INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC06 December 1990

74HC/HCT259

FEATURES

- Combines demultiplexer and 8-bit latch
- Serial-to-parallel capability
- Output from each storage bit available
- Random (addressable) data entry
- Easily expandable
- Common reset input
- Useful as a 3-to-8 active HIGH decoder
- Output capability: standard
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT259 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT259 are high-speed 8-bit addressable latches designed for general purpose storage applications in digital systems. The "259" are multifunctional devices

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 \text{ °C}$; $t_r = t_f = 6 \text{ ns}$

capable of storing single-line data in eight addressable latches, and also 3-to-8 decoder and demultiplexer, with active HIGH outputs (Q_0 to Q_7), functions are available.

The "259" also incorporates an active LOW common reset $(\overline{\text{MR}})$ for resetting all latches, as well as, an active LOW enable input ($\overline{\text{LE}}$).

The "259" has four modes of operation as shown in the mode select table. In the addressable latch mode, data on the data line (D) is written into the addressed latch. The addressed latch will follow the data input with all non-addressed latches remaining in their previous states. In the memory mode, all latches remain in their previous states and are unaffected by the data or address inputs.

In the 3-to-8 decoding or demultiplexing mode, the addressed output follows the state of the D input with all other outputs in the LOW state. In the reset mode all outputs are LOW and unaffected by the address $(A_0 \text{ to } A_2)$ and data (D) input. When operating the "259" as an addressable latch, changing more than one bit of address could impose a transient-wrong address. Therefore, this should only be done while in the memory mode. The mode select table summarizes the operations of the "259".

SYMBOL	PARAMETER	CONDITIONS	TYP		
STWIDOL	FARAMETER	CONDITIONS	нс	нст	
t _{PHL/} t _{PLH}	propagation delay	C _L = 15 pF; V _{CC} = 5 V			
	D to Q _n		18	20	ns
	$A_n, \overline{LE} \text{ to } Q_n$		17	20	ns
t _{PHL}	\overline{MR} to Q_n		15	20	ns
CI	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per latch	notes 1 and 2	19	19	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μ W):

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where:

 f_i = input frequency in MHz

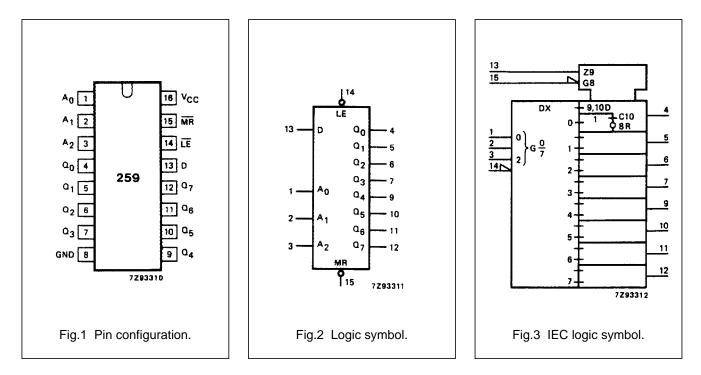
 f_o = output frequency in MHz

 $\Sigma (C_L \times V_{CC}^2 \times f_o) = sum of outputs$

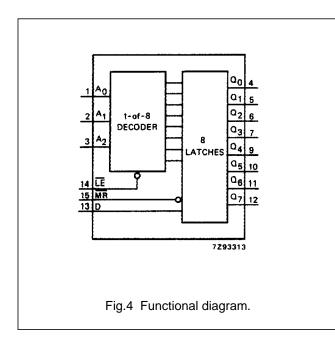
 C_L = output load capacitance in pF

V_{CC} = supply voltage in V

2. For HC the condition is V_I = GND to V_{CC} For HCT the condition is V_I = GND to V_{CC} – 1.5 V


74HC/HCT259

ORDERING INFORMATION


See "74HC/HCT/HCU/HCMOS Logic Package Information".

