DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT193 Presettable synchronous 4-bit binary up/down counter

File under Integrated Circuits, IC06

Presettable synchronous 4-bit binary up/down counter

74HC/HCT193

FEATURES

- Synchronous reversible 4-bit binary counting
- Asynchronous parallel load
- Asynchronous reset
- Expandable without external logic
- Output capability: standard
- I ICC category: MSI

GENERAL DESCRIPTION

The 74HC/HCT193 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT193 are 4-bit synchronous binary up/down counters. Separate up/down clocks, CP_{u} and $C P_{D}$ respectively, simplify operation. The outputs change state synchronously with the LOW-to-HIGH transition of either clock input. If the CP_{\cup} clock is pulsed while CP_{D} is held HIGH, the device will count up. If the CP_{D} clock is pulsed while CP_{U} is held HIGH, the device will count down. Only one clock input can be held HIGH at any time, or erroneous operation will result. The device can be cleared at any time by the asynchronous master reset input (MR); it may also be loaded in parallel by activating the asynchronous parallel load input ($\overline{\mathrm{PL}}$).

The "193" contains four master-slave JK flip-flops with the necessary steering logic to provide the asynchronous reset, load, and synchronous count up and count down functions.

Each flip-flop contains JK feedback from slave to master, such that a LOW-to-HIGH transition on the CP_{D} input will decrease the count by one, while a similar transition on the CP_{U} input will advance the count by one.

One clock should be held HIGH while counting with the other, otherwise the circuit will either count by two's or not at all, depending on the state of the first flip-flop, which cannot toggle as long as either clock input is LOW. Applications requiring reversible operation must make the reversing decision while the activating clock is HIGH to avoid erroneous counts.

The terminal count up ($\overline{\mathrm{TC}}_{\mathrm{U}}$) and terminal count down ($\overline{\mathrm{TC}}_{\mathrm{D}}$) outputs are normally HIGH. When the circuit has reached the maximum count state of 15 , the next HIGH-to-LOW transition of CP_{U} will cause $\overline{\mathrm{TC}}_{U}$ to go LOW.
$\overline{\mathrm{TC}}_{U}$ will stay LOW until CP_{\cup} goes HIGH again, duplicating the count up clock.

Likewise, the $\overline{\mathrm{TC}}_{\mathrm{D}}$ output will go LOW when the circuit is in the zero state and the CP_{D} goes LOW. The terminal count outputs can be used as the clock input signals to the next higher order circuit in a multistage counter, since they duplicate the clock waveforms. Multistage counters will not be fully synchronous, since there is a slight delay time difference added for each stage that is added.

The counter may be preset by the asynchronous parallel load capability of the circuit. Information present on the parallel data inputs (D_{0} to D_{3}) is loaded into the counter and appears on the outputs $\left(Q_{0}\right.$ to $\left.Q_{3}\right)$ regardless of the conditions of the clock inputs when the parallel load $(\overline{\mathrm{PL}})$ input is LOW. A HIGH level on the master reset (MR) input will disable the parallel load gates, override both clock inputs and set all outputs $\left(Q_{0}\right.$ to $\left.Q_{3}\right)$ LOW. If one of the clock inputs is LOW during and after a reset or load operation, the next LOW-to-HIGH transition of that clock will be interpreted as a legitimate signal and will be counted.

Presettable synchronous 4-bit binary up/down counter

QUICK REFERENCE DATA

GND $=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$

SYMBOL	PARAMETER	CONDITIONS	TYPICAL		UNIT
			HC	HCT	
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $\mathrm{CP}_{\mathrm{D}}, \mathrm{CP}_{\cup}$ to Q_{n}	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	20	20	ns
$\mathrm{f}_{\text {max }}$	maximum clock frequency		45	47	MHz
C_{1}	input capacitance		3.5	3.5	pF
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance per package	notes 1 and 2	24	26	pF

