## features

- 8th Order Filter in a 14-Pin Package
- No External Components
- 100:1 Clock to Center Ratio
- $150 \mu \mathrm{~V}_{\text {RMS }}$ Total Wideband Noise
- 0.03\% THD or Better
- 50kHz Maximum Corner Frequency
- Operates from $\pm 2.37 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$ Power Supplies
- Passband Ripple Guaranteed Over Full Military

Temperature Range

## APPLICATIONS

- Antialiasing Filters
- Telecom PCM Filters


## DESCRIPTION

The LTC ${ }^{\circledR}$ 1064-1 is an 8th order, clock sweepable elliptic (Cauer) lowpass switched capacitor filter. The passband ripple is typically $\pm 0.15 \mathrm{~dB}$, and the stopband attenuation at 1.5 times the cutoff frequency is 68 dB or more.

An external TTL or CMOS clock programs the value of the filter's cutoff frequency. The clock to cutoff frequency ratio is $100: 1$.

No external components are needed for cutofffrequencies up to 20 kHz . For cutoff frequencies over 20 kHz two low value capacitors are requiredto maintain passband flatness. The LTC1064-1 features low wideband noise and low harmonic distortion even for input voltages up to $3 V_{\text {RMs }}$. In fact the LTC1064-1 overall performance completes with equivalent multiple op amp RC active realizations.

The LTC1064-1 is available in a 14-pin DIP or 16-pin surface mounted SW package.

The LTC1064-1 is pin compatible with the LTC1064-2.
$\boldsymbol{\mathcal { Y }}$, LTC and LT are registered trademarks of Linear Technology Corporation.

## TYPICAL APPLICATION

8th Order Clock Sweepable Lowpass
Elliptic Antialiasing Filter


NOTE: THE POWER SUPPLIES SHOULD BE BYPASSED BY A $0.1 \mu \mathrm{~F}$ CAPACITOR CLOSE TO THE PACKAGE.

FOR SERVO OFFSET NULLING APPLICATIONS, PIN 1 IS THE 2ND STAGE SUMMING JUNCTION.
*FOR CUTOFF FREQUENCY ABOVE 20kHz, USE COMPENSATION CAPACITORS (5pF TO 56pF) BETWEEN PIN 13 AND PIN 1 AND PIN 6 AND PIN 7.

Frequency Response


1064 TA02
8th ORDER CLOCK SWEEPABLE LOWPASS ELLIPTIC ANTIALIASING FILTER MAINTAINS, FOR $0.1 \mathrm{~Hz} \leq \mathrm{f}_{\text {CUTOFF }} \leq 10 \mathrm{kHz}, \mathrm{A} \pm 0.15 \mathrm{~dB}$ PASSBAND RIPPLE AND 72dB STOPBAND ATTENUATION AT $1.5 \times \mathrm{f}_{\text {Cutoff. }}$ TOTAL WIDEBAND NOISE $=150 \mu V_{\text {RMS }}$, THD $=0.03 \%$ FOR $V_{\text {IN }}=1 V_{\text {RMS }}$

## ABSOLUTE MAXIMUM RATINGS <br> (Note 1)

Total Supply Voltage ( $\mathrm{V}^{+}$to $\mathrm{V}^{-}$).. $\qquad$ 16.5 V

Power Dissipation $\qquad$ 400 mW

Operating Temperature Range
LTC1064-1M (OBSOLETE) ............... $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Storage Temperature Range ................. $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
LTC1064-1C/AC $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec ) $\qquad$ $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

|  | ORDER PART NUMBER | TOP VIEW |  | ORDER PART <br> NUMBER |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {IN }} 2$ | LTC1064-1CNLTC1064-1ACN | INV C <br> VIN <br> 1 | $16 \mathrm{R}(\mathrm{h}, \mathrm{l})$ | LTC1064-1CSW |
| AGND 3 |  |  | 15 COMP2 |  |
| $\mathrm{V}^{+} 4$ |  | AGND 3 | $14 \mathrm{v}^{-}$ |  |
| AGND 5 - 10 NC |  | $\mathrm{V}^{+} 4$ | 13 NC |  |
| COMP1 6 6 9 VOUT |  | AGND 5 | 12 fak |  |
| InV A 7 7 8 NC |  | NC 6 | 11 NC |  |
| N PACKAGE |  | COMP1 7 | 10 NC |  |
| 14-LEAD PDIP |  | Inva 8 | 9 Vout |  |
| $\mathrm{T}_{\text {JMax }}=110^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=70^{\circ} \mathrm{C} / \mathrm{N}$ |  |  |  |  |
| J PACKAGE 14-LEAD CERDIP | LTC1064-1MJ |  |  |  |
| OBSOLETE PACKAGE <br> Consider the N14 Package for Alternate Source | LTC1064-1CJ |  |  |  |