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1, 2, 3	A ₀ to A ₂	address inputs
4, 5, 6, 7, 9 10, 11, 12	Q_0 to Q_7	latch outputs
8	GND	ground (0 V)
13	D	data input
14	LE	latch enable input (active LOW)
15	MR	conditional reset input (active LOW)
16	V _{CC}	positive supply voltage

74HC/HCT259

MODE SELECT TABLE

LE	MR	MODE
L	Н	addressable latch
Н	н	memory
L	L	active HIGH 8-channel demultiplexer
Н	L	reset

Product specification

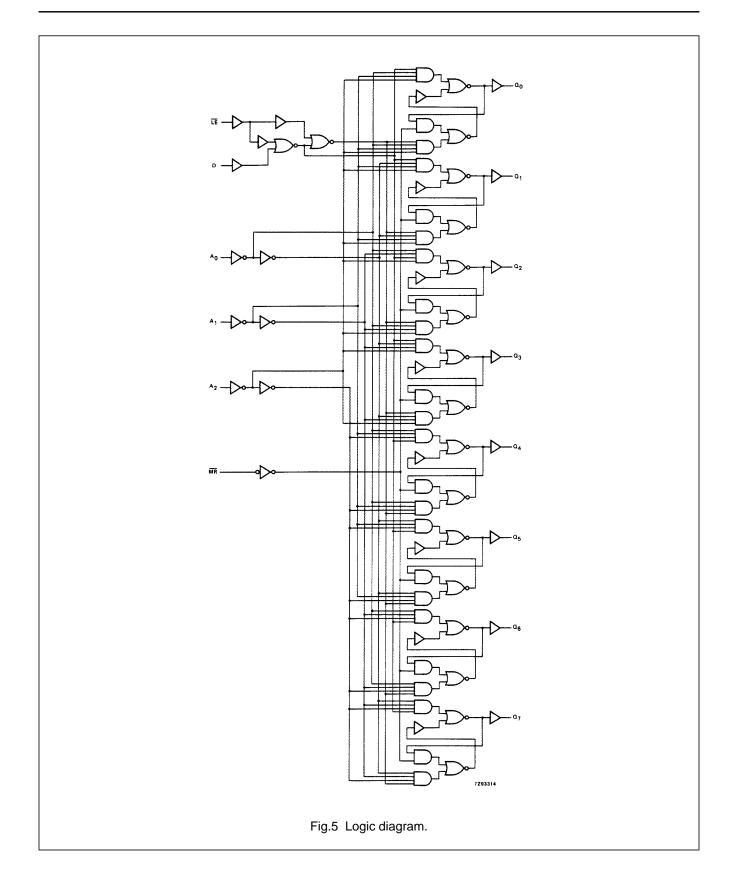
74HC/HCT259

FUNCTION TABLE

OPERATING	INPUTS					OUTPUTS								
MODES	MR	LE	D	A ₀	A ₁	A ₂	Q ₀	Q ₁	Q ₂	Q ₃	Q ₄	Q ₅	Q ₆	Q ₇
master reset	L	н	Х	Х	Х	Х	L	L	L	L	L	L	L	L
	L	L	d	L	L	L	Q=d	L	L	L	L	L	L	L
	L	L	d	Н	L	L	L	Q=d	L	L	L	L	L	L
1 10 1	L	L	d	L	Н	L	L	L	Q=d	L	L	L	L	L
demultiplex	L	L	d	н	Н	L	L	L	L	Q=d	L	L	L	L
(active HIGH)														
decoder	L	L	d	L	L	Н	L	L	L	L	Q=d	L	L	L
(when D = H)	L	L	d	н	L	H	L	L	L	L	L	Q=d	L	L
	L	L	d	L	Н	Н	L	L	L	L	L	L	Q=d	
	L	L	d	н	н	Н	L	L	L	L	L	L	L	Q=d
store (do nothing)	Н	н	Х	Х	Х	Х	q 0	q ₁	q ₂	q ₃	q ₄	q 5	q ₆	q ₇
	Н	L	d	L	L	L	Q=d	q ₁	q ₂	q ₃	q ₄	q ₅	q ₆	9 ₇
	Н	L	d	н	L	L	q_0	Q=d	q ₂	q ₃	q ₄	q ₅	q ₆	q ₇
	н	L	d	L	Н	L	q_0	q ₁	Q=d	q ₃	q ₄	q ₅	q ₆	q ₇
	H	L	d	Н	Н	L	q ₀	q ₁	q ₂	Q=d	q ₄	q 5	q ₆	97
addressable latch														
	н	L	d	L	L	Н	q ₀	q ₁	q ₂	q ₃	Q=d	q ₅	q ₆	97
	Н	L	d	н	L	Н	q_0	q ₁	q ₂	q ₃	q ₄	Q=d	q ₆	q ₇
	Н	L	d	L	н	Н	q_0	q ₁	q ₂	q ₃	q ₄	q ₅	Q=d	9 ₇
	Н	L	d	н	н	Н	q_0	q ₁	q ₂	q ₃	q ₄	q ₅	q ₆	Q=d