Notes

1. $C_{P D}$ is used to determine the dynamic power dissipation $\left(P_{D}\right.$ in $\left.\mu W\right)$:
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i}+\sum\left(C_{L} \times V_{C C}{ }^{2} \times f_{o}\right)$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz
$\sum\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)=$ sum of outputs
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V
2. For HC the condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}

For HCT the condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

Presettable synchronous 4-bit binary up/down counter

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
$3,2,6,7$	Q_{0} to Q_{3}	flip-flop outputs
4	CP_{D}	count down clock input ${ }^{(1)}$
5	CP	count up clock input ${ }^{(1)}$
8	GND	ground (0 V)
11	$\overline{\mathrm{PL}}$	asynchronous parallel load input (active LOW)
12	$\overline{\mathrm{TC}}_{U}$	terminal count up (carry) output (active LOW)
13	TC_{D}	terminal count down (borrow) output (active LOW)
14	MR	asynchronous master reset input (active HIGH)
$15,1,10,9$	D_{0} to D_{3}	data inputs
16	$\mathrm{~V}_{\mathrm{CC}}$	positive supply voltage

Note

1. LOW-to-HIGH, edge triggered

Fig. 1 Pin configuration.

Fig. 2 Logic symbol.

Fig. 3 IEC logic symbol.

Presettable synchronous 4-bit binary up/down counter

FUNCTION TABLE

OPERATING MODE	INPUTS								OUTPUTS					
	MR	$\overline{\text { PL }}$	$\mathrm{CP}_{\mathbf{u}}$	$\mathrm{CP}_{\text {D }}$	D_{0}	D_{1}	D_{2}	D_{3}	Q_{0}	Q_{1}	\mathbf{Q}_{2}	Q_{3}	$\overline{\mathrm{TC}}_{\mathrm{U}}$	$\overline{T C}_{\text {D }}$
reset (clear)	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{array}{\|l\|} \hline X \\ X \end{array}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & X \\ & X \\ & X \end{aligned}$	$\begin{array}{\|l} \hline X \\ X \end{array}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & X \\ & X \\ & X \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$			
parallel load	$\begin{array}{\|l} \hline \mathrm{L} \\ \mathrm{~L} \\ \mathrm{~L} \\ \mathrm{~L} \end{array}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{array}{\|l} \hline X \\ X \\ X \\ \text { L } \end{array}$	$\begin{array}{\|l} \hline \mathrm{L} \\ \mathrm{H} \\ \mathrm{X} \\ \mathrm{X} \end{array}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline \text { L } \\ & \text { L } \\ & H \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{array}{\|l} \hline L \\ L \\ H \\ H \end{array}$	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$
count up	L	H	\uparrow	H	X	X	X	X	count up				$\mathrm{H}^{(2)}$	H
count down	L	H	H	\uparrow	X	X	X	X	count down				H	$\mathrm{H}^{(3)}$

Notes

1. $\mathrm{H}=\mathrm{HIGH}$ voltage level

L = LOW voltage level
X = don't care
$\uparrow=$ LOW-to-HIGH clock transition
2. $\overline{\mathrm{TC}}_{U}=\mathrm{CP} \mathrm{C}_{\mathrm{U}}$ at terminal count up (HHHH)
3. $\overline{\mathrm{TC}}_{\mathrm{D}}=\mathrm{CP} \mathrm{D}_{\mathrm{D}}$ at terminal count down (LLLL)

Fig. 4 Functional diagram.

Presettable synchronous 4-bit binary up/down counter

Sequence

Clear (reset outputs to zero); load (preset) to binary thirteen; count up to fourteen, fifteen, terminal count up, zero, one and two;
count down to one, zero
terminal count down, fifteen,

Fig. 5 Typical clear, load and count sequence.

Fig. 6 Logic diagram.

