DATA SHEET

 MiRAM GHIP RiESISTOISYC/TC
5\%, |\%
sizes
YC: $102 / 104 / 122 / \mid 24 / 162 / 164 / 248 / 324 / 158 / 358$
TC: I22/I 24/I64
RoHS compliant

YAC=O
Phicomp

SCOPE

This specification describes YC (convex) and TC (concave) series chip resistor arrays with lead-free terminations made by thick film process.

APPLICATIONS

- Terminal for SDRAM and DDRAM
- Computer applications: laptop computer, desktop computer
- Consume electronic equipments: PDAs, PNDs
- Mobile phone, telecom...

FEATURES

- More efficient in pick \& place application
- Low assembly costs
- RoHS compliant
- Products with lead free terminations meet RoHS requirements
- Pb-glass contained in electrodes
- Resistor element and glass are exempted by RoHS
- Reducing environmentally hazardous wastes
- High component and equipment reliability
- Saving of PCB space
- None forbidden-materials used in products/production

ORDERJNG INFORMATION - GLOBAL PART NUMBER \& I2NC

Both part numbers are identified by the series, size, tolerance, packing type, temperature coefficient, taping reel and resistance value.

YAGEO BRAND ordering code

GLOBAL PART NUMBER (PREFERRED)

(I) SIZE

YC: $102 / 104 /|22 /| 24 / 162 / 164 / 248 / 324 / 158 / 358$
TC: I22/I24/I64
(2) TOLERANCE
$F= \pm 1 \% \quad J= \pm 5 \% \quad$ (for Jumper ordering, use code of J)
(3) PACKAGING TYPE
$R=$ Paper taping reel $\quad K=$ Embossed plastic tape reel
(4) TEMPERATURE COEFFICIENT OF RESISTANCE

- = Base on spec
(5) TAPING REEL
$07=7$ inch dia. Reel
$13=13$ inch dia. Reel
(6) RESISTANCE VALUE

There are 2~4 digits indicated the resistor value. Letter $R / K / M$ is decimal point.
Detailed resistance rules show in table of "Resistance rule of global part number".
(7) DEFAULT CODE

Letter L is the system default code for ordering only. (Note)

Resistance rule of number Resistance code rule	obal part Example
OR	OR = jumper
$\begin{aligned} & \text { XRXX } \\ & \text { (I to } 9.76 \Omega \text {) } \end{aligned}$	$\begin{array}{r} 1 \mathrm{R}=1 \Omega \\ 1 \mathrm{R} 5=1.5 \Omega \\ 9 \mathrm{R} 76=9.76 \Omega \end{array}$
$\begin{aligned} & \text { XXRX } \\ & (10 \text { to } 97.6 \Omega) \end{aligned}$	$\begin{array}{r} 10 R=10 \Omega \\ 97 R 6=97.6 \Omega \end{array}$
$\begin{aligned} & \text { XXXR } \\ & (100 \text { to } 976 \Omega) \end{aligned}$	$100 \mathrm{R}=100 \Omega$
$\begin{aligned} & X K X X \\ & \text { (I to } 9.76 \mathrm{~K} \Omega \text {) } \end{aligned}$	$\begin{array}{r} 1 \mathrm{~K}=1,000 \Omega \\ 9 \mathrm{~K} 76=9760 \Omega \end{array}$
$\begin{aligned} & X M \\ & (I M \Omega) \end{aligned}$	$1 M=1,000,000 \Omega$

Ordering example

The ordering code of a YCI 22 convex chip resistor array, value $\mathrm{I}, 000 \Omega$ with $\pm 5 \%$ tolerance, supplied in 7 -inch tape reel is: YCI22-JR-07IKL.

NOTE

I. All our RSMD products meet RoHS compliant. "LFP" of the internal 2D reel label mentions "Lead Free Process"
2. On customized label, "LFP" or specific symbol printed and the optional "L" at the end of GLOBAL PART NUMBER / I2NC can be added (both are on customer request)

PHYCOMP BRAND ordering codes

Both GLOBAL PART NUMBER (preferred) and I2NC (traditional) codes are acceptable to order Phycomp brand products.

