
INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC06 December 1990

74HC/HCT193

FEATURES

- Synchronous reversible 4-bit binary counting
- Asynchronous parallel load
- Asynchronous reset
- Expandable without external logic
- · Output capability: standard
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT193 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT193 are 4-bit synchronous binary up/down counters. Separate up/down clocks, CP_U and CP_D respectively, simplify operation. The outputs change state synchronously with the LOW-to-HIGH transition of either clock input. If the CP_U clock is pulsed while CP_D is held HIGH, the device will count up. If the CP_D clock is pulsed while CP_U is held HIGH, the device will count down. Only one clock input can be held HIGH at any time, or erroneous operation will result. The device can be cleared at any time by the asynchronous master reset input (MR); it may also be loaded in parallel by activating the asynchronous parallel load input (\overline{PL}).

The "193" contains four master-slave JK flip-flops with the necessary steering logic to provide the asynchronous reset, load, and synchronous count up and count down functions.

Each flip-flop contains JK feedback from slave to master, such that a LOW-to-HIGH transition on the CP_D input will decrease the count by one, while a similar transition on the CP_U input will advance the count by one.

One clock should be held HIGH while counting with the other, otherwise the circuit will either count by two's or not at all, depending on the state of the first flip-flop, which cannot toggle as long as either clock input is LOW. Applications requiring reversible operation must make the reversing decision while the activating clock is HIGH to avoid erroneous counts.

The terminal count up (\overline{TC}_U) and terminal count down (\overline{TC}_D) outputs are normally HIGH. When the circuit has reached the maximum count state of 15, the next HIGH-to-LOW transition of CP_U will cause \overline{TC}_U to go LOW.

 \overline{TC}_U will stay LOW until CP_U goes HIGH again, duplicating the count up clock.

Likewise, the \overline{TC}_D output will go LOW when the circuit is in the zero state and the CP_D goes LOW. The terminal count outputs can be used as the clock input signals to the next higher order circuit in a multistage counter, since they duplicate the clock waveforms. Multistage counters will not be fully synchronous, since there is a slight delay time difference added for each stage that is added.

The counter may be preset by the asynchronous parallel load capability of the circuit. Information present on the parallel data inputs (D_0 to D_3) is loaded into the counter and appears on the outputs (Q_0 to Q_3) regardless of the conditions of the clock inputs when the parallel load (\overline{PL}) input is LOW. A HIGH level on the master reset (MR) input will disable the parallel load gates, override both clock inputs and set all outputs (Q_0 to Q_3) LOW. If one of the clock inputs is LOW during and after a reset or load operation, the next LOW-to-HIGH transition of that clock will be interpreted as a legitimate signal and will be counted.

74HC/HCT193

QUICK REFERENCE DATA

```
GND = 0 V; T_{amb} = 25 \text{ °C}; t_r = t_f = 6 \text{ ns}
```

SYMBOL	PARAMETER	CONDITIONS	ТҮР	UNIT	
	FARAMETER	CONDITIONS	нс	нст	UNIT
t _{PHL} / t _{PLH}	propagation delay CP_D , CP_U to Q_n	$C = 15 \text{ pE} \cdot V = 5 V$	20	20	ns
f _{max}	maximum clock frequency	C _L = 15 pF; V _{CC} = 5 V	45	47	MHz
CI	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per package	notes 1 and 2	24	26	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μ W):

 $P_{D} = C_{PD} \times V_{CC}{}^2 \times f_i + \Sigma \; (C_L \times V_{CC}{}^2 \times f_o)$ where:

 f_i = input frequency in MHz

 $f_o = output frequency in MHz$

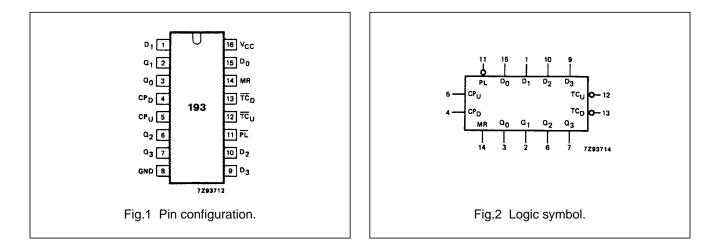
 $\Sigma (C_L \times V_{CC}^2 \times f_0)$ = sum of outputs

