

Unlike the main inputs, the GAIN1 and GAIN2 pins are clamped by substrate diodes and ESD structures, thus the operating voltage range of these pins is limited to $\mathrm{V}^{-}-0.2 \mathrm{~V}$ to $\mathrm{V}^{-}+36 \mathrm{~V}$. If the GAIN inputs are brought beyond the operating input range, care must be taken to limit the input currents to less than 10 mA to prevent damage to the device. For best results in this mode of operation the common mode voltage of the GAIN1 and GAIN2 pins should be equal to the REF pin voltage. Also, since the gain setting resistors associated with the GAIN1 and GAIN2 inputs are in the $10 \mathrm{k} \Omega$ area, low source impedances are particularly importantto preserve the precision of the LT1990.
This dual differential input mode of operation is used in the circuit as shown in Figure 2.
This circuit is a high efficiency H -bridge driver that is PWM modulated to provide a controlled current to an electromagnet coil. Since the common mode voltage of the current sense resistor Rs varies with operating current and the coil properties, a differential feedback is required. In this application, it was desirable to allow the control input to utilize the wide common mode range port (+IN and - IN) so that constraints on input referencing are eliminated. The GAIN1 and GAIN2 pins always operate within the supply range and both ports operate with a gain of 10 to develop the loop error. The LTC1923 provides the loop integrator and PWM functions of the servo.

Figure 2. PWM-Based ± 1 A Electromagnet Current Controller

TYPICAL APPLICATION

Telecom Supply Current Monitor

Selectable Gain Amplifier

Boosted Bidirectional Controlled Current Source

Bidirectional Controlled Current Source

$\mathrm{I}_{\text {LOAD }}=\mathrm{V}_{\text {CTL }} / R_{\text {SENSE }} \leq 5 \mathrm{~mA}$ EXAMPLE: FOR RSENSE $=100 \Omega$, OUTPUT IS 1 mA PER 100 mV INPUT $\underset{\text { 1990 A03 }}{ }$

PACKAGG DESCRIPTION

S8 Package

8-Lead Plastic Small Outline (Narrow . 150 Inch)

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1787	Precision High Side Current Sense Amplifier	On-Chip Precision Resistor Array
LT1789	Micropower Instrumentation Amplifier	Micropower, Precision, G = 1 to 1000
LTC1921	Dual -48V Supply and Fuse Monitor	Withstands \pm 200V Transients
LT1991	High Accuracy Difference Amplifier	Micropower, Precision, Pin Selectable G = -13 to 14
LT1995	30MHz, 1000V/ μ s Gain Selectable Amplifier	Pin Selectable G $=-7$ to 8
LT6910	Single Supply Programmable Gain Amplifier	Digitally Controlled, SOT-23, G = 0 to 100

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Differential Amplifiers category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
AD8206WHRZ LT6604IUFF-2.5\#PBF LTC6419IV\#PBF AD8479TRZ-EP INA149AMDREP INA146UA/2K5 MAX9626ATC+ MAX4199ESA+ INA132U/2K5 INA105KU/2K5 EL5375IUZ ADM1272-1ACPZ DC1538A LTC1992-10CMS8\#PBF LTC1992CMS8\#PBF LT6375HMS\#PBF LTC1992-2HMS8\#PBF LTC1992-5HMS8\#PBF LT6604IUFF-15\#PBF AD8270ACPZ-R7 LT6350IDD\#PBF AD8475ACPZ-R7 LTC1992-1IMS8\#PBF AD8476BRMZ-R7 MAX9626ATC+T AD8132ARZ-RL LTC1992IMS8\#PBF INA2132U/2K5 LT6600CS8-2.5\#PBF LTC1992-10IMS8\#PBF LTC1992-1HMS8\#PBF LTC6605CDJC-7\#PBF TDA8579T/N1SJ LTC1992-2CMS8\#PBF LT6604CUFF-5\#PBF LTC6403CUD-1\#PBF LT6350IMS8\#PBF THS4552IRTWT LTC1992-2IMS8\#PBF LTC1992HMS8\#PBF LT6350CMS8\#PBF THS4551IRGTT AD8138SRMZ-EP-R7 AD8138ARMZ-REEL AD8138ARZ-RL LT6350HMS8\#PBF LTC6363IMS80.5\#PBF THS4551IRGTR LT1990IS8\#PBF LT1995IDD\#PBF