GLOBAL PART NUMBER (PREFERRED)

For detailed information of GLOBAL PART NUMBER and ordering example, please refer to page 2.
TCI 22 series is supplied and ordered by global part number only.

I 2NC CODE

$\mathbf{2 3 5 0}$	$\underset{\text { (1) }}{\mathbf{2 3}}$	$\left.\begin{array}{ll}\text { (3) } & \text { (4) }\end{array}\right)$

$\begin{aligned} & \text { TYPE/ } \\ & 2 \times 0402 \end{aligned}$	$\begin{aligned} & \text { START } \\ & \text { IN }^{(1)} \end{aligned}$	TOL. (\%)	RESISTANCE RANGE	PAPER / PE TAPE ON REEL (units) ${ }^{(2)}$	
				10,000	50,000
ARV32I	2350	$\pm 5 \%$	1 to $1 \mathrm{M} \Omega$	$01311 \times x \times$	$01312 x x x$
ARV322	2350	$\pm 1 \%$	10 to $1 \mathrm{M} \Omega$	$0132 x \times x x$	$0133 x \times x x$
Jumper	2350	-	0Ω	01391001	

(I) The resistors have a 12 -digit ordering code starting with 2350.
(2) The subsequent 4 or 5 digits indicate the resistor tolerance and packaging.
(3) The remaining 4 or 3 digits represent the resistance value with the last digit indicating the multiplier as shown in the table of "Last digit of I2NC".
(4) "L" is optional symbol (Note).

Ordering example

The ordering code of a ARV32I resistor, value $1,000 \Omega$ with $\pm 5 \%$ tolerance, supplied in tape of 10,000 units per reel is: $235001311102(\mathrm{~L})$ or YCI22-JR-07IKL.

NOTE

I. All our RSMD products are RoHS compliant. "LFP" of the internal 2D reel label mentions "Lead Free Process"
2. On customized label, "LFP" or specific symbol printed and the optional "L" at the end of GLOBAL PART NUMBER / I2NC can be added (both are on customer request)

MARKING
YCIO2/I22

No marking
Fig. 1
YCIO4

Fig. 2
YCI24/164/324

\square
 I-Digit marking

Fig. 3 Jumper=0 Ω
E-24 series: 3 digits
First two digits for significant figure and 3rd digit for number of zeros

Fig. 3-I Value $=240 \mathrm{~K} \Omega$

YC248

	I-Digit marking
Fig. 4 Jumper $=0 \Omega$	
E-24 series: 3 digits Fig. 4-I Value $=240 \mathrm{~K} \Omega$ First two digits for significant figure and 3rd digit for number of zeros	

YCI58/358

	E-24 series: 3 digits First two digits for significant figure and 3rd digit for number of zeros
Fig. 5 Value $=24 \mathrm{~K} \Omega$	
Fig. 5-1 22	Value $=240 \mathrm{~K} \Omega$

Fig. 6
TCI24

No marking
Fig. 7
No marking
, mang

TCI64

I-Digit marking
Fig. 8 Jumper $=0 \Omega$

$\mathrm{E}-24$ series: 3 digits

First two digits for significant figure and 3rd digit for number of zeros
Fig. 8 - Value $=240 \mathrm{~K} \Omega$
For further marking information, please refer to data sheet "Chip resistors marking".

CONSTRUCTION

The resistor is constructed on top of a high-grade ceramic body. Internal metal electrodes are added on each end to make the contacts to the thick film resistive element. The composition of the resistive element is a noble metal imbedded into a glass and covered by a second glass to prevent environment influences. The resistor is laser trimmed to the rated resistance value. The resistor is covered with a protective epoxy

OUTLINES

 coat, finally the two external terminations (matte tin on Nibarrier) are added as shown in Fig.9.