Presettable synchronous 4-bit binary up/down counter

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".
Output capability: standard
$I_{C C}$ category: MSI

AC CHARACTERISTICS FOR 74HC
$G N D=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

SYMBOL	PARAMETER	Tamb (${ }^{\circ} \mathrm{C}$)							UNIT	TEST CONDITIONS	
		74HC								$V_{C c}$ (V)	WAVEFORMS
		+25			-40 to +85		-40 to +125				
		min.	typ.	max.	min.	max.	min.	max.			
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $C P_{u}, \mathrm{CP}_{\mathrm{D}}$ to Q_{n}		$\begin{array}{\|l\|} \hline 63 \\ 23 \\ 18 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 215 \\ 43 \\ 37 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 270 \\ 54 \\ 46 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 325 \\ 65 \\ 55 \\ \hline \end{array}$	ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ \hline \end{array}$	Fig. 7
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay CP_{U} to $\overline{\mathrm{TC}}_{U}$		$\begin{array}{\|l\|} \hline 39 \\ 14 \\ 11 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 125 \\ 25 \\ 21 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 155 \\ 31 \\ 26 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 190 \\ 38 \\ 32 \\ \hline \end{array}$	ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ \hline \end{array}$	Fig. 8
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay CP_{D} to $\overline{\mathrm{TC}}_{\mathrm{D}}$		$\begin{aligned} & \hline 39 \\ & 14 \\ & 11 \end{aligned}$	$\begin{aligned} & 125 \\ & 25 \\ & 21 \end{aligned}$		$\begin{aligned} & \hline 155 \\ & 31 \\ & 26 \end{aligned}$		$\begin{array}{\|l\|} \hline 190 \\ 38 \\ 32 \\ \hline \end{array}$	ns	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 8
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $\overline{P L}$ to Q_{n}		$\begin{array}{\|l\|} \hline 69 \\ 25 \\ 20 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 220 \\ 44 \\ 37 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 275 \\ 55 \\ 47 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 330 \\ 66 \\ 56 \\ \hline \end{array}$	ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ \hline \end{array}$	Fig. 9
$\mathrm{t}_{\text {PHL }}$	propagation delay $M R$ to Q_{n}		$\begin{array}{\|l\|} \hline 58 \\ 21 \\ 17 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 200 \\ 40 \\ 34 \\ \hline \end{array}$		250 50 43		$\begin{array}{\|l\|} \hline 300 \\ 60 \\ 51 \\ \hline \end{array}$	ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ \hline \end{array}$	Fig. 10
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay D_{n} to Q_{n}		$\begin{aligned} & 69 \\ & 25 \\ & 20 \end{aligned}$	$\begin{array}{\|l} \hline 210 \\ 42 \\ 36 \end{array}$		$\begin{array}{\|l\|} \hline 265 \\ 53 \\ 45 \end{array}$		$\begin{array}{\|l} \hline 315 \\ 63 \\ 54 \end{array}$	ns	$\begin{array}{\|l} \hline 2.0 \\ 4.5 \\ 6.0 \end{array}$	Fig. 9
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $\overline{\mathrm{PL}}$ to $\overline{\mathrm{TC}}_{\mathrm{U}}, \overline{\mathrm{PL}}$ to $\overline{\mathrm{TC}}_{\mathrm{D}}$		$\begin{aligned} & 80 \\ & 29 \\ & 23 \end{aligned}$	$\begin{array}{\|l\|} \hline 290 \\ 58 \\ 49 \end{array}$		$\begin{array}{\|l\|} \hline 365 \\ 73 \\ 62 \end{array}$		$\begin{aligned} & \hline 435 \\ & 87 \\ & 74 \end{aligned}$	ns	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 12
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay MR to $\overline{\mathrm{TC}}_{\mathrm{U}}, \mathrm{MR}$ to $\overline{\mathrm{TC}}_{\mathrm{D}}$		$\begin{aligned} & 74 \\ & 27 \\ & 22 \end{aligned}$	$\begin{aligned} & \hline 285 \\ & 57 \\ & 48 \end{aligned}$		$\begin{aligned} & \hline 355 \\ & 71 \\ & 60 \end{aligned}$		$\begin{aligned} & \hline 430 \\ & 86 \\ & 73 \end{aligned}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 12
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay D_{n} to $\overline{\mathrm{TC}}_{\mathrm{U}}, \mathrm{D}_{\mathrm{n}}$ to $\overline{\mathrm{TC}}_{\mathrm{D}}$		$\begin{array}{\|l\|} \hline 80 \\ 29 \\ 23 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 290 \\ 58 \\ 49 \\ \hline \end{array}$		365 73 62		$\begin{array}{\|l\|} \hline 435 \\ 87 \\ 74 \\ \hline \end{array}$	ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ \hline \end{array}$	Fig. 12
$\mathrm{t}_{\text {THL }} / \mathrm{t}_{\text {TLH }}$	output transition time		19 7 6	$\begin{aligned} & 75 \\ & 15 \\ & 13 \end{aligned}$		$\begin{array}{\|l\|} \hline 95 \\ 19 \\ 16 \end{array}$		$\begin{aligned} & \hline 110 \\ & 22 \\ & 19 \end{aligned}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 10
tw	up, down clock pulse width HIGH or LOW	$\begin{aligned} & \hline 100 \\ & 20 \\ & 17 \end{aligned}$	$\begin{array}{\|l\|} \hline 22 \\ 8 \\ 6 \end{array}$		$\begin{aligned} & 125 \\ & 25 \\ & 21 \end{aligned}$		$\begin{aligned} & \hline 150 \\ & 30 \\ & 26 \end{aligned}$		ns	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 7