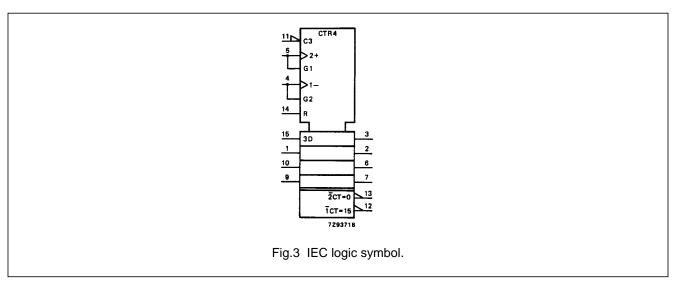
 C_L = output load capacitance in pF

 V_{CC} = supply voltage in V

2. For HC the condition is V_I = GND to V_{CC} For HCT the condition is V_I = GND to V_{CC} – 1.5 V

ORDERING INFORMATION


See "74HC/HCT/HCU/HCMOS Logic Package Information".


PIN DESCRIPTION

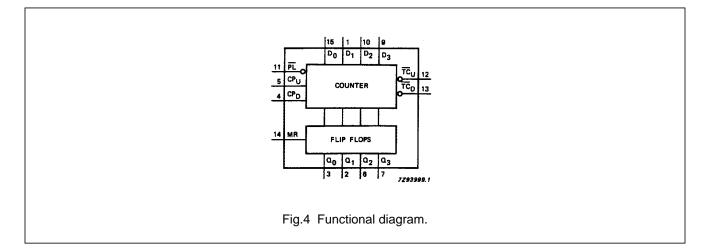
PIN NO.	SYMBOL	NAME AND FUNCTION
3, 2, 6, 7	Q ₀ to Q ₃	flip-flop outputs
4	CPD	count down clock input ⁽¹⁾
5	CPU	count up clock input ⁽¹⁾
8	GND	ground (0 V)
11	PL	asynchronous parallel load input (active LOW)
12	TCU	terminal count up (carry) output (active LOW)
13	TCD	terminal count down (borrow) output (active LOW)
14	MR	asynchronous master reset input (active HIGH)
15, 1, 10, 9	D_0 to D_3	data inputs
16	V _{CC}	positive supply voltage