For dimension, please refer to Figble and Table I

Fig. 10 YC/TCI 22 series chip resistors dimension Note: I. YCl 04 is flat type

D]MENSIONS

Table I

TYPE	$\mathrm{H} / \mathrm{H}_{1}$	B	P	L	T	WI	W2
YCIO2	$\mathrm{H}: 0.35 \pm 0.10$	0.20 ± 0.10	0.50 ± 0.05	0.80 ± 0.10	0.35 ± 0.10	0.15 ± 0.10	0.60 ± 0.10
YCIO4	H: 0.20 ± 0.10	0.15 ± 0.05	0.40 ± 0.10	1.40 ± 0.10	0.35 ± 0.10	0.15 ± 0.10	0.60 ± 0.10
YCI22	H: $0.21+0.10 /-0.05$	0.20 ± 0.10	0.67 ± 0.05	1.00 ± 0.10	0.30 ± 0.10	0.25 ± 0.10	1.00 ± 0.10
YCI24	$\begin{aligned} & H: 0.45 \pm 0.05 \\ & H_{1}: 0.30 \pm 0.05 \end{aligned}$	0.20 ± 0.15	0.50 ± 0.05	2.00 ± 0.10	0.45 ± 0.10	0.30 ± 0.15	1.00 ± 0.10
YCI62	H: 0.30 ± 0.10	0.30 ± 0.10	0.80 ± 0.05	1.60 ± 0.10	0.40 ± 0.10	0.30 ± 0.10	1.60 ± 0.10
YCI64	$\begin{aligned} & H: 0.65 \pm 0.05 \\ & H_{1}: 0.50 \pm 0.15 \end{aligned}$	0.30 ± 0.15	0.80 ± 0.05	3.20 ± 0.15	0.60 ± 0.10	0.30 ± 0.15	1.60 ± 0.15
YC248	$\begin{aligned} & H: 0.45 \pm 0.05 \\ & H_{1}: 0.30 \pm 0.05 \end{aligned}$	0.30 ± 0.15	0.50 ± 0.05	4.00 ± 0.20	0.45 ± 0.10	0.40 ± 0.15	1.60 ± 0.15
YC324	$\begin{aligned} & H: I .10 \pm 0.15 \\ & H_{1}: 0.90 \pm 0.15 \end{aligned}$	0.50 ± 0.20	1.27 ± 0.05	5.08 ± 0.20	0.60 ± 0.10	0.50 ± 0.15	3.20 ± 0.20
TCI22	$\mathrm{H}: 0.30 \pm 0.05$	0.25 ± 0.15	0.50 ± 0.05	1.00 ± 0.10	0.30 ± 0.10	0.25 ± 0.15	1.00 ± 0.10
TCI24	$H: 0.30 \pm 0.10$	0.20 ± 0.10	0.50 ± 0.05	2.00 ± 0.10	0.40 ± 0.10	0.25 ± 0.10	1.00 ± 0.10
TCI64	$\mathrm{H}: 0.60 \pm 0.15$	0.30 ± 0.15	0.80 ± 0.05	3.20 ± 0.15	0.60 ± 0.10	0.30 ± 0.15	1.60 ± 0.15
YCI58	H: 0.45 ± 0.05	0.30 ± 0.15	0.64 ± 0.05	3.20 ± 0.20	0.60 ± 0.10	0.35 ± 0.15	1.60 ± 0.15
YC358	$\begin{aligned} & H: \quad 1.10 \pm 0.15 \\ & H I: 0.90 \pm 0.15 \end{aligned}$	0.50 ± 0.15	1.27 ± 0.05	6.40 ± 0.20	0.60 ± 0.10	0.50 ± 0.15	3.20 ± 0.20