Presettable synchronous 4-bit binary

 up/down counter| SYMBOL | PARAMETER | Tamb ${ }^{\circ} \mathrm{C}$) | | | | | | | UNIT | TEST CONDITIONS | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | 74HC | | | | | | | | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & \text { (V) } \end{aligned}$ | WAVEFORMS |
| | | +25 | | | -40 to +85 | | -40 to +125 | | | | |
| | | min. | typ. | max. | min. | max. | min. | max. | | | |
| t_{w} | master reset pulse width HIGH | $\begin{array}{\|l\|} \hline 100 \\ 20 \\ 17 \end{array}$ | $\begin{aligned} & \hline 25 \\ & 9 \\ & 7 \end{aligned}$ | | $\begin{aligned} & 125 \\ & 25 \\ & 21 \end{aligned}$ | | $\begin{aligned} & 150 \\ & 30 \\ & 26 \end{aligned}$ | | ns | $\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$ | Fig. 10 |
| tw | parallel load pulse width LOW | $\begin{array}{\|l\|} \hline 100 \\ 20 \\ 17 \end{array}$ | $\begin{aligned} & 19 \\ & 7 \\ & 6 \end{aligned}$ | | $\begin{aligned} & 125 \\ & 25 \\ & 21 \end{aligned}$ | | $\begin{aligned} & 150 \\ & 30 \\ & 26 \end{aligned}$ | | ns | $\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$ | Fig. 9 |
| $\mathrm{t}_{\text {rem }}$ | $\begin{array}{\|l\|} \hline \text { removal time } \\ \mathrm{PL} \end{array} \text { to } \mathrm{CP}_{\mathrm{U}}, \mathrm{CP}_{\mathrm{D}}$ | $\begin{array}{\|l\|} \hline 50 \\ 10 \\ 9 \end{array}$ | $\begin{array}{\|l\|} \hline 8 \\ 3 \\ 2 \\ \hline \end{array}$ | | $\begin{aligned} & \hline 65 \\ & 13 \\ & 11 \end{aligned}$ | | $\begin{aligned} & 75 \\ & 15 \\ & 13 \end{aligned}$ | | ns | $\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & \hline \end{aligned}$ | Fig. 9 |
| $\mathrm{t}_{\text {rem }}$ | $\begin{aligned} & \text { removal time } \\ & \text { MR to } \mathrm{CP}_{\mathrm{U}}, \mathrm{CP}_{\mathrm{D}} \end{aligned}$ | $\begin{aligned} & \hline 50 \\ & 10 \\ & 9 \end{aligned}$ | $\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \end{aligned}$ | | $\begin{aligned} & \hline 65 \\ & 13 \\ & 11 \end{aligned}$ | | $\begin{aligned} & 75 \\ & 15 \\ & 13 \end{aligned}$ | | ns | $\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$ | Fig. 10 |
