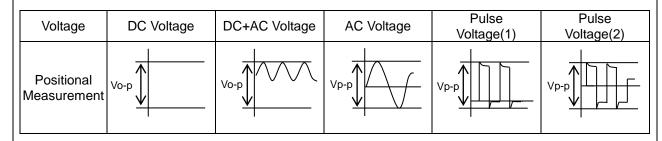
muRata

Reference Specification

Type RA Safety Standard Certified Lead Type Disc Ceramic Capacitors for General Purpose


Product specifications in this catalog are as of Oct. 2018 and are subject to change or obsolescence without notice.

Please consult the approval sheet before ordering. Please read rating and Cautions first.

1. OPERATING VOLTAGE

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range. When the voltage is started to apply to the circuit or it is stopped applying, the irregular voltage may be generated for a transit period because of resonance or switching. Be sure to use a capacitor within rated voltage containing these irregular voltage.

2. OPERATING TEMPERATURE AND SELF-GENERATED HEAT

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself.

When the capacitor is used in a high-frequency current, pulse current or the like, it may have the selfgenerated heat due to dielectric-loss. Applied voltage should be the load such as self-generated heat is within 20 °C on the condition of atmosphere temperature 25 °C. When measuring, use a thermocouple of small thermal capacity-K of ϕ 0.1mm and be in the condition where capacitor is not affected by radiant heat of other components and wind of surroundings. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability.(Never attempt to perform measurement with the cooling fan running. Otherwise, accurate measurement cannot be ensured.)

3. TEST CONDITION FOR WITHSTANDING VOLTAGE

(1) TEST EQUIPMENT

Test equipment for AC withstanding voltage should be used with the performance of the wave similar to 50/60 Hz sine wave.

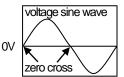
If the distorted sine wave or over load exceeding the specified voltage value is applied, the defective may be caused.

(2) VOLTAGE APPLIED METHOD

When the withstanding voltage is applied, capacitor's lead or terminal should be firmly connected to the out-put of the withstanding voltage test equipment, and then the voltage should be raised from near zero to the test voltage.

If the test voltage without the raise from near zero voltage would be applied directly to capacitor, test voltage should be applied with the *zero cross. At the end of the test time, the test voltage should be reduced to near zero, and then capacitor's lead or terminal should be taken off the out-put of the withstanding voltage test equipment.

If the test voltage without the raise from near zero voltage would be applied directly to capacitor, the surge voltage may arise, and therefore, the defective may be caused.


*ZERO CROSS is the point where voltage sine wave pass 0V. - See the right figure -

4. FAIL-SAFE

When capacitor would be broken, failure may result in a short circuit. Be sure to provide an appropriate fail-safe function like a fuse on your product if failure would follow an electric shock, fire or fume.

5. VIBRATION AND IMPACT

Do not expose a capacitor or its leads to excessive shock or vibration during use.

6. SOLDERING

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

When soldering capacitor with a soldering iron, it should be performed in following conditions.

Temperature of iron-tip : 400 °C max.

Soldering iron wattage : 50W max.

Soldering time : 3.5s max.

7. BONDING, RESIN MOLDING AND COATING

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of capacitor by testing the performance of the bonded, molded or coated product in the intended equipment.

In case of the amount of applications, dryness / hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive, molding resin or coating may cause a outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

8. TREATMENT AFTER BONDING, RESIN MOLDING AND COATING

When the outer coating is hot (over 100 $^{\circ}$ C) after soldering, it becomes soft and fragile. So please be careful not to give it mechanical stress.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

9. OPERATING AND STORAGE ENVIRONMENT

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed -10 to 40 °C and 15 to 85%.

Use capacitors within 6 months after delivered. Check the solderability after 6 months or more.

10. LIMITATION OF APPLICATIONS

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

- 1. Aircraft equipment
- 2. Aerospace equipment
- 3. Undersea equipment
- 4. Power plant control equipment
- 5. Medical equipment
- 6. Transportation equipment (vehicles, trains, ships, etc.)
- 7. Traffic signal equipment
- 8. Disaster prevention / crime prevention equipment
- 9. Data-processing equipment exerting influence on public
- 10. Application of similar complexity and/or reliability requirements to the applications listed in the above.

NOTICE

1. CLEANING (ULTRASONIC CLEANING)

To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity : Output of 20 watts per liter or less.

Rinsing time : 5 min maximum.

Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

2. CAPACITANCE CHANGE OF CAPACITORS

· Class 1 capacitors

Capacitance might change a little depending on a surrounding temperature or an applied voltage. Please contact us if you use for the strict time constant circuit.

· Class 2 and 3 capacitors

Class 2 and 3 capacitors like temperature characteristic B, E and F have an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor leaves for a long time. Moreover, capacitance might change greatly depending on a surrounding temperature or an applied voltage. So, it is not likely to be able to use for the time constant circuit. Please contact us if you need a detail information.