ELEGTRICAL CHARACTERISTJCS

Table 2

TYPE	POWER P_{70}	OPERATING TEMP. RANGE	MWV	RCOV	DWV	RESISTANCE RANGE \& TOLERANCE	T. C. R.	Jumper cri (uni	teria : A)
YCIO2	I/32W	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	15 V	30V	30V	E24 $\pm 5 \% \quad 10 \Omega \leq R \leq 1 \mathrm{M} \Omega$ E24/E96 $\pm 1 \% \quad 10 \Omega \leq R \leq 1 \mathrm{M} \Omega$ Jumper $<0.05 \Omega$	$\pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	Rated current Max. current	0.5 1.0
YCIO4	I/32W	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	12.5 V	25 V	25 V	$\begin{array}{ll} \text { E24 } \pm 5 \% & \quad 10 \Omega \leq R \leq 1 M \Omega \\ \text { E24/E96 } \pm 1 \% & \quad 0 \Omega \leq R \leq 1 M \Omega \\ \text { Jumper }<0.05 \Omega \end{array}$		Rated current Max. current	0.5 1.0
YCI22	1/16W	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	50V	I00V	I 00 V	E24 $\pm 5 \% \quad \mid \Omega \leq R \leq I M \Omega$ E24/E96 $\pm 1 \% \quad \mid \Omega \leq R \leq I M \Omega$ Jumper $<0.05 \Omega$		Rated current Max. current	0.5 1.0
YCI24	I/I6W	$-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$	25V	50V	100V	$\begin{gathered} \text { E24 } \pm 5 \% \quad \mid \Omega \leq R \leq I M \Omega \\ \text { E24/E96 } \pm 1 \% \quad \mid \Omega \leq R \leq I M \Omega \\ \text { Jumper }<0.05 \Omega \end{gathered}$	$\begin{array}{r} 1 \Omega \leq R \leq 10 \Omega \\ \pm 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 10 \Omega \leq R \leq 1 \mathrm{M} \Omega \\ \pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{array}$	Rated current Max. current	1.0 2.0
YCI62	I/I6W	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	50V	I 00 V	I OOV	$\begin{array}{cl} \mathrm{E} 24 \pm 5 \% & \quad \Omega \leq \mathrm{R} \leq \mathrm{IM} \Omega \\ \mathrm{E} / 24 / \mathrm{E} 96 \pm 1 \% & \mathrm{I} \Omega \leq \mathrm{R} \leq \mathrm{IM} \Omega \\ \text { Jumper }<0.05 \Omega \end{array}$		Rated current Max. current	1.0 2.0
YCI64	1/16W	$-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$	50V	I 00 V	I OOV	E24 $\pm 5 \%$ $\quad \mid \Omega \leq R \leq I M \Omega$ E24/E96 $\pm 1 \%$ $\mid \Omega \leq R \leq I M \Omega$ Jumper $<0.05 \Omega$	$\pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	Rated current Max. current	1.0 2.0
YC248	1/16W	$-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$	50V	I00V	I00V	$\begin{aligned} & \text { E24 } \pm 5 \% \quad 10 \Omega \leq R \leq 1 M \Omega \\ & \text { E24/E96 } \pm 1 \% \quad 10 \Omega \leq R \leq 1 M \Omega \\ & \text { Jumper }<0.05 \Omega \end{aligned}$		Rated current Max. current	$\begin{array}{r} 2.0 \\ 10.0 \end{array}$
YC324	1/8W	$-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$	200V	500 V	500 V	$\begin{array}{rl} \text { E24 } \pm 5 \% & 10 \Omega \leq R \leq I M \Omega \\ \text { E24/E96 } \pm 1 \% & 10 \Omega \leq R \leq I M \Omega \end{array}$		---	---
TCl22	1/16W	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	50V	I 00 V	I 00 V	E24 $\pm 5 \% \quad 10 \Omega \leq R \leq 1 M \Omega$ E24/E96 $\pm 1 \% \quad 10 \Omega \leq R \leq 1 \mathrm{M} \Omega$ Jumper $<0.05 \Omega$		Rated current Max. current	1.0 1.5
TCI24	1/16W	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	50V	I00V	I 00 V	E24 $\pm 5 \%$ $10 \Omega \leq R \leq I M \Omega$ E24/E96 $\pm 1 \%$ $10 \Omega \leq R \leq 1 \mathrm{M} \Omega$ Jumper $<0.05 \Omega$		Rated current Max. current	1.0 1.5
TCI64	1/16W	$-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$	50V	I00V	I OOV	E24 $\pm 5 \%$ $10 \Omega \leq R \leq 1 \mathrm{M} \Omega$ E24/E96 $\pm 1 \%$ $\quad 10 \Omega \leq R \leq 1 \mathrm{M} \Omega$ Jumper $<0.05 \Omega$		Rated current Max. current	1.0 2.0
YCI58	1/16W	$-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$	25V	50V	50V	$\begin{array}{ll} \mathrm{E} 24 \pm 5 \% & \mathrm{I} 0 \Omega \leq \mathrm{R} \leq \\ & \mathrm{I} 00 \mathrm{~K} \Omega \end{array}$		---	---
YC358	1/16W	$-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$	50V	I 00 V	I OOV	$\begin{array}{ll} & 10 \Omega \leq R \leq \\ \mathrm{E} 24 \pm 5 \% & 10 \Omega \mathrm{R} \leq \\ 330 \mathrm{~K} \Omega \end{array}$		---	---