| $\mathrm{t}_{\text {su }}$ | $\begin{gathered} \text { set-up time } \\ \mathrm{D}_{\mathrm{n}} \text { to } \overline{\mathrm{PL}} \end{gathered}$ | $\begin{aligned} & 80 \\ & 16 \\ & 14 \end{aligned}$ | $\begin{aligned} & 22 \\ & 8 \\ & 6 \end{aligned}$ | | $\begin{aligned} & \hline 100 \\ & 20 \\ & 17 \end{aligned}$ | | $\begin{array}{\|l\|} \hline 120 \\ 24 \\ 20 \end{array}$ | | ns | $\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$ | Fig. 11 note: $C P_{U}=C P_{D}=$ HIGH |
| th_{n} | $\begin{gathered} \text { hold time } \\ \mathrm{D}_{\mathrm{n}} \text { to } \overline{\mathrm{PL}} \end{gathered}$ | $\begin{array}{\|l\|l} \hline 0 \\ 0 \\ 0 \end{array}$ | $\begin{array}{\|l} \hline-14 \\ -5 \\ -4 \end{array}$ | | $\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \end{array}$ | | $\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \end{aligned}$ | | ns | $\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$ | Fig. 11 |
| th | $\begin{aligned} & \hline \text { hold time } \\ & \mathrm{CP}_{\mathrm{u}} \text { to } \mathrm{CP}_{\mathrm{D}}, \\ & \mathrm{CP}_{\mathrm{D}} \text { to } \mathrm{CP}_{\mathrm{u}} \end{aligned}$ | $\begin{array}{\|l} \hline 80 \\ 16 \\ 8 \\ \hline \end{array}$ | $\begin{array}{\|l} \hline 22 \\ 8 \\ 6 \\ \hline \end{array}$ | | $\begin{array}{\|l\|} \hline 100 \\ 20 \\ 17 \\ \hline \end{array}$ | | 120
 24
 20 | | ns | $\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \\ & \hline \end{aligned}$ | Fig. 13 |
| $\mathrm{f}_{\text {max }}$ | maximum up, down clock pulse frequency | $\begin{aligned} & 4.0 \\ & 20 \\ & 24 \end{aligned}$ | $\begin{aligned} & 13.5 \\ & 41 \\ & 49 \end{aligned}$ | | $\begin{aligned} & \hline 3.2 \\ & 16 \\ & 19 \end{aligned}$ | | $\begin{aligned} & 2.6 \\ & 13 \\ & 15 \end{aligned}$ | | MHz | $\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$ | Fig. 7 |

Presettable synchronous 4-bit binary up/down counter

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".
Output capability: standard
ICC category: MSI

Note to HCT types

The value of additional quiescent supply current $\left(\Delta I_{C C}\right)$ for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
D_{n}	0.35
$\frac{C P}{}, C P_{D}$	1.40
$P L$	0.65
$M R$	1.05

Presettable synchronous 4-bit binary up/down counter

AC CHARACTERISTICS FOR 74HCT
$G N D=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

