Carbon Film Resistors

FEATURES

Power Rating	$1 / 6 \mathrm{~W}, \mathrm{I} / 4 \mathrm{~W}, \mathrm{I} / 2 \mathrm{~W}, \mathrm{IW}, 2 \mathrm{~W}, 3 \mathrm{~W}$
Resistance Tolerance	$\pm 2 \%, \pm 5 \%$
T.C.R.	see Table I

DERATING CURVE

For resistors operated in ambient temperatures above $70^{\circ} \mathrm{C}$, power rating must be derated in accordance with the curve below.

Rated Load (\%)
$70 \quad 155^{\circ} \mathrm{C}$

Ambient Temperature $\left({ }^{\circ} \mathrm{C}\right)$

TABLE I TEMPERATURE COEFFICIENT

STYLE	TEMP. COEFFICIENT (ppm/ ${ }^{\circ} \mathrm{C}$)		
	under $100 \mathrm{~K} \Omega$	I00K Ω - IM	IM $-10 \mathrm{M} \Omega$
CFRI00, CFR200, CFR2WS, CFR3WS	-350~350	-500~0	$-1,500 \sim 0$
CFR- 12, CFR-25, CFR-50, CFR25S, CFR50S, CFRIWS	-350~500	-700~0	- 1,500~0

DIMENSIONS

Unit: mm

ELECTRICAL CHARACTERISTICS

STYLE	CFR-12	CFR2	CFR-25	CFR5	CFR-50	CFR	CFRIOO	CFR2WS	CFR200	CFR3WS
Power Rating at $70^{\circ} \mathrm{C}$	$1 / 6 \mathrm{~W}$	1/4W		1/2W		IW		2W		3 W
Maximum Working Voltage	150 V	200V	250 V	300 V	350 V	400 V	500 V			
Maximum Overload Voltage	300 V	400 V	500 V	600 V	700 V	800 V	I,000V			
Voltage Proof on Insulation	300 V	400 V	500 V			700 V	I,000V			
Resistance Range	$1 \Omega-10 M \Omega \& 0 \Omega$ for E24 series value									
Operating Temp. Range	$-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$									
Temperature Coefficient	see Table I									

Note: Special value is available on request

ENVIRONMENTAL CHARACTERISTICS

PERFORMANCE TEST	TEST METHOD		APPRAISE
ShortTime Overload	IEC 60115-14.13	2.5 times RCWV for 5 Sec .	$\pm 0.75 \%+0.05 \Omega$
Voltage Proof on Insulation	IEC 60115-1 4.7	in V-block for 60 Sec., test voltage by type	By type
Temperature Coefficient	IEC 60115-1 4.8	$-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$	By type
Insulation Resistance	IEC 60115-1 4.6	in V-block for 60 Sec.	$>1,000 \mathrm{M} \Omega$
Solderability	IEC 60115-14.17	$235 \pm 5^{\circ} \mathrm{C}$ for $3 \pm 0.5 \mathrm{Sec}$.	95\% Min. coverage
Solvent Resistance of Marking	IEC 60115-I 4.30	IPA for $5 \pm 0.5 \mathrm{Min}$. with ultrasonic	No deterioration of coatings and markings
Robustness ofTerminations	IEC 60115-14.16	Direct load for 10 Sec . in the direction of the terminal leads	$\geq 2.5 \mathrm{~kg}(24.5 \mathrm{~N})$
Periodic-pulse Overload	IEC 60II5-I 4.39	4 times RCWV 10,000 cycles (I Sec. on, 25 Sec. off)	$\pm 1.0 \%+0.05 \Omega$
Damp Heat Steady State	IEC 60II5-I 4.24	$40 \pm 2^{\circ} \mathrm{C}, 90-95 \%$ RH for 56 days, loaded with 0.1 times RCWV	$\pm 3.0 \%+0.05 \Omega$
Endurance at $70^{\circ} \mathrm{C}$	IEC 60115-I 4.25	$70 \pm 2^{\circ} \mathrm{C}$ at RCWV for 1,000 Hr . (1.5 Hr. on, 0.5 Hr . off)	$\pm 3.0 \%+0.05 \Omega$
Temperature Cycling	IEC 60115-1 4.19	$-55^{\circ} \mathrm{C} \Rightarrow$ Room Temp. $\Rightarrow+155^{\circ} \mathrm{C} \Rightarrow$ Room Temp. (5 cycles)	$\pm 1.0 \%+0.05 \Omega$
Resistance to Soldering Heat	IEC 60115-1 4.18	$260 \pm 3^{\circ} \mathrm{C}$ for 10 ± 1 Sec., immersed to a point $3 \pm 0.5 \mathrm{~mm}$ from the body	$\pm 1.0 \%+0.05 \Omega$

Note: RCWV(Rated Continuous Working Voltage) $=\sqrt{\text { Power Rating } \times \text { Resistance Value }}$ or Max. working voltage listed above, whichever less.

EXPLANATIONS OF ORDERING CODE

EXCEPTION:

<Code 8>: Special packing style code
B: Bulk with wirewound or metal oxide sub-assembly for resistance value
W: Bulk with ceramic based wirewound sub-assembly for resistance value
M: Bulk with metal oxide sub-assembly for resistance value
F: Bulk with Fiberglass based wirewound sub-assembly for resistance value
<Code 10-12>: Without forming code
Example: SQP500JB-IOR
<Code |3-|7>: without resistance value code
Example: JPW-06-T-52-

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Carbon Composition Resistors category:
Click to view products by Yageo manufacturer:

Other Similar products are found below :
IBT1/4102JLF OE5655 OG5625 OB1025 OE1855 OG2005 IBT1/4100JLF OF-112JE OH6205 RC0S2CA270RKE OF224KE CF18JT910R RC20GF240J RC20GF561J RC07GF361J RC1/4435JB RC1/4135JB RC1/4201JTD RC1/2331KTD RC20GF470JTRLF RC1/2155KTD RC1/4274KTD RC1/47R5JB RC1/4565JB RC1/4160JB RC1/2475KTB RC1/2471JTD RC1/2431JTD RC1/2334KB RC1/2225KB RC1/2166KTD RC1/2103KTD RC1/2102JTD RC1/2434JB RC1/22R4JB RC1/2165JB RC07GF510JTR RCC025 2R7JB CFR0W4J0242A10 CFR0W4J0391A50 CFR0W4J0303A50 CFR0W4J0433A50 CFR03SJ0753AA0 CFR03SJ0470AA0 CF1/6W-20K $\pm 5 \%$ $\underline{T 52} \underline{\text { CF1/4W-43 } \pm 5 \% ~ T 52 ~ C F R 01 S J 0433 A 10 ~ R D 50 T 5151 J ~ R D ~ 1 / 8 W ~ 33 K ~ J ~ T / B ~ A 1 ~ R D ~ 2 W S ~ 3 K 6 ~ J ~ T / B ~ A 1 ~}$