POOTPRINT AND SOLDRRNA PROFLESS

For recommended footprint and soldering profiles, please refer to data sheet "Chip resistors mounting".

PACKING STYLE AND PACKAGJNG QUANTJTY

Table 3 Packing style and packaging quantity

PACKING STYLE	PACKING STYLE	$\begin{array}{r} \text { YC102 } \\ \hline 104 \\ \hline \end{array}$	YC/TC 122	YC/TC 124	YC162	YC/TC 164	YC248	YC324	YC158	YC358
Paper taping reel (R)	7" (178mm)	10,000	10,000	10,000	5,000	5,000	5,000	---	5,000	---
	$13^{\prime \prime}(254 \mathrm{~mm})$	---	50,000	40,000	---	20,000	---	---	20,000	---
Embossed taping reel (K)	7" (178mm)	---	---	---	---	---	4,000	4,000	---	4,000

NOTE

I. For tape and reel specification/dimensions, please refer to data sheet "Chip resistors packing".

Nov. 14, 2014 V.

FUNCTIONAL DESCRIPTJON

OPERATING TEMPERATURE RANGE

YCI02/I04/I22/I62, TCI22/I24 Range:
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (Fig.I2)
YCI24/I64/248/324/I58/358, TCI64 Range:
$-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$ (Fig. 13)

POWER RATING

Each type rated power at $70^{\circ} \mathrm{C}$
YCIO2/I04 $=1 / 32 \mathrm{~W}$
YCI22/I24/I62/I64/248/I58/358 $=1 / 16 \mathrm{~W}$
YC324 = $1 / 8 \mathrm{~W}$
TCI22/I24/I64 = I/I6 W

RATED VOLTAGE

The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:

$$
V=\sqrt{(P \times R)}
$$

or max. working voltage whichever is less

Where

$V=$ Continuous rated DC or AC (rms) working voltage (V)
$\mathrm{P}=$ Rated power (W)
$R=$ Resistance value (Ω)

Fig. 12 Maximum dissipation (P) in percentage of rated power as a function of the operating ambient temperature ($\mathrm{T}_{\mathrm{amb}}$)

Fig. I3 Maximum dissipation (P) in percentage of rated power as a function of the operating ambient temperature ($\mathrm{T}_{\mathrm{amb}}$)

TESTS AND REQUUREMENTS

Table 4 Test condition, procedure and requirements

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Life/	MIL-STD-202G-method 108 A	1,000 hours at $70 \pm 5{ }^{\circ} \mathrm{C}$ applied RCW	$\pm(2 \%+0.05 \Omega)$
Operational Life/	IEC 60II5-I 4.25 .1	1.5 hours on, 0.5 hour off, still air required	$<100 \mathrm{~m} \Omega$ for Jumper
Endurance	IIS $5202-7.10$		

JIS C 5202-7.IO

High Temperature	MIL-STD-202G-method I08A	$I, 000$ hours at maximum operating	$\pm(1 \%+0.05 \Omega)$
Exposure/	IEC 60II5-I 4.25.3	temperature depending on specification,	$<50 \mathrm{~m} \Omega$ for Jumper
Endurance at	JIS C 5202-7.II	unpowered	
Upper Category		No direct impingement of forced air to the	
Temperature		parts	
	Tolerances: $125 \pm 3^{\circ} \mathrm{C}$		

Moisture	MIL-STD-202G-method I06F	Each temperature / humidity cycle is defined at	$\pm(2 \%+0.05 \Omega)$
Resistance	IEC 60II5-I 4.24.2	8 hours (method I06F), 3 cycles / 24 hours for IOd with $25{ }^{\circ} \mathrm{C} / 65^{\circ} \mathrm{C} 95 \%$ R.H, without steps 7a \& 7b, unpowered	< $100 \mathrm{~m} \Omega$ for Jumper
		Parts mounted on test-boards, without condensation on parts	
		Measurement at 24 ± 2 hours after test conclusion	