Consult LTC Marketing for parts specified with wider operating temperature ranges.
ELECTRICAL CHARACTERISTICS
The $\bullet$ denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. $\mathrm{V}_{S}= \pm 7.5 \mathrm{~V}$, $\mathrm{f}_{\mathrm{LLK}}=1 \mathrm{MHz}, \mathrm{R} 1=10 \mathrm{k}, \mathrm{C} 1=10 \mathrm{pF}$, TTL or CMOS clock input level unless otherwise specified.

| PARAMETER | CONDITIONS |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Passband Gain, LTC1064-1, 1A | Referenced to $0 \mathrm{~dB}, 1 \mathrm{~Hz}$ to $0.1 \mathrm{f}_{\mathrm{C}}$ | $\bullet$ |  | $\pm 0.1$ | $\pm 0.35$ | dB |
| Gain TempCo |  |  |  | 0.0002 |  | $\mathrm{dB} /{ }^{\circ} \mathrm{C}$ |
| Passband Edge Frequency, $\mathrm{f}_{\mathrm{C}}$ |  |  |  | $10 \pm 1 \%$ |  | kHz |
| Gain at $f_{C}$ LTC1064-1 LTC1064-1A | Referenced to Passband Gain | $\bullet$ | $\begin{aligned} & -1.25 \\ & -0.75 \end{aligned}$ |  | $\begin{aligned} & 0.85 \\ & 0.65 \end{aligned}$ | dB dB |
| -3dB Frequency |  |  |  | 10.7 |  | kHz |
| $\begin{aligned} & \text { Passband Ripple (Note 1) } \\ & \text { LTC1064-1 } \\ & \text { LTC1064-1A } \end{aligned}$ | $0.1 \mathrm{f}_{\mathrm{C}}$ to $0.85 \mathrm{f}_{\mathrm{c}}$ Referenced to Passband Gain, Measured at 6.25 kHz and 8.5 kHz | $\bullet$ |  | $\begin{gathered} \pm 0.15 \\ \pm 0.1 \end{gathered}$ | $\begin{aligned} & \pm 0.32 \\ & \pm 0.19 \end{aligned}$ | dB $d B$ |
| Ripple TempCo |  |  |  | 0.0004 |  | $\mathrm{dB} /{ }^{\circ} \mathrm{C}$ |
| $\begin{aligned} & \text { Stopband Attenuation } \\ & \text { LTC1064-1 } \\ & \text { LTC1064-1A } \end{aligned}$ | At 1.5fC Referenced to 0dB | $\bullet$ | $\begin{aligned} & 66 \\ & 68 \end{aligned}$ | $\begin{aligned} & 72 \\ & 72 \end{aligned}$ |  | dB dB |
| $\begin{aligned} & \text { Stopband Attenuation } \\ & \text { LTC1064-1 } \\ & \text { LTC1064-1A } \end{aligned}$ | At $2 \mathrm{f}_{\mathrm{c}}$ Referenced to 0dB | $\bullet$ | $\begin{aligned} & 67 \\ & 68 \end{aligned}$ | $\begin{aligned} & 72 \\ & 72 \end{aligned}$ |  | dB dB |