3. PERFORMANCE CHECK BY EQUIPMENT

Before using a capacitor, check that there is no problem in the equipment's performance and the specifications.

Generally speaking, CLASS 2 ceramic capacitors have voltage dependence characteristics and temperature dependence characteristics in capacitance. So, the capacitance value may change depending on the operating condition in a equipment. Therefore, be sure to confirm the apparatus performance of receiving influence in a capacitance value change of a capacitor, such as leakage current and noise suppression characteristic.

Moreover, check the surge-proof ability of a capacitor in the equipment, if needed, because the surge voltage may exceed specific value by the inductance of the circuit.

1.Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.

2. You are requested not to use our product deviating from this specification.

1. Application

This specification is applied to Safety Standard Certified Lead Type Disc Ceramic Capacitors Type RA used for General Electric equipment.

Type RA is Safety Standard Certified disc ceramic capacitor of Class X1,Y1.

Do not use these products in any automotive power train or safety equipment including battery chargers for electric vehicles and plug-in hybrids.

Approval standard and certified number

	Standard number	*Certified number	AC Rated volt. V(r.m.s.)
UL	UL60384-14	E37921	
ENEC (VDE)	EN60384-14	40043033	X1:500 Y1:500
CQC	IEC60384-14	CQC16001138225	

*Above Certified number may be changed on account of the revision of standards and the renewal of certification.

2. Rating

2-1. Operating temperature range	-40 ~ +125°C
2-2. Rated Voltage	X1:AC500V(r.m.s.) Y1:AC500V(r.m.s.)
	DC1.5kV

2-3. Part number configuration

ex.) <u>DE1</u>	<u>B3</u>	RA	471	K	A4	В	Q01F
	Temperature characteristic		Capacitance	Capacitance tolerance		0	Individual specification

Product code
 DE1 denotes X1,Y1 class .

• Temperature characteristic

Code	Temperature characteristic
1X	SL
B3	В
E3	E

Please confirm detailed specification on [Specification and test methods].

• Type name

This denotes safety certified type name Type RA.

Capacitance

The first two digits denote significant figures ; the last digit denotes the multiplier of 10 in pF. ex.) In case of 471.

$$47 \times 10^1 = 470 \text{pF}$$

• Capacitance tolerance Please refer to [Part number list].

Lead code

Code Lead style						
A*	A* Vertical crimp long type					
J*	Vertical crimp short type					
N* Vertical crimp taping type						
* Place rof	or to [Part number list]					

* Please refer to [Part number list]