Note

1. LOW-to-HIGH, edge triggered

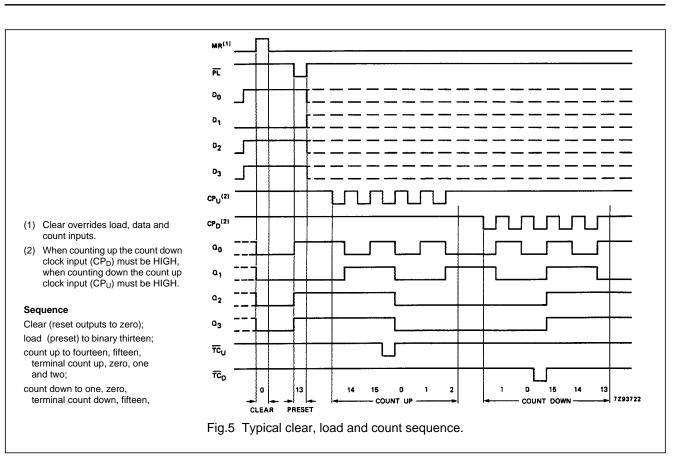
74HC/HCT193

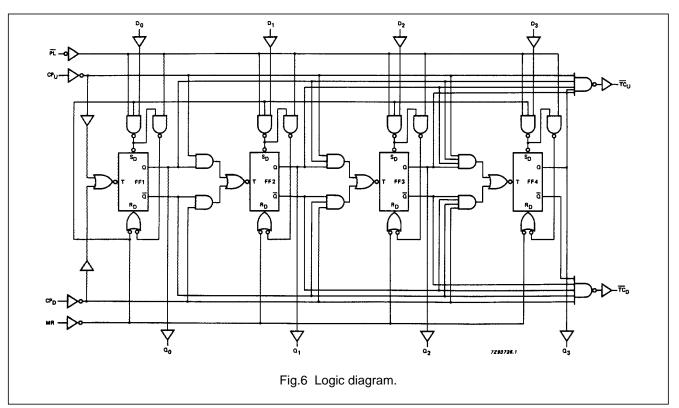
Product specification


74HC/HCT193

FUNCTION TABLE

OPERATING MODE	INPUTS									OUTPUTS						
OPERATING MODE	MR	PL	CPU	CPD	D ₀	D ₁	D ₂	D ₃	Q ₀	Q ₁	Q ₂	Q_3	ΤCυ	TCD		
reset (clear)	Н	Х	Х	L	Х	Х	Х	Х	L	L	L	L	Н	L		
	Н	X	X	Н	Х	Х	Х	Х	L	L	L	L	Н	Н		
	L	L	Х	L	L	L	L	L	L	L	L	L	Н	L		
parallel load	L	L	X	н	L	L	L	L	L	L	L	L	н	Н		
	L	L	L	X	Н	Н	Н	н	Н	Н	н	Н	L	н		
	L	L	Н	X	Н	Н	Н	Н	н	Н	Н	Н	Н	Н		
count up	L	н	1	н	Х	Х	Х	Х	count up			H ⁽²⁾	Н			
count down	L	Н	Н	\uparrow	Х	Х	Х	Х	count down			Н	H ⁽³⁾			


Notes


- 1. H = HIGH voltage level
 - L = LOW voltage level
 - X = don't care
 - \uparrow = LOW-to-HIGH clock transition
- 2. $\overline{TC}_U = CP_U$ at terminal count up (HHHH)
- 3. $\overline{TC}_D = CP_D$ at terminal count down (LLLL)

74HC/HCT193

Presettable synchronous 4-bit binary up/down counter

74HC/HCT193

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

	PARAMETER				T _{amb} (°		TES	T CONDITIONS			
CVMDO!					74HC						
SYMBOL		+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.			
t _{PHL} / t _{PLH}	propagation delay CP_U , CP_D to Q_n		63 23 18	215 43 37		270 54 46		325 65 55	ns	2.0 4.5 6.0	Fig.7
t _{PHL} / t _{PLH}	propagation delay CP_U to \overline{TC}_U		39 14 11	125 25 21		155 31 26		190 38 32	ns	2.0 4.5 6.0	Fig.8
t _{PHL} / t _{PLH}	propagation delay CP_D to \overline{TC}_D		39 14 11	125 25 21		155 31 26		190 38 32	ns	2.0 4.5 6.0	Fig.8
t _{PHL} / t _{PLH}	propagation delay PL to Q _n		69 25 20	220 44 37		275 55 47		330 66 56	ns	2.0 4.5 6.0	Fig.9
t _{PHL}	propagation delay MR to Q _n		58 21 17	200 40 34		250 50 43		300 60 51	ns	2.0 4.5 6.0	Fig.10
t _{PHL} / t _{PLH}	propagation delay D_n to Q_n		69 25 20	210 42 36		265 53 45		315 63 54	ns	2.0 4.5 6.0	Fig.9
t _{PHL} / t _{PLH}	propagation delay PL to \overline{TC}_U , PL to \overline{TC}_D		80 29 23	290 58 49		365 73 62		435 87 74	ns	2.0 4.5 6.0	Fig.12
t _{PHL} / t _{PLH}	propagation delay MR to \overline{TC}_U , MR to \overline{TC}_D		74 27 22	285 57 48		355 71 60		430 86 73	ns	2.0 4.5 6.0	Fig.12
t _{PHL} / t _{PLH}	propagation delay D_n to \overline{TC}_U , D_n to \overline{TC}_D		80 29 23	290 58 49		365 73 62		435 87 74	ns	2.0 4.5 6.0	Fig.12
t _{THL} / t _{TLH}	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Fig.10
t _W	up, down clock pulse width HIGH or LOW	100 20 17	22 8 6		125 25 21		150 30 26		ns	2.0 4.5 6.0	Fig.7

74HC/HCT193

	PARAMETER			-	T _{amb} (°		TEST CONDITIONS				
SYMBOL					74HC			WAVEEODMS			
SYMBOL	PARAMETER	+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.			
t _W	master reset pulse width HIGH	100 20 17	25 9 7		125 25 21		150 30 26		ns	2.0 4.5 6.0	Fig.10
t _W	parallel load pulse width LOW	100 20 17	19 7 6		125 25 21		150 30 26		ns	2.0 4.5 6.0	Fig.9
t _{rem}	removal time PL to CP _U , CP _D	50 10 9	8 3 2		65 13 11		75 15 13		ns	2.0 4.5 6.0	Fig.9
t _{rem}	removal time MR to CP _U , CP _D	50 10 9	0 0 0		65 13 11		75 15 13		ns	2.0 4.5 6.0	Fig.10
t _{su}	set-up time D _n to PL	80 16 14	22 8 6		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.11 note: CP _U = CP _D = HIGH
t _h	hold time D _n to PL	0 0 0	-14 -5 -4		0 0 0		0 0 0		ns	2.0 4.5 6.0	Fig.11
t _h	hold time CP_U to CP_D , CP_D to CP_U	80 16 8	22 8 6		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.13
f _{max}	maximum up, down clock pulse frequency	4.0 20 24	13.5 41 49		3.2 16 19		2.6 13 15		MHz	2.0 4.5 6.0	Fig.7