## ELECTRICPL CHARACTERSTICS The • denotes the specifications which apply over the full operating

 temperature range, otherwise specifications are at $T_{A}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=1 \mathrm{MHz}, \mathrm{R} 1=10 \mathrm{k}, \mathrm{C} 1=10 \mathrm{pF}$, TTL or CMOS clock input level unless otherwise specified.| PARAMETER | CONDITIONS |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Frequency Range |  |  | 0 |  | $\mathrm{f}_{\text {CLK } / 2}$ | kHz |
| Output Voltage Swing and Operating Input Voltage Range | $\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 2.37 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 7.5 \mathrm{~V} \\ & \hline \end{aligned}$ | $\stackrel{\bullet}{\bullet}$ | $\begin{aligned} & \pm 1 \\ & \pm 3 \\ & \pm 5 \\ & \hline \end{aligned}$ |  |  | V V V |
| Total Harmonic Distortion | $\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V} \text {, Input }=1 \mathrm{~V}_{\text {RMS }} \text { at } 1 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 7.5 \mathrm{~V} \text {, Input }=3 \mathrm{~V}_{\text {RMS }} \text { at } 1 \mathrm{kHz} \end{aligned}$ |  |  | $\begin{gathered} 0.015 \\ 0.03 \\ \hline \end{gathered}$ |  | \% |
| Wideband Noise | $\begin{aligned} & V_{S}= \pm 5 \mathrm{~V} \text {, Input }=\text { GND } 1 \mathrm{~Hz} \text { to } 999 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 7.5 \mathrm{~V} \text {, Input }=\text { GND } 1 \mathrm{~Hz} \text { to } 999 \mathrm{kHz} \end{aligned}$ |  |  | $\begin{aligned} & 150 \\ & 165 \\ & \hline \end{aligned}$ |  | $\mu V_{\text {RMS }}$ <br> $\mu \mathrm{V}_{\text {RMS }}$ |
| ```Output DC Offset LTC1064-1 LTC1064-1A Output DC Offset TempCo``` | $V_{S}= \pm 7.5 \mathrm{~V}$, Pin 2 Grounded $V_{S}= \pm 5 \mathrm{~V}$ |  |  | $\begin{gathered} 50 \\ 50 \\ -100 \\ \hline \end{gathered}$ | $\begin{aligned} & 175 \\ & 125 \end{aligned}$ | $\begin{array}{r} \mathrm{mV} \\ \mathrm{mV} \\ \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{array}$ |
| Input Impedance |  |  | 10 | 20 |  | $\mathrm{k} \Omega$ |
| Output Impedance | $\mathrm{f}_{\text {Out }}=10 \mathrm{kHz}$ |  |  | 2 |  | $\Omega$ |
| Output Short-Circuit Current | Source/Sink |  |  | 3/1 |  | mA |
| Clock Feedthrough |  |  |  | 200 |  | $\mu V_{\text {RMS }}$ |
| Maximum Clock Frequency | 50\% Duty Cycle, $\mathrm{V}_{S}= \pm 7.5 \mathrm{~V}$ |  |  |  | 5 | MHz |
| Power Supply Current | $\mathrm{V}_{\mathrm{S}}= \pm 2.37 \mathrm{~V}$ | $\bullet$ |  | 10 | 22 | mA |
|  | $V_{S}= \pm 5 \mathrm{~V}$ | $\bullet$ |  | 12 | $\begin{aligned} & 23 \\ & 26 \end{aligned}$ | $\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$ |
|  | $\mathrm{V}_{S}= \pm 7.5 \mathrm{~V}, \mathrm{f}_{\text {CLK }}=1 \mathrm{MHz}$ | $\bullet$ |  | 16 | $\begin{aligned} & 28 \\ & 32 \end{aligned}$ | mA |
| Power Supply Voltage Range |  | $\bullet$ | $\pm 2.37$ |  | $\pm 8$ | V |

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

## TYPICAL PGRFORMAOCE CHARACTERISTICS




1064 GO2

Group Delay


## TYPICAL PERFORMANCG CHARACTERISTICS



## PIn functions

(Pin Numbers Refer to the 14-Pin Package)

COMP1, INV A, COMP2, INV C (Pins 1,6,7, and 13): For filter cutoff frequencies higher than 20 kHz , in order to minimize the passband ripple, compensation capacitors should be added between Pin 6 and Pin 7 (COMP1) and Pin 1 and Pin 13 (COMP2). For COMP1 (COMP2), add 1pF (1.5pF) mica capacitor for each kHz increase in cutoff frequency above 20kHz. For more detail refer to Gain vs Frequency graphs.
$\mathbf{V}_{\text {IN }}, \mathrm{V}_{\text {OUT }}($ Pins 2, 9$)$ : The input Pin 2 is connected to an 18 k resistor tied to the inverting input of an op amp. Pin 2
is protected against static discharge. The device's output, Pin 9 , is the output of an op amp which can typically source/ sink $3 \mathrm{~mA} / 1 \mathrm{~mA}$. Although the internal op amps are unity gain stable, driving long coax cables is not recommended.

When testing the device for noise and distortion, the output, Pin 9, should be buffered (Figure 4). The op amp power supply wire (or trace) should be connected directly to the power source.

AGND (Pins 3, 5): For dual supply operation these pins should be connected to a ground plane. For single supply

## PIn FUnCTIONS (Pin Numbers Refer to the 14-Pin Package)

operation both pins should be tied to one half supply (Figure 2). Also Pin 8 and Pin 10, although they are not internally connected should be tied to analog ground or system ground. This improves the clock feedthrough performance.
$\mathrm{V}^{+}$, $\mathrm{V}^{-}$(Pins 4, 12): The $\mathrm{V}^{+}$and $\mathrm{V}^{-}$pins should be bypassed with a $0.1 \mu \mathrm{~F}$ capacitor to an adequate analog ground. Low noise, nonswitching power supplies are recommended. To avoid latchup when the power supplies exhibit high turn-on transients, a 1N5817 Schottky diode should be added from the $V^{+}$and $V^{-}$pins to ground (Figure 1).
INV A, R(h, I) (Pins 7, 14): A very short connection between Pin 14 and Pin 7 is recommended. This connection should be preferably done under the IC package. In a
breadboard, use a one inch, or less, shielded coaxial cable; the shield should be grounded. In a PC board, use a one inch trace or less; surround the trace by a ground plane.