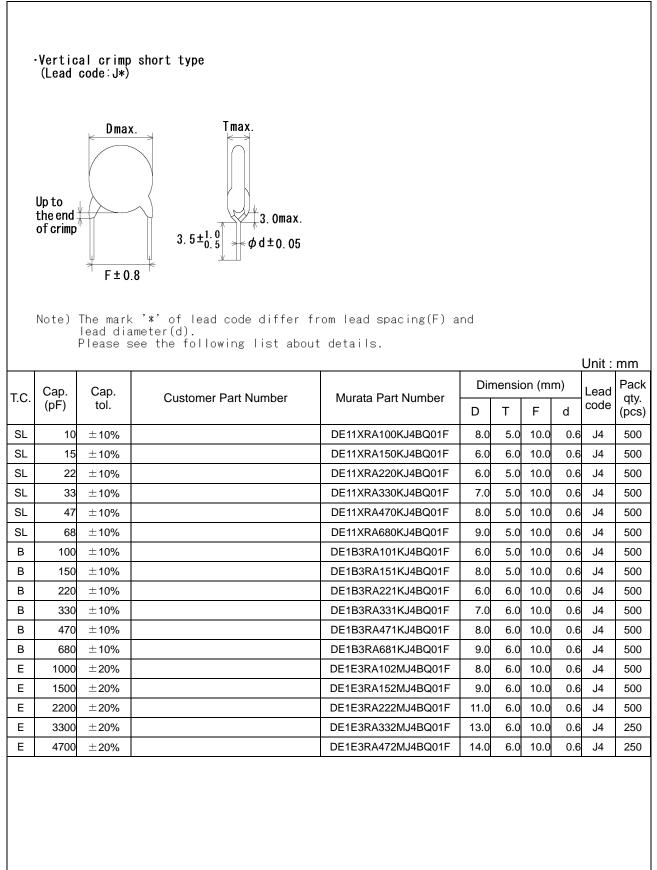
• Packing style code

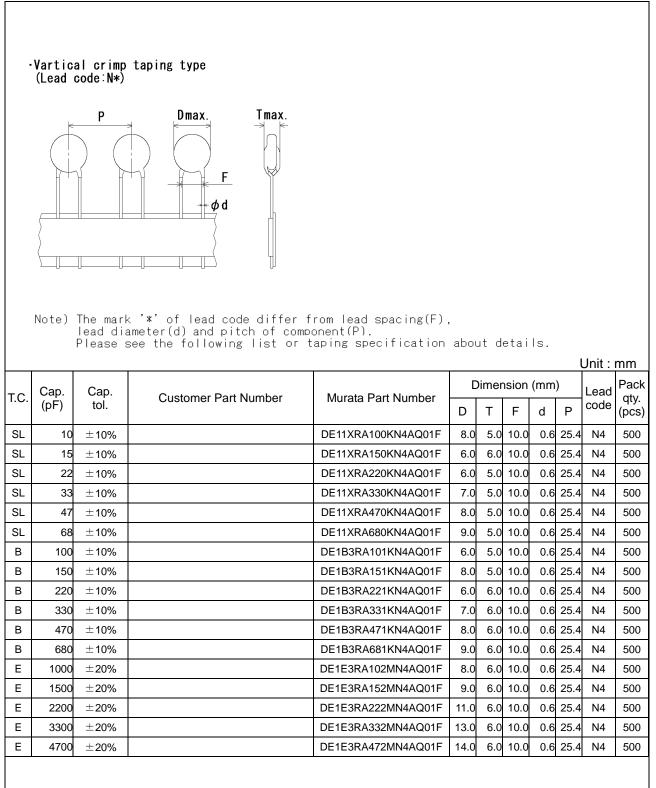
 g otylo oodo	
Code	Packing type
В	Bulk type
A	Ammo pack taping type

• Individual specification

In case part number cannot be identified without 'individual specification', it is added at the end of part number.

shu or part number.	
Code	Specification
Q01F	 Rated voltage : X1:AC500V(r.m.s.) Y1:AC500V(r.m.s.) DC1.5kV Halogen free (Br ≤ 900ppm, Cl ≤ 900ppm Br + Cl ≤ 1500ppm) CP wire

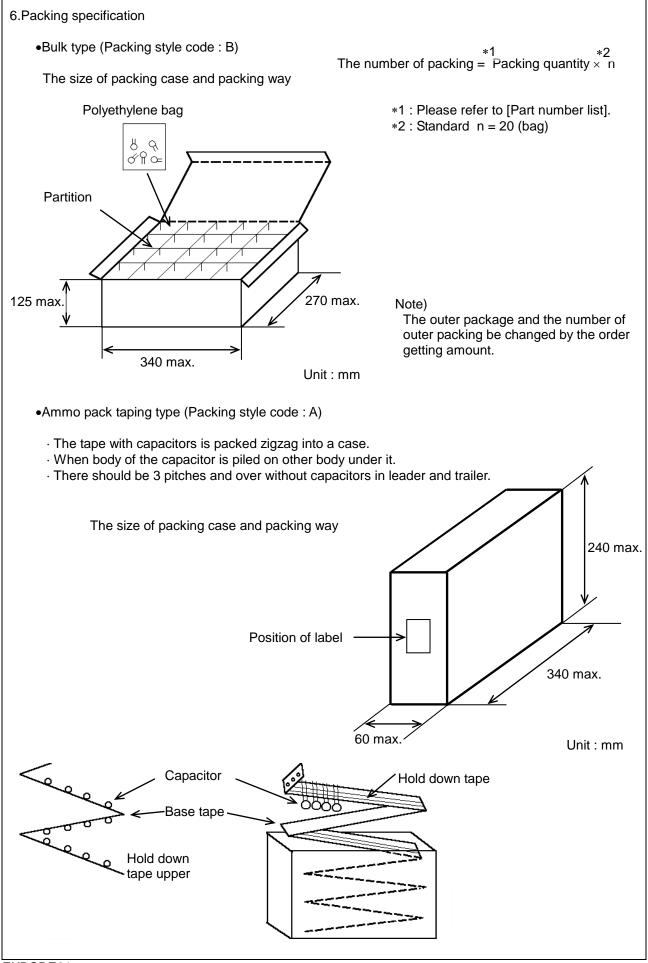

Note) Murata part numbers might be changed depending on lead code or any other changes. Therefore, please specify only the type name(RA) and capacitance of products in the parts list when it is required for applying safety standard of electric equipment.