Notes

1. H = HIGH voltage level


L = LOW voltage level

X = don't care

d = HIGH or LOW data one set-up time prior to the LOW-to-HIGH \overline{LE} transition

q = lower case letters indicate the state of the referenced output established during the last cycle in which it was addressed or cleared

74HC/HCT259

74HC/HCT259

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

				-	T _{amb} (°		TEST CONDITIONS				
	PARAMETER				74HC	UNIT					
SYMBOL			+25				to +85	-40 to +125		V _{CC} (V)	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.			
t _{PHL} / t _{PLH}	propagation delay D to Q _n		58 21 17	185 37 31		230 46 39		280 56 48	ns	2.0 4.5 6.0	Fig.7
t _{PHL} / t _{PLH}	propagation delay A _n to Q _n		58 21 17	185 37 31		230 46 39		280 56 48	ns	2.0 4.5 6.0	Fig.8
t _{PHL} / t _{PLH}	propagation delay LE to Q _n		55 20 16	170 34 29		215 43 37		255 51 43	ns	2.0 4.5 6.0	Fig.6
t _{PHL}	propagation delay MR to Q _n		50 18 14	155 31 26		195 39 33		235 47 40	ns	2.0 4.5 6.0	Fig.9
t _{THL} / t _{TLH}	output transition time		19 7 6	75 15 13		95 19 16		119 22 19	ns	2.0 4.5 6.0	Figs 6 and 7
t _W	LE pulse width HIGH or LOW	70 14 12	17 6 5		90 18 15		105 21 18		ns	2.0 4.5 6.0	Fig.6
t _W	MR pulse width LOW	70 14 12	17 6 5		90 18 15		105 21 18		ns	2.0 4.5 6.0	Fig.9
t _{su}	set-up time D, A _n to LE	80 16 14	19 7 6		100 20 17		120 24 20		ns	2.0 4.5 6.0	Figs 10 and 11
t _h	hold time D to LE	0 0 0	-19 -6 -5		0 0 0		0 0 0		ns	2.0 4.5 6.0	Fig.10
t _h	hold time A _n to LE	2 2 2	-11 -4 -3		2 2 2		2 2 2		ns	2.0 4.5 6.0	Fig.11

74HC/HCT259

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

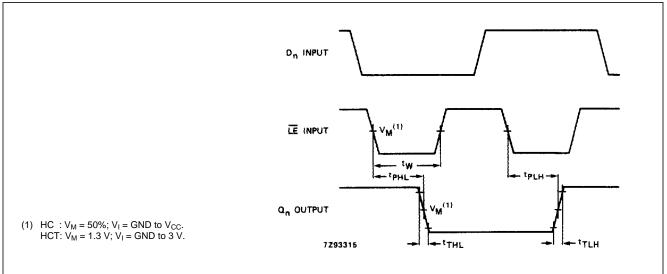
Output capability: standard I_{CC} category: MSI

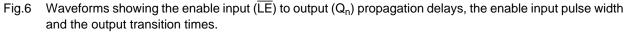
Note to HCT types

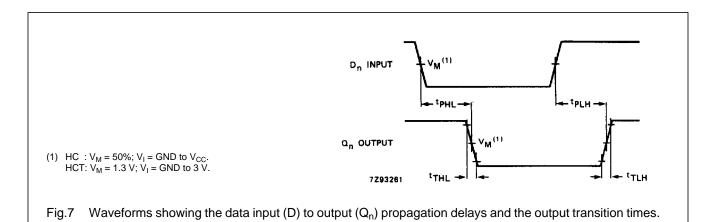
The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

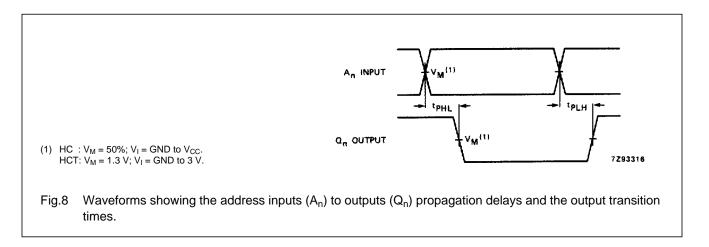
INPUT	UNIT LOAD COEFFICIENT
A _n	1.50
	1.50
D	1.20
MR	0.75