NC (Pins 8, 10): The "no connection" pins preferably should be grounded.
$\mathrm{f}_{\text {CLK }}$ (Pin 11 ): For $\pm 5 \mathrm{~V}$ supplies the logic threshold level is 1.4 V . For $\pm 8 \mathrm{~V}$ and 0 V to 5 V supplies the logic threshold levels are 2.2 V and 3 V respectively. The logic threshold levels vary $\pm 100 \mathrm{mV}$ over the full military temperature range. The recommended duty cycle of the input clock is $50 \%$ although for clock frequencies below 500 kHz the clock "on" time can be as low as 200ns. The maximum clock frequency for $\pm 5 \mathrm{~V}$ supplies is 4 MHz . For $\pm 7 \mathrm{~V}$ supplies and above, the maximum clock frequency is 5 MHz . Do not allow the clock levels to exceed the power supplies. For clock level shifting (see Figure 3).

## TYPICAL APPLICATIONS



Figure 1. Using Schottky Diodes to Protect the IC from Power Supply Spikes


Figure 3. Level Shifting the Input $T^{2}$ L Clock for Single Supply Operation, $\mathrm{V}+>6 \mathrm{~V}$.


Figure 2. Single Supply Operation. If Fast Power Up or Down Transients are Expected, Use a 1N5817 Schottky Diode Between Pin 4 and Pin 5.


Figure 4. Buffering the Filter Output. The Buffer Op Amp Should Not Share the LTC1064-1 Power Lines.

## TYPICAL APPLICATIONS

Transitional Elliptic-Bessel Dual 5th Order Lowpass Filter



1064 TA09

$0.1 \mathrm{~ms} / \mathrm{DIV}$

Transient Response to a 2V Step Input $\mathrm{V}_{\text {OUT1 }}$

$0.1 \mathrm{~ms} /$ DIV

Adding an Output Buffer-Filter to Eliminate Any Clock Feedthrough Over a 10:1 Clock Range, for fclk $=2 \mathrm{kHz}$ to 20 kHz


## PACKAGE DESCRIPTION



## N Package <br> 14-Lead PDIP (Narrow 0.300)

(LTC DWG \# 05-08-1510)


NOTE:

1. DIMENSIONS ARE $\frac{\text { INCHES }}{\text { MILLIMETERS }}$
 MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED . 010 INCH ( 0.254 mm )

## SW Package

16-Lead Plastic Small Outline (Wide . 300 Inch)
(Reference LTC DWG \# 05-08-1620)


## LTC 1064-1

## TYPICAL APPLICATION

Transitional Elliptic-Bessel 10th Order Lowpass Filter



Transient Response to a 2V Step Input


## RELATGD PARTS

| PART NUMBER | DESCRIPTION | COMMENTS |
| :--- | :--- | :--- |
| LTC1069-1 | 8th Order Elliptic Lowpass | S0-8 Package, Low Power |
| LTC1069-6 | Single Supply, 8th Order Elliptic Lowpass | S0-8 Package, Very Low Power |
| LTC1569-6 | DC Accurate, 10th Order, Lowpass | Internal Precision Clock, Low Power |
| LTC1569-7 | DC Accurate, 10th Order, Lowpass | Internal Precision Clock, S0-8 Package |

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Active Filter category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
1D38810GQ2 1D73312GQ22 1D38830GQ3 D51510GQ1 D45015GQ42 HMC894LP5ETR HMC896LP4ETR HMC891LP5ETR
$\underline{\text { MAX7491CEE }+ \text { MAX7415CUA }+ \text { MAX7413CPA }+ \text { MAX7411CPA }+ \text { MAX7410CPA }+ \text { MAX7405EPA }+ \text { MAX7413CUA }+ \text { MAX7411CUA }+~}$
$\underline{\text { MAX7408CPA }+}$ MAX7405CPA + MAX7401EPA + MAX293CWE + MAX281AEWE + MAX275ACPP + MAX264BEPI + MAX263BEPI +
$\underline{\text { MAX293ESA }+ \text { MAX280EPA }+ \text { MAX275AEPP+ MAX268BCWG+ MAX263AEPI }+ \text { MAX7423EUA+T LT1568CGN\#PBF }}$
LTC1062CSW\#PBF LTC1562CG-2\#PBF HMC881LP5ETR HMC882LP5ETR HMC1000LP5ETR LTC1569CS8-6\#PBF LTC1563-
$\underline{2 I G N \# P B F}$ MAX7426EPA + MAX7426CPA + MAX7410EPA + MAX7407EPA + MAX7407CPA + MAX7427CPA + MAX7412CPA +
MAX7404EPA+ MAX7404CPA+ MAX7400EPA+ MAX7400CPA+ MAX296EPA+