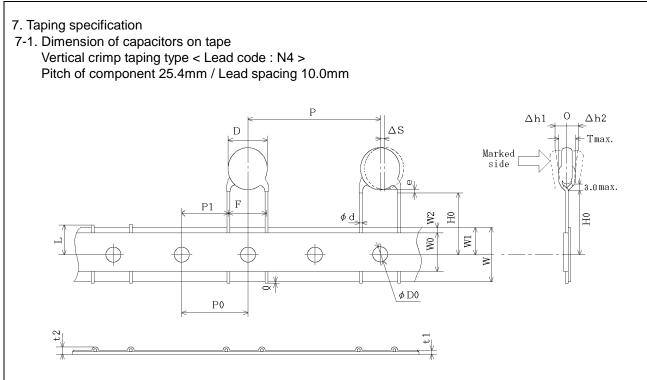

3. Marking

Type name	: RA	
Nominal capacitance	: Actual value(under 100pF)	
	3 digit system(100pF and over)	
Capacitance tolerance	: Code	
Class code and Rated voltage ma	ark : X1 500~	
5	Y1 500~	
Manufacturing year	: Letter code(The last digit of A.D. year.)	
Manufacturing month	: Code	
-	(Feb./Mar. $\rightarrow 2$ Aug./Sep. $\rightarrow 8$	٦
	Apr./May $\rightarrow 4$ Oct./Nov. $\rightarrow 0$	
		J
Company name code	: CM15 (Made in Thailand)	
	(Example)	
	│ RA 471K	