74HC/HCT259

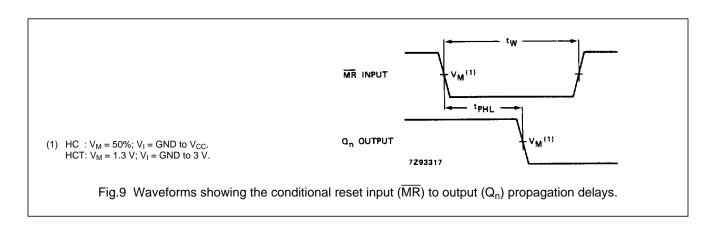

AC CHARACTERISTICS FOR 74HCT

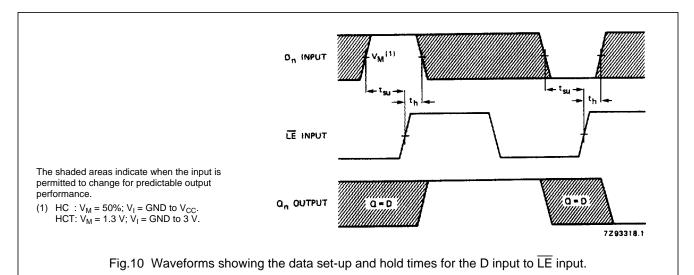

 $GND = 0 \text{ V}; t_r = t_f = 6 \text{ ns}; C_L = 50 \text{ pF}$

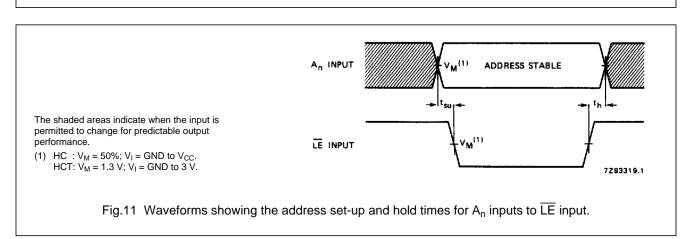

SYMBOL			T _{amb} (°C)								TEST CONDITIONS		
	PARAMETER				UNIT	V _{cc} (V)	WAVEFORMS						
	FARAINETER	+25						-40 TO +85		-40 TO +125			
		min.	typ.	max.	min.	max.	min.	max.					
t _{PHL} / t _{PLH}	propagation delay D to Q _n		23	39		49		59	ns	4.5	Fig.7		
t _{PHL} / t _{PLH}	propagation delay A_n to Q_n		25	41		51		62	ns	4.5	Fig.8		
t _{PHL} / t _{PLH}	propagation delay LE to Q _n		22	38		48		57	ns	4.5	Fig.6		
t _{PHL}	propagation delay MR to Q _n		23	39		49		59	ns	4.5	Fig.9		
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Figs 6 and 7		
t _W	LE pulse width LOW	19	11		24		29		ns	4.5	Fig.6		
t _W	MR pulse width	18	10		23		27		ns	4.5	Fig.9		
t _{su}	set-up time D to LE	17	10		21		26		ns	4.5	Fig.10		
t _{su}	set-up time A _n to LE	17	10		21		26		ns	4.5	Fig.11		
t _h	hold time D to LE	0	-8		0		0		ns	4.5	Fig.10		
t _h	hold time A _n to LE	0	-4		0		0		ns	4.5	Fig.11		


74HC/HCT259

AC WAVEFORMS







74HC/HCT259

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Buffers & Line Drivers category:

Click to view products by NXP manufacturer:

Other Similar products are found below :

5962-9217601MSA 634810D 875140G HEF4022BP HEF4043BP NL17SG125DFT2G NL17SZ126P5T5G NLU1GT126CMUTCG NLU3G16AMX1TCG NLV27WZ125USG MC74HCT365ADTR2G BCM6306KMLG 54FCT240CTDB Le87401NQC Le87402MQC 028192B 042140C 051117G 070519XB 065312DB 091056E 098456D NL17SG07DFT2G NL17SG17DFT2G NL17SG34DFT2G NL17SZ07P5T5G NL17SZ125P5T5G NLU1GT126AMUTCG NLV27WZ16DFT2G 5962-8982101PA 5962-9052201PA 74LVC07ADR2G MC74VHC1G125DFT1G NL17SH17P5T5G NL17SZ125CMUTCG NLV17SZ07DFT2G NLV37WZ17USG NLVHCT244ADTR2G NC7WZ17FHX 74HCT126T14-13 NL17SH125P5T5G NLV14049UBDTR2G NLV37WZ07USG 74VHC541FT(BE) RHFAC244K1 74LVC1G17FW4-7 74LVC1G126FZ4-7 BCM6302KMLG 74LVC1G07FZ4-7 74LVC1G125FW4-7