SYMBOL	PARAMETER	$\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right.$)							UNIT	TEST CONDITIONS	
		74HCT								$\begin{aligned} & \mathrm{v}_{\mathrm{cc}} \\ & (\mathrm{~V}) \end{aligned}$	WAVEFORMS
		+25			-40 to +85		-40 to +125				
		min.	typ.	max.	min.	max.	min.	max.			
tPHL/ $\mathrm{t}_{\text {PLH }}$	propagation delay $C P_{u}, \mathrm{CP}_{\mathrm{D}}$ to Q_{n}		23	43		54		65	ns	4.5	Fig. 7
tPhL/ ${ }_{\text {PLL }}$	propagation delay CP_{u} to $\overline{\mathrm{TC}}_{u}$		15	27		34		41	ns	4.5	Fig. 8
tPhL/ tpLH	propagation delay CP_{D} to TC_{D}		15	27		34		41	ns	4.5	Fig. 8
tPHL/ tpLH	propagation delay $\overline{P L}$ to Q_{n}		26	46		58		69	ns	4.5	Fig. 9
tphL	propagation delay MR to Q_{n}		22	40		50		60	ns	4.5	Fig. 10
tPHL/ $\mathrm{t}_{\text {PLH }}$	$\begin{aligned} & \text { propagation delay } \\ & D_{n} \text { to } Q_{n} \\ & \hline \end{aligned}$		27	46		58		69	ns	4.5	Fig. 9
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $\overline{\mathrm{PL}}$ to $\overline{\mathrm{TC}}_{\mathrm{U}}, \overline{\mathrm{PL}}$ to $\overline{\mathrm{TC}}_{\mathrm{D}}$		31	55		69		83	ns	4.5	Fig. 12
tPHL/ tpLH	propagation delay MR to $\overline{T C}_{U}$, MR to $\overline{T C}_{D}$		29	55		69		83	ns	4.5	Fig. 12
tPHL/ tpLH	$\begin{aligned} & \text { propagation delay } \\ & D_{n} \text { to } \overline{T C}_{U}, D_{n} \text { to } \overline{T C}_{D} \end{aligned}$		32	58		73		87	ns	4.5	Fig. 12
$\mathrm{t}_{\text {THL }} / \mathrm{t}_{\text {TLH }}$	output transition time		7	15		19		22	ns	4.5	Fig. 10
t_{w}	up, down clock pulse width HIGH or LOW	25	11		31		38		ns	4.5	Fig. 7
t_{w}	master reset pulse width HIGH	20	7		25		30		ns	4.5	Fig. 10
t_{w}	parallel load pulse width LOW	20	8		25		30		ns	4.5	Fig. 9
$\mathrm{t}_{\text {rem }}$	$\begin{aligned} & \hline \text { removal time } \\ & \overline{\mathrm{PL}} \text { to } \mathrm{CP}, \mathrm{CP}_{\mathrm{D}} \end{aligned}$	10	2		13		15		ns	4.5	Fig. 9
$\mathrm{t}_{\text {rem }}$	$\begin{aligned} & \text { removal time } \\ & \mathrm{MR} \text { to } \mathrm{CP}_{\mathrm{U}}, \mathrm{CP}_{\mathrm{D}} \end{aligned}$	10	0		13		15		ns	4.5	Fig. 10
$\mathrm{t}_{\text {su }}$	$\begin{array}{\|c} \hline \text { set-up time } \\ D_{n} \text { to } \overline{P L} \end{array}$	16	8		20		24		ns	4.5	Fig. 11 note: $C P_{u}=C P_{D}=$ HIGH
th_{n}	$\begin{gathered} \text { hold time } \\ D_{n} \text { to } \overline{P L} \end{gathered}$	0	-6		0		0		ns	4.5	Fig. 11
th_{n}	$\begin{aligned} & \text { hold time } \\ & \mathrm{CP}_{\mathrm{U}} \text { to } \mathrm{CP}_{\mathrm{D}}, \mathrm{CP}_{\mathrm{D}} \text { to } \mathrm{CP}_{\mathrm{U}} \end{aligned}$	16	7		20		24		ns	4.5	Fig. 13
$\mathrm{f}_{\text {max }}$	maximum up, down clock pulse frequency	20	43		16		13		MHz	4.5	Fig. 7

Presettable synchronous 4-bit binary up/down counter

AC WAVEFORMS

(1) $\mathrm{HC}: \mathrm{V}_{\mathrm{M}}=50 \% ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}. HCT: $\mathrm{V}_{\mathrm{M}}=1.3 \mathrm{~V}$; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3 V .