X1 500~ Y1 500~ 5D @15 ſ

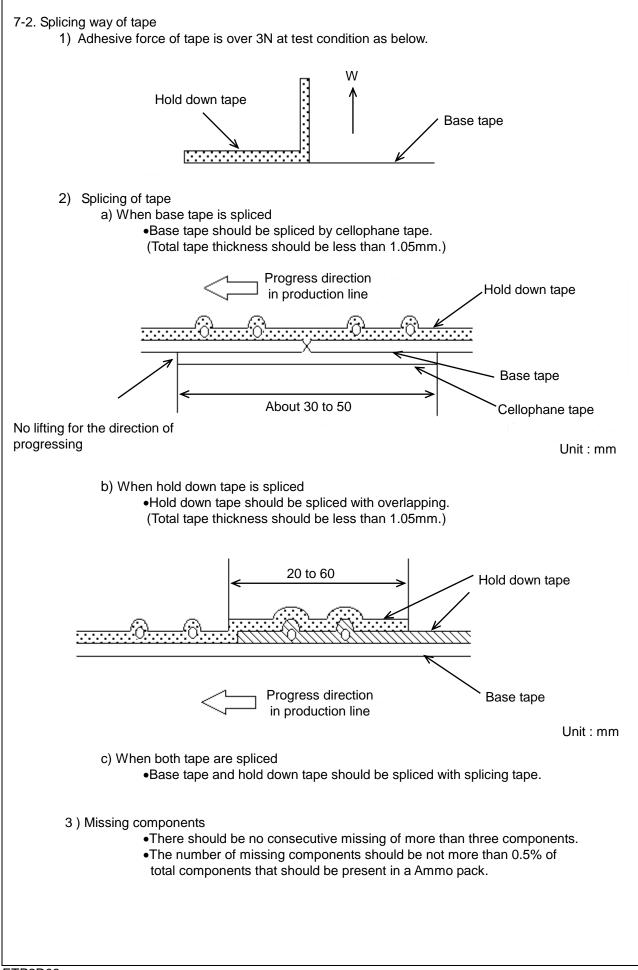
	4. Part number list •Vertical crimp long type (Lead code:A*)									
$\begin{array}{c} & & & & & & & & \\ & & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & &$										
	T.C. Cap. Cap. Customer Part Number		Customer Part Number	Murata Part Number	Dimension (mm)				Lead Pack	
T.C.				IVIUIALA FAIL IVUITIDEI						GLY.
T.C.	(pĖ)	tol.		Mulata Fait Number	D	Т	F	d	code	(pcs)
T.C. SL		tol. ±10%		DE11XRA100KA4BQ01F	D 8.0			d 0.6		
	(pF)						10.0	u	A4	(pcs)
SL	(pÉ) 10	±10%		DE11XRA100KA4BQ01F	8.0	5.0 6.0	10.0 10.0	u 0.6	A4 A4	(pcs) 250
SL SL	(pF) 10 15	±10% ±10%		DE11XRA100KA4BQ01F DE11XRA150KA4BQ01F	8.0 6.0	5.0 6.0	10.0 10.0	0.6	A4 A4 A4	(pcs) 250 500
SL SL SL	(pF) 10 15 22	±10% ±10% ±10%		DE11XRA100KA4BQ01F DE11XRA150KA4BQ01F DE11XRA220KA4BQ01F	8.0 6.0 6.0	5.0 6.0 5.0	10.0 10.0 10.0	0.6 0.6 0.6	A4 A4 A4 A4	(pcs) 250 500 500
SL SL SL SL	(pF) 10 15 22 33	±10% ±10% ±10% ±10%		DE11XRA100KA4BQ01F DE11XRA150KA4BQ01F DE11XRA220KA4BQ01F DE11XRA330KA4BQ01F	8.0 6.0 6.0 7.0	5.0 6.0 5.0 5.0	10.0 10.0 10.0 10.0	0.6 0.6 0.6 0.6	A4 A4 A4 A4 A4	(pcs) 250 500 500 250
SL SL SL SL	(pF) 10 15 22 33 47	±10% ±10% ±10% ±10% ±10%		DE11XRA100KA4BQ01F DE11XRA150KA4BQ01F DE11XRA220KA4BQ01F DE11XRA330KA4BQ01F DE11XRA470KA4BQ01F	8.0 6.0 6.0 7.0 8.0	5.0 6.0 5.0 5.0 5.0 5.0	10.0 10.0 10.0 10.0 10.0 10.0	0.6 0.6 0.6 0.6 0.6	A4 A4 A4 A4 A4 A4 A4	(pcs) 250 500 250 250 250
SL SL SL SL SL	(pF) 10 15 22 33 47 68	± 10% ± 10% ± 10% ± 10% ± 10%		DE11XRA100KA4BQ01F DE11XRA150KA4BQ01F DE11XRA220KA4BQ01F DE11XRA330KA4BQ01F DE11XRA470KA4BQ01F DE11XRA680KA4BQ01F	8.0 6.0 6.0 7.0 8.0 9.0	5.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0	10.0 10.0 10.0 10.0 10.0 10.0 10.0	0.6 0.6 0.6 0.6 0.6 0.6	A4 A4 A4 A4 A4 A4 A4 A4	(pcs) 250 500 250 250 250 250
SL SL SL SL SL B	(pF) 10 15 22 33 47 68 100	±10% ±10% ±10% ±10% ±10% ±10%		DE11XRA100KA4BQ01F DE11XRA150KA4BQ01F DE11XRA220KA4BQ01F DE11XRA330KA4BQ01F DE11XRA470KA4BQ01F DE11XRA680KA4BQ01F DE1B3RA101KA4BQ01F	8.0 6.0 7.0 8.0 9.0 6.0	5.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	10.0 10.0 10.0 10.0 10.0 10.0 10.0	0.6 0.6 0.6 0.6 0.6 0.6 0.6	A4	(pcs) 250 500 250 250 250 250 500
SL SL SL SL SL B B	(pF) 10 15 22 33 47 68 100 150	$\pm 10\%$ $\pm 10\%$ $\pm 10\%$ $\pm 10\%$ $\pm 10\%$ $\pm 10\%$ $\pm 10\%$ $\pm 10\%$		DE11XRA100KA4BQ01F DE11XRA150KA4BQ01F DE11XRA220KA4BQ01F DE11XRA330KA4BQ01F DE11XRA470KA4BQ01F DE11XRA680KA4BQ01F DE1B3RA101KA4BQ01F DE1B3RA151KA4BQ01F	8.0 6.0 7.0 8.0 9.0 6.0 8.0	5.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 6.0	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	A4	(pcs) 250 500 250 250 250 500 250
SL SL SL SL SL B B B B	(pF) 10 15 22 33 47 68 100 150 220	$\pm 10\%$ $\pm 10\%$ $\pm 10\%$ $\pm 10\%$ $\pm 10\%$ $\pm 10\%$ $\pm 10\%$ $\pm 10\%$ $\pm 10\%$		DE11XRA100KA4BQ01F DE11XRA150KA4BQ01F DE11XRA220KA4BQ01F DE11XRA330KA4BQ01F DE11XRA470KA4BQ01F DE11XRA680KA4BQ01F DE1B3RA101KA4BQ01F DE1B3RA151KA4BQ01F DE1B3RA221KA4BQ01F	8.0 6.0 7.0 8.0 9.0 6.0 8.0 6.0	5.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 6.0 6.0	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	A4 A4 A4 A4 A4 A4 A4 A4 A4 A4 A4 A4	(pcs) 250 500 250 250 250 500 250 500
SL SL SL SL SL B B B B B B B	(pF) 10 15 22 33 47 68 100 150 220 330	$\pm 10\%$ $\pm 10\%$ $\pm 10\%$ $\pm 10\%$ $\pm 10\%$ $\pm 10\%$ $\pm 10\%$ $\pm 10\%$ $\pm 10\%$ $\pm 10\%$		DE11XRA100KA4BQ01F DE11XRA150KA4BQ01F DE11XRA220KA4BQ01F DE11XRA330KA4BQ01F DE11XRA470KA4BQ01F DE11XRA680KA4BQ01F DE1B3RA101KA4BQ01F DE1B3RA151KA4BQ01F DE1B3RA221KA4BQ01F DE1B3RA331KA4BQ01F	8.0 6.0 7.0 8.0 9.0 6.0 8.0 6.0 7.0	5.0 6.0 5.0 5.0 5.0 5.0 5.0 6.0 6.0 6.0	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	A4	(pcs) 250 500 250 250 250 250 250 500 250 500
SL SL SL SL SL B B B B B B B B	(pF) 10 15 22 33 47 68 100 150 220 330 470	$\pm 10\%$ $\pm 10\%$		DE11XRA100KA4BQ01F DE11XRA150KA4BQ01F DE11XRA220KA4BQ01F DE11XRA330KA4BQ01F DE11XRA470KA4BQ01F DE11XRA680KA4BQ01F DE1B3RA101KA4BQ01F DE1B3RA221KA4BQ01F DE1B3RA331KA4BQ01F DE1B3RA471KA4BQ01F	8.0 6.0 7.0 8.0 9.0 6.0 8.0 6.0 7.0 8.0	5.0 6.0 5.0 5.0 5.0 5.0 5.0 6.0 6.0 6.0 6.0	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	A4 A4 A4 A4 A4 A4 A4 A4 A4 A4 A4 A4 A4	(pcs) 250 500 250 250 250 500 250 500 250 250
SL SL SL SL B B B B B B B B B B B	(pF) 10 15 22 33 47 68 100 150 220 330 470 680	$\pm 10\%$ $\pm 10\%$		DE11XRA100KA4BQ01F DE11XRA150KA4BQ01F DE11XRA220KA4BQ01F DE11XRA330KA4BQ01F DE11XRA470KA4BQ01F DE11XRA680KA4BQ01F DE1B3RA101KA4BQ01F DE1B3RA151KA4BQ01F DE1B3RA221KA4BQ01F DE1B3RA331KA4BQ01F DE1B3RA471KA4BQ01F DE1B3RA681KA4BQ01F	8.0 6.0 7.0 8.0 9.0 6.0 8.0 6.0 7.0 8.0 9.0	5.0 6.0 5.0 5.0 5.0 5.0 5.0 6.0 6.0 6.0 6.0	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	0.6 0.6	A4 A4	(pcs) 250 500 250 250 250 500 250 250 250 250
SL SL SL SL SL B B B B B B B E E	(pF) 10 15 22 33 47 68 100 150 220 330 470 680 1000	$\pm 10\%$ $\pm 20\%$		DE11XRA100KA4BQ01F DE11XRA150KA4BQ01F DE11XRA220KA4BQ01F DE11XRA330KA4BQ01F DE11XRA470KA4BQ01F DE11XRA680KA4BQ01F DE1B3RA101KA4BQ01F DE1B3RA151KA4BQ01F DE1B3RA221KA4BQ01F DE1B3RA471KA4BQ01F DE1B3RA681KA4BQ01F DE1B3RA681KA4BQ01F	8.0 6.0 7.0 8.0 9.0 6.0 8.0 6.0 7.0 8.0 9.0 8.0 8.0 8.0	5.0 6.0 5.0 5.0 5.0 5.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	0.6 0.6	A4 A4	(pcs) 250 500 250 250 250 250 250 250
SL SL SL SL B B B B B B B B E E E	(pF) 10 15 22 33 47 68 100 150 220 330 470 680 1000 1500	$\pm 10\%$ $\pm 20\%$		DE11XRA100KA4BQ01F DE11XRA150KA4BQ01F DE11XRA220KA4BQ01F DE11XRA330KA4BQ01F DE11XRA470KA4BQ01F DE11XRA680KA4BQ01F DE1B3RA101KA4BQ01F DE1B3RA151KA4BQ01F DE1B3RA221KA4BQ01F DE1B3RA331KA4BQ01F DE1B3RA681KA4BQ01F DE1B3RA681KA4BQ01F DE1E3RA102MA4BQ01F DE1E3RA152MA4BQ01F	8.0 6.0 7.0 8.0 9.0 6.0 8.0 6.0 7.0 8.0 9.0 8.0 9.0 9.0	5.0 6.0 5.0 5.0 5.0 5.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	0.6 0.6	A4 A4	(pcs) 250 500 250 250 250 250 250 250 250 250