8

74HC/HCT193

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

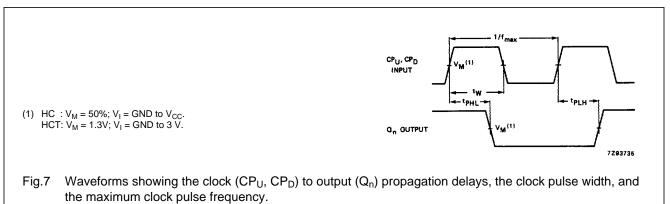
Output capability: standard I_{CC} category: MSI

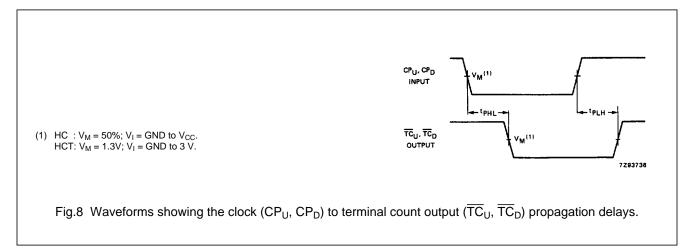
Note to HCT types

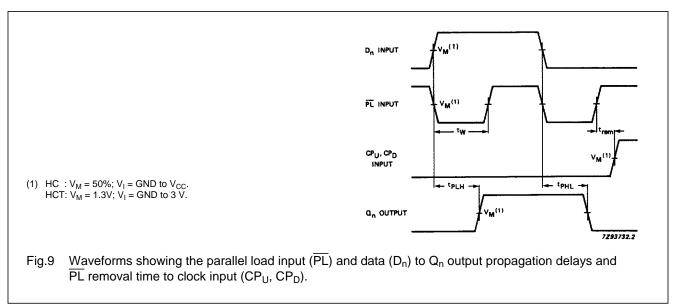
The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
D _n	0.35
<u>CP</u> _U , CP _D	1.40
PL	0.65
MR	1.05