Fig. 7 Waveforms showing the clock $\left(C P_{U}, C P_{D}\right)$ to output $\left(Q_{n}\right)$ propagation delays, the clock pulse width, and the maximum clock pulse frequency.
(1) $\mathrm{HC}: \mathrm{V}_{\mathrm{M}}=50 \% ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{Cc}. $\mathrm{HCT}: \mathrm{V}_{\mathrm{M}}=1.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3 V .

Fig. 8 Waveforms showing the clock $\left(\mathrm{CP}_{\mathrm{U}}, \mathrm{CP}_{\mathrm{D}}\right)$ to terminal count output $\left(\overline{\mathrm{TC}}_{\mathrm{U}}, \overline{\mathrm{TC}}_{\mathrm{D}}\right)$ propagation delays.
(1) $\mathrm{HC}: \mathrm{V}_{\mathrm{M}}=50 \%$; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}. $\mathrm{HCT}: \mathrm{V}_{\mathrm{M}}=1.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3 V .

Fig. 9 Waveforms showing the parallel load input $(\overline{\mathrm{PL}})$ and data $\left(\mathrm{D}_{n}\right)$ to Q_{n} output propagation delays and $\overline{\mathrm{PL}}$ removal time to clock input ($\mathrm{CP}_{\mathrm{U}}, \mathrm{CP}_{\mathrm{D}}$).

Presettable synchronous 4-bit binary up/down counter

Fig. 10 Waveforms showing the master reset input (MR) pulse width, $M R$ to Q_{n} propagation delays, $M R$ to $C P_{U}$, CP P_{D} removal time and output transition times.

Fig. 11 Waveforms showing the data input $\left(D_{n}\right)$ to parallel load input $(\overline{\mathrm{PL}})$ set-up and hold times.
(1) $\mathrm{HC}: \mathrm{V}_{\mathrm{M}}=50 \%$; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}. $H C T: V_{\mathrm{M}}=1.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3 V .

Fig. 12 Waveforms showing the data input $\left(\mathrm{D}_{\mathrm{n}}\right)$, parallel load input $(\overline{\mathrm{PL}})$ and the master reset input (MR) to the terminal count outputs $\left(\overline{\mathrm{TC}}_{\mathrm{U}}, \overline{\mathrm{TC}}_{\mathrm{D}}\right)$ propagation delays.

Presettable synchronous 4-bit binary

up/down counter

APPLICATION INFORMATION

Fig. 14 Cascaded up/down counter with parallel load.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Buffers \& Line Drivers category:

Click to view products by NXP manufacturer:

Other Similar products are found below :
5962-9217601MSA 634810D 875140G HEF4022BP HEF4043BP NL17SG125DFT2G NL17SZ126P5T5G NLU1GT126CMUTCG NLU3G16AMX1TCG NLV27WZ125USG MC74HCT365ADTR2G BCM6306KMLG 54FCT240CTDB Le87401NQC Le87402MQC 028192B 042140C 051117G 070519XB 065312DB 091056E 098456D NL17SG07DFT2G NL17SG17DFT2G NL17SG34DFT2G NL17SZ07P5T5G NL17SZ125P5T5G NLU1GT126AMUTCG NLV27WZ16DFT2G 5962-8982101PA 5962-9052201PA 74LVC07ADR2G MC74VHC1G125DFT1G NL17SH17P5T5G NL17SZ125CMUTCG NLV17SZ07DFT2G NLV37WZ17USG NLVHCT244ADTR2G NC7WZ17FHX 74HCT126T14-13 NL17SH125P5T5G NLV14049UBDTR2G NLV37WZ07USG 74VHC541FT(BE) RHFAC244K1 74LVC1G17FW4-7 74LVC1G126FZ4-7 BCM6302KMLG 74LVC1G07FZ4-7 74LVC1G125FW4-7