50	necification and	test methode									
э. э No.	pecification and test methods Item							Teet	method		
1	Appearance and dimensions					ce	Test method The capacitor should be inspected by naked eyes				es
·			form and dime			for visible evidence of defect.					
			Please refer to	Part number list		Dime	nsions sh	ould be me	easured wi	th slide cali	
2	Marking		To be easily le	gible.		The capacitor should be inspected by naked eyes			es.		
3	Dielectric strength					the					
4	Insulation Resistan	Body insulation nce (I.R.)	No failure.			First, conne Then, closel the bo to the about from o Then, conta diame Finall 60 s b balls.	the termin ected toge , a metal f ly wrapped ody of the edistance : 3 to 6mm each term , the capa iner filled eter. y, AC4000 between the msulation r	hals of the other. oil should d around capacitor of inal. citor shoul with metal DV (r.m.s.)- ne capacito resistance	Metal foil d be insert balls of at 50/60Hz> or lead wire	Ab 3 tr 3 tr 3 tr 4 br 3 tr 4 br 3 tr 4 br 4 tr 4	ils or al
5	The voltage s through a res			gh a resis	tor of 1MΩ		e capacitor	vith			
6	Dissipation Factor	(D.F.)	2.5% max.			1±0.1	kHz and A	AC1±0.2V(<u>r.m.s.) ma</u> ould be me	х	
-	•	· · ·				at 20°	°C with 1±	0.1kHz an	d AC1±0.2	2V(r.m.s.) m	
7	Temperature chara			nin +20/-55% -25 to +85°C) Step		each	step spec	ified in Tab	de.	uld be made	≠ αι
				Temp.(°C)		D±2	-25±2	20±2	85±2	20±2	
8	Active flammability	y	The cheese-cli on fire.	oth should not be		least chees to 20 discha maint <u>si</u>	cone but m se-cloth. T discharge arges sho ained for : Tr s2 υ L4 : 1.5m : 100Ω : UR ± : Capa : Fuse,	tore than the capacity in the capacity is. The interval of the second s	wo completer should erval betwee The UAc the last dis $\frac{2}{3+cx+}$ 0.033µF± GA Rod cor 3µF±5% 1 : Rated vor test A to Ct	scharge. ct ct ct ct ct ct ct ct ct ct	d
<u>'</u> "C"	expresses nominal	capacitance value	l e(pF)								
	A01C										