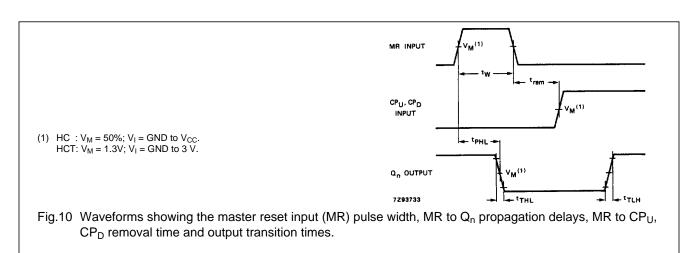
74HC/HCT193

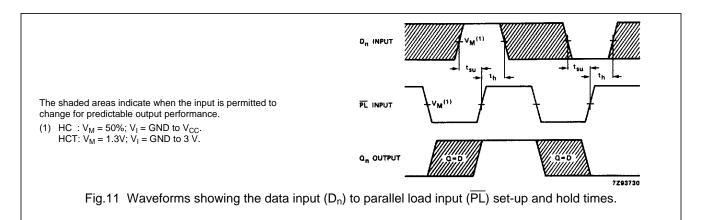

AC CHARACTERISTICS FOR 74HCT

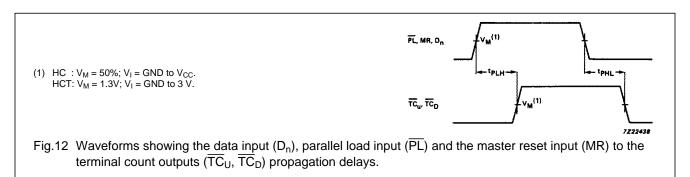

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

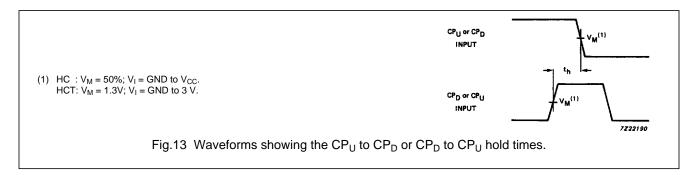

	PARAMETER			٦		TEST CONDITIONS					
SYMBOL					74HC1	1					
STMBOL		+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.			
t _{PHL} / t _{PLH}	propagation delay CP_U , CP_D to Q_n		23	43		54		65	ns	4.5	Fig.7
t _{PHL} / t _{PLH}	propagation delay CP_U to \overline{TC}_U		15	27		34		41	ns	4.5	Fig.8
t _{PHL} / t _{PLH}	propagation delay CP_D to \overline{TC}_D		15	27		34		41	ns	4.5	Fig.8
t _{PHL} / t _{PLH}	propagation delay PL to Q _n		26	46		58		69	ns	4.5	Fig.9
t _{PHL}	propagation delay MR to Q _n		22	40		50		60	ns	4.5	Fig.10
t _{PHL} / t _{PLH}	propagation delay D _n to Q _n		27	46		58		69	ns	4.5	Fig.9
t _{PHL} / t _{PLH}	propagation delay PL to \overline{TC}_U , PL to \overline{TC}_D		31	55		69		83	ns	4.5	Fig.12
t _{PHL} / t _{PLH}	propagation delay MR to \overline{TC}_U , MR to \overline{TC}_D		29	55		69		83	ns	4.5	Fig.12
t _{PHL} / t _{PLH}	propagation delay D_n to \overline{TC}_U , D_n to \overline{TC}_D		32	58		73		87	ns	4.5	Fig.12
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Fig.10
t _W	up, down clock pulse width HIGH or LOW	25	11		31		38		ns	4.5	Fig.7
t _W	master reset pulse width HIGH	20	7		25		30		ns	4.5	Fig.10
t _W	parallel load pulse width LOW	20	8		25		30		ns	4.5	Fig.9
t _{rem}	removal time PL to CP _U , CP _D	10	2		13		15		ns	4.5	Fig.9
t _{rem}	removal time MR to CP _U , CP _D	10	0		13		15		ns	4.5	Fig.10
t _{su}	set-up time D _n to PL	16	8		20		24		ns	4.5	Fig.11 note: $CP_U = CP_D =$ HIGH
t _h	hold time D _n to PL	0	-6		0		0		ns	4.5	Fig.11
t _h	hold time CP_U to CP_D , CP_D to CP_U	16	7		20		24		ns	4.5	Fig.13
f _{max}	maximum up, down clock pulse frequency	20	43		16		13		MHz	4.5	Fig.7

74HC/HCT193

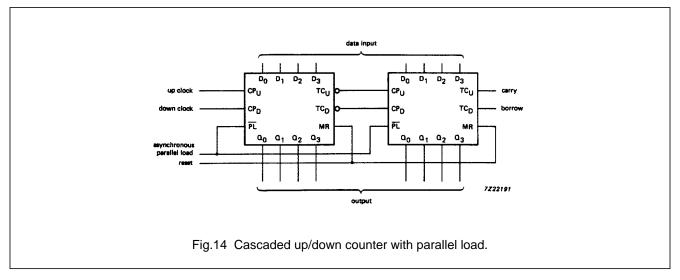

AC WAVEFORMS







74HC/HCT193



74HC/HCT193

Product specification

APPLICATION INFORMATION

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Buffers & Line Drivers category:

Click to view products by NXP manufacturer:

Other Similar products are found below :

5962-9217601MSA 634810D 875140G HEF4022BP HEF4043BP NL17SG125DFT2G NL17SZ126P5T5G NLU1GT126CMUTCG NLU3G16AMX1TCG NLV27WZ125USG MC74HCT365ADTR2G BCM6306KMLG 54FCT240CTDB Le87401NQC Le87402MQC 028192B 042140C 051117G 070519XB 065312DB 091056E 098456D NL17SG07DFT2G NL17SG17DFT2G NL17SG34DFT2G NL17SZ07P5T5G NL17SZ125P5T5G NLU1GT126AMUTCG NLV27WZ16DFT2G 5962-8982101PA 5962-9052201PA 74LVC07ADR2G MC74VHC1G125DFT1G NL17SH17P5T5G NL17SZ125CMUTCG NLV17SZ07DFT2G NLV37WZ17USG NLVHCT244ADTR2G NC7WZ17FHX 74HCT126T14-13 NL17SH125P5T5G NLV14049UBDTR2G NLV37WZ07USG 74VHC541FT(BE) RHFAC244K1 74LVC1G17FW4-7 74LVC1G126FZ4-7 BCM6302KMLG 74LVC1G07FZ4-7 74LVC1G125FW4-7