Finisar

Product Specification 1.25Gbps 850nm VCSEL, TO-46 HFE4080-321

PRODUCT FEATURES

- Designed for drive currents between 5 and 15 mA
- Optimized for low dependence of electrical properties over temperature
- High speed >1 GHz

The HFE4080-321 is a high-performance 850 nm VCSEL (Vertical Cavity Surface-Emitting Laser) packaged for high-speed data communications.

The HFE4080-321 is a high radiance VCSEL designed to convert electrical current into optical power that can be used in fiber optic communications and other applications. As the current varies above threshold, the light intensity increases proportionally.

The HFE4080-321 is designed to be used with inexpensive silicon or gallium arsenide detectors (see HFD3081-108, HFD3081-103), but excellent performance can also be achieved with some indium gallium arsenide detectors.

The low drive current requirement makes direct drive from PECL (Positive Emitter Coupled Logic) or EML (Emitter Coupled Logic) gates possible and eases driver design.

The HFE4080-321 is designed to interface with 50/125 and 62.5/125 um multimode fiber. It produces circularly symmetric, non-astigmatic, narrow divergence beams that, with appropriate lensing, fiber couple all of the emitter power.

PRODUCT SELECTION

Part Number	Description
HFE4080-321	Unattenuated TO-46 component, Proton implanted VCSEL

I. Absolute Maximum Ratings

Parameter	Rating
Storage Temperature	-40 to +85°C
Case Operating Temperature	0-70 deg C
Lead Solder Temperature	260°C, 10 sec.
Laser continuous average current	15mA
Laser peak forward current with pulse width less than 1 s	20mA
Laser reverse voltage	5V
ESD Exposure (Human Body Model)	225V ¹

¹Heel and wrist straps must be used on a properly grounded workstation

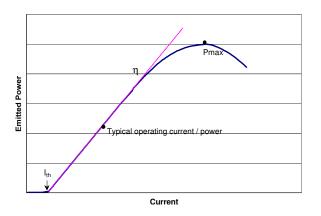
N	otice					
INVISIBLE LA	SER RADIATION.					
CLASS 1 LA	CLASS 1 LASER PRODUCT					
	0-1050 nm					
PER IEC/EN 608:	PER IEC/EN 60825-1/A2:2007 AND 21					
	0 AND 1040.11,					
	R DEVIATIONS					
	ASERNOTICENO. 50					
DATED 2	4 JUNE 2007					
	ASER eye safety ns necessary					
	1201137					

Notice

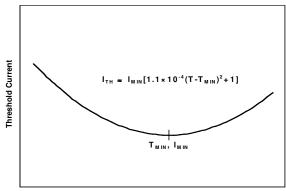
Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operations section for extended periods of time may affect reliability.

The inherent design of this component causes it to be sensitive to electrostatic discharge (ESD). To prevent ESD-induced damage and/or degradation to equipment, take normal ESD precautions when handling this product

VCSEL Parameters	Test Condition	Symbol	Min.	Тур.	Max.	Units	Notes
Peak Operating Current	Adjustable to establish operating power	I _{peak}		12	20	mA	2
Optical Power Output	I _F =12mA	Ро	0.9	1.8	3.6	mW	2,3
Threshold Current		I _{TH}	1.5	3.5	6	mA	
Threshold Current Temperature Variation	$T_A = 0^\circ C$ to $70^\circ C$	ΔI_{TH}	-1.5		1.5	mA	4
Slope Efficiency	Po =1.3mW	η	0.1	0.25	0.4	mW/mA	5
Slope Efficiency Temperature variation	$T_A = 0^{\circ}C$ to $70^{\circ}C$	Δη /ΔΤ		-0.5		%/°C	
Peak Wavelength	I _F =12mA	$\lambda_{\rm P}$	830	850	860	nm	
λ_P Temperature Variation	I _F =12mA	$\Delta\lambda_{P/}\Delta T$		0.06		nm/°C	
Spectral Bandwidth, RMS	I _F =12mA	Δλ			0.85	nm	
Laser Forward Voltage	I _F =12 mA	V _F	1.6	1.8	2.2	V	
Laser Reverse Voltage	$I_R=10 \mu A$	BVR _{LD}	5	10		V	
Rise and Fall Times	Prebias Above Threshold, 20%-80%	t _r /t _f		100	300	ps	6
Relative Intensity Noise	1 GHz BW, I _F =12mA	RIN		-128	-122	dB/Hz	
Series Resistance	I _F =12 mA	R _S	18	25	40	Ohms	
Beam Divergence	I _F =12 mA	θ	5	15	20	Degrees	7