			Reference only	
No.	Item	-	Specification	Test method
9	Robustness of terminations	Tensile	Lead wire should not cut off. Capacitor should not be broken.	Fix the body of capacitor, a tensile weight gradually to each lead wire in the radial direction of
		Bending	-	capacitor up to 10N and keep it for 10±1 s. With the termination in its normal position, the capacitor is held by its body in such a manner that the axis of the termination is vertical; a mass
				applying a force of 5N is then suspended from the end of the termination. The body of the capacitor is then inclined,
				within a period of 2 to 3 s, through an angle of approximately 90° in the vertical plane and then returned to its initial position over the same period
				of time; this operation constitutes one bend. One bend immediately followed by a second bend in the opposite direction.
10	Vibration	Appearance	No marked defect.	The capacitor should be firmly soldered to the
	resistance	Capacitance	Within the specified tolerance.	supporting lead wire and vibration which is 10 to
		D.F.	2.5% max.	55Hz in the vibration frequency range,1.5mm in total amplitude, and about 1min in the rate of vibration change from 10Hz to 55Hz and back to 10Hz is applied for a total of 6 h; 2 h each in 3 mutually perpendicular directions.
11	Solderability of lead	ds	Lead wire should be soldered With uniformly coated on the	The lead wire of a capacitor should be dipped into a ethanol solution of 25wt% rosin and then into
			axial direction over 3/4 of the circumferential direction.	molten solder for 2 ± 0.5 s. In both cases the depth of dipping is up to about 1.5 to 2.0mm from the root of lead wires. Temp. of solder :
12	Soldering effect	Annoaranaa	No marked defect.	245±5°C Lead Free Solder (Sn-3Ag-0.5Cu)
12	(Non-preheat)	Appearance Capacitance change	Within ±10%	Solder temperature: 350±10°C or 260±5°C Immersion time : 3.5±0.5 s (In case of 260±5°C : 10±1 s)
		I.R.	1000MΩ min.	The depth of immersion is up to about 1200 ± 5 C \cdot 10 ± 1 S
		Dielectric	Per item 3	1.5 to 2.0mm from the root of lead wires.
		strength		Thermal insulating
				1.5 to 2.0mm
				Pre-treatment : Capacitor should be stored at 125±2°C for 1 h, and apply the AC4000V(r.m.s.) 60s then placed at *1room condition for 24±2 h before initial measurements.
				(Do not apply to Char. SL) Post-treatment : Capacitor should be stored for 1 to 2 h at *1room condition.
13	Soldering effect	Appearance	No marked defect.	First the capacitor should be stored at 120+0/-5°C
-	(On-preheat)	Capacitance change	Within ±10%	for 60+0/-5 s. Then, as in figure, the lead wires should be
		I.R.	1000MΩ min.	immersed solder of 260+0/-5°C up to 1.5 to 2.0mm
		Dielectric strength	Per item 3	from the root of terminal for 7.5+0/-1 s.
				1.5 1.5 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6
				Pre-treatment : Capacitor should be stored at 125±2°C for 1 h, and apply the AC4000V(r.m.s.) 60s then placed at *1room condition for 24±2 h before initial measurements.
				(Do not apply to Char. SL) Post-treatment : Capacitor should be stored for 1 to
	om condition" Tempe		L C, Relative humidity: 45 to 75%, Atr e(ρF)	2 h at * ¹ room condition. nospheric pressure: 86 to 106kPa
0	expresses norminal	capaonanioe valu	o(b.)	

			Reference only	
No.	Item		Specification	Test method
14	Flame test		The capacitor flame discontinue	The capacitor should be subjected to applied flame
			as follows.	for 15 s. and then removed for 15 s until 5 cycle.
				Capacitor
			Cycle Time	16 Flame
			1 to 4 30 s max.	
			5 60 s max.	5 × ×
				Gas Burner
15	Passive flammabilit	V	The burning time should not be	The capacitor under test should be held in the flame
15	i assive nannnadill	у	exceeded the time 30 s.	in the position which best promotes burning.
			The tissue paper should not	Time of exposure to flame is for 30 s.
			ignite.	Length of flame : 12±1mm
				Gas burner : Length 35mm min.
				Inside Dia. 0.5±0.1mm
				Outside Dia. 0.9mm max.
				Gas : Butane gas Purity 95% min.
				Capacitor
				About 8mm
				Gas burner Flame 200±5mm
				<u> </u>
				About 10mm thick board
16	Humidity	Appearance	No marked defect.	Set the capacitor for 500±12 h at 40±2°C in 90 to
	(Under steady	Capacitance	Char. SL : Within ±5%	95% relative humidity.
	state)	change	Char. B : Within ±10%	
			Char. E : Within ±15%	Pre-treatment : Capacitor should be stored at $125+2$ °C for 1 b, and apply the
		D.F.	Char. SL : 2.5% max.	125±2°C for 1 h, and apply the AC4000V(r.m.s.) 60s then placed
		I.R.	Char. B, E : 5.0% max 3000MΩ min.	at $*^{1}$ room condition for 24±2 h
		Dielectric	Per item 3	before initial measurements.
		strength		(Do not apply to Char. SL)
		J. J		Post-treatment : Capacitor should be stored for 1 to
17	Humidity loading	Appearance	No marked defect.	2 h at *1room condition. Apply AC500V(r.m.s.) for 500±12 h at 40±2°C in
. /	i annaity ioauing	Capacitance	Char. SL : Within ±5%	90 to 95% relative humidity.
		change	Char. B : Within $\pm 0\%$	
		_	Char. E : Within ±15%	Pre-treatment : Capacitor should be stored at
		D.F.	Char. SL : 2.5% max.	125±2°C for 1 h, and apply the
			Char. B, E : 5.0% max.	AC4000V(r.m.s.) 60s then placed at *1room condition for 24±2 h
		I.R. Dialactria	3000MΩ min.	before initial measurements.
		Dielectric strength	Per item 3	(Do not apply to Char. SL)
		Suengui		Post-treatment : Capacitor should be stored for 1 to
				2 h at *1room condition.
			C, Relative humidity: 45 to 75%, Atm	nospheric pressure: 86 to 106kPa
*² "C	expresses nominal o	capacitance valu	e(pF)	
	A01C			


			Reference only	-					
No.	Item		Specification				nethod		
18	Life	Appearance	No marked defect.		e voltage				
		Capacitance	Within ±20%					subjected to a	
		change					mes. Then	the capacitors	
		I.R.	3000MΩ min.	are app	olied to li	fe test.			
		Dielectric	Per item 3		(0/)				
		strength		$100 \frac{(\%)}{90}$ Front time (T1) =					
						\rightarrow '	lime to half-val	ue (T2) = 50 μ s	
				0			t		
						2			
					ļ				
				The capacitors are placed in a circulating air				ating air oven	
					for a period of 1000 h.				
				The air in the oven is maintained at a temperature					
								of 50% max	
				to a AC	Throughout the test, the capacitors are subjected to a AC850V(r.m.s.)<50/60Hz> alternating voltage of mains frequency, except that once each hour the voltage is increased to AC1000V(r.m.s.) for 0.1 s.				
				of mair					
				the vol					
				Pre-tre	atment			e stored at	
								nd apply the	
								0s then placed	
								for 24±2 h	
							itial measu		
				Derti			apply to C		
				Post-tr	eatment			e stored for	
19	Temperature and	Appearance	No marked defect.	The ee	nacitor o	24±2 n a hould be s	at * ¹ room c		
19	Temperature and immersion cycle	Appearance Capacitance	Char. SL : Within ±5%			cles, then c			
		change	Char. SL : Within $\pm 5\%$ Char. B : Within $\pm 10\%$		sion cycle			ory to 2	
		change	Char. E : Within $\pm 