Thermal Shock MIL-STD-202G-method IO7G	$-55 /+125^{\circ} \mathrm{C}$	$\pm(1 \%+0.05 \Omega)$
	Note: Number of cycles required is 300.	$<50 \mathrm{~m} \Omega$ for Jumper
	Devices unmounted	
	Maximum transfer time is 20 seconds. Dwell	
	time is 15 minutes. Air - Air	

Short Time Overload	MIL-R-55342D-para 4.7.5 IEC60II5-I 4.13	2.5 times RCW or maximum overload voltage whichever is less for 5 sec at room temperature	$\pm(2 \%+0.05 \Omega)$ $<50 \mathrm{~m} \Omega$ for Jumper No visible damage
Board Flex/ Bending	IEC60II 5 -I 4.33	Device mounted on PCB test board as described, only I board bending required 3 mm bending Bending time: 60 ± 5 seconds Ohmic value checked during bending	$\pm(\mid \%+0.05 \Omega)$ $<50 \mathrm{~m} \Omega$ for Jumper No visible damage

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Solderability			
- Wetting	IPC/JEDECJ-STD-002B test B	Electrical Test not required	Well tinned ($\geq 95 \%$ covered) No visible damage
	IEC 60068-2-58	Magnification 50X	
		SMD conditions:	
		$\left.\right\|^{\text {st }}$ step: method B , aging 4 hours at $155^{\circ} \mathrm{C}$ dry heat	
		$2^{\text {nd }}$ step: leadfree solder bath at $245 \pm 3^{\circ} \mathrm{C}$	
		Dipping time: 3 ± 0.5 seconds	
- Leaching	IPC/JEDECJ-STD-002B test D	Leadfree solder, $260^{\circ} \mathrm{C}, 30$ seconds immersion time	No visible damage
	IEC 60068-2-58		
- Resistance to Soldering Heat	MIL-STD-202G-method 210F	Condition B, no pre-heat of samples	$\pm(1 \%+0.05 \Omega)$
	IEC 60068-2-58	Leadfree solder, $270^{\circ} \mathrm{C}, 10$ seconds immersion time	$<50 \mathrm{~m} \Omega$ for Jumper
			No visible damage
		Procedure 2 for SMD: devices fluxed and cleaned with isopropanol	

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Resistor Networks \& Arrays category:
Click to view products by Yageo manufacturer:
Other Similar products are found below :
CS6600552K000B8768 CSC08A01470KGEK M8340105K1002FGD03 M8340106MA010FHD03 M8340107K1471FGD03
M8340108K1001FCD03 M8340108K2402GGD03 M8340108K3242FGD03 M8340108K3322FCD03 M8340108K6192FGD03
M8340108K6202GGD03 M8340109K2002FCD03 M8340109M4701GCD03 EXB-24N121JX EXB-24N470JX EXB-A10E102J EXB-
A10E104J 744C083101JTR MDP1603100KGE04 PRA100I2-1KBWNW GUS-SS4-BLF-01-1002-G ACAS06S0830339P100
ACAS06S0830343P100 ACAS06S0830344P100 RM2012A-102/104-PBVW10 RM2012A-102503-PBVW10 RM3216B-102302-PBVW10
L091S102LF ACAS06S0830341P100 ACAS06S0830342P100 ACAS06S0830345P100 EXB-14V300JX EXB-U18330JX EXB-V8V220GV
PRA100I2-10KBWN PRA100I4-10KBWN M8340102M4701JAD04 M8340105K1002GGD03 M8340105M1001JCD03
M8340107K3402FCD03 M8340108K1000FGD03 M8340108K1000GGD03 M8340108K1002GGD03 M8340108K2001FCD03
M8340108K2002FCD03 M8340108K3901GGD03 M8340108K4122FGD03 M8340108K4992FGD03 M8340109K2002GCD03
M8340109K2202GCD03