II. Electro-Optical Characteristics (TA=25 oC unless otherwise stated)

Notes:


- 1) Reliability is a function of temperature, see <u>www.finisar.com</u> for details.
- 2) Operating power is set by the peak operating current $I_{PEAK}=I_{BIAS}+I_{MODULATION}$.
- 3) For the purpose of these tests, I_F is DC current.
- 4) Threshold current varies as $(T_A T_O)^2$. It may either increase or decrease with temperature, depending upon relationship of T_A to T_O . The magnitude of the change is proportional to the threshold at T_O .
- 5) Slope efficiency is defined as $\Delta P_O / \Delta I_F$.
- 6) Rise and fall times specifications are the 20% 80%. Most of the devices will measure <200ps fall time. Rise and fall times are sensitive to drive electronics.
- 7) Beam divergence is defined as the total included angle between the $1/e^2$ intensity points.

Typical Performance Curves III.

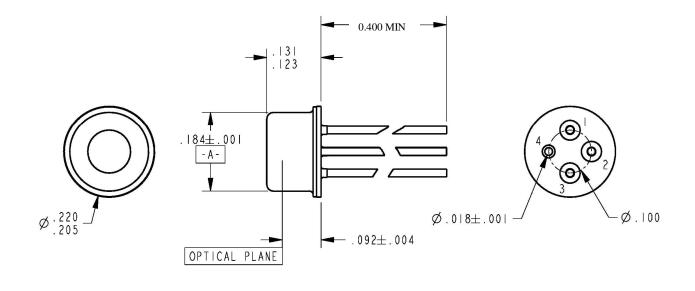
Emitted Power vs. Current: Power varies approximately Threshold Current vs. Temperature: Threshold linearly with current above threshold.

current varies parabolically with temperature; thus it can be nearly constant for a limited temperature range.

Temperature

Environmental Specifications IV.

Parameter	Symbol	Min	Тур	Max	Units	Ref.
Case Operating Temperature	T _{op}	0		70	°C	
Storage Temperature	T _{sto}	-40		85	°C	


V. **Regulatory Compliance**

Feature	Agency	Standard	Certificate Number
Laser Eye Safety	FDA/CDRH	CDRH 21 CFR 1040 and Laser Notice 50	9521487

Copies of the referenced certificates are available at Finisar Corporation upon request.

VI. Mechanical Specifications

PIN	Description		
1	Cathode		
2	Anode		
3	Cathode		
4	Case		

(dimensions are in inches)

VII. Revision History

Revision	Date	Description	
A1	4/28/2013	• Document created.	

VIII. For More Information

Finisar Corporation 1389 Moffett Park Drive Sunnyvale, CA 94089-1133 Tel. 1-408-548-1000 Fax 1-408-541-6138 sales@finisar.com www.finisar.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Laser Diodes category:

Click to view products by Finisar manufacturer:

Other Similar products are found below :

PLT5 520EA P PLT3 520D 905D1S03UA 905D1S09UA 905D1S3J03UA 905D1S3J09UA ADL-63054SL ADL-63301TL ADL-63V0ANP ADL-63V0BTP ADL-65074TA4 ADL-65074TL-1 ADL-65075SL ADL-65075TA4 ADL-65104TL ADL-66201TA4 ADL-66505TL ADL-66801TL ADL-78101TL ADL-83Z01TL ADL-83Z51TL ADL-85051TL ADL-85301TL ADL-85501TL PLT3 450C LCU632051A LCU670561A HFE4081-321 OPV315YBT PLT5 450B ADL-63054TL ADL-63153TL ADL-65103TL ADL-66201TL PLT5 510 LCU66A051A SPL LL90_3 ADL-65075TL DFB-1310-10LR-LCA HFE4192-582 FP-1310-51-50SMF-FCAPC PL 450B PL 520_B1 PLPT5 450KA PLPT5 447KA PLPT9 450LA_E PLT5 488 PL 520_B1_2 PLT5 520_B1-3 PLT5 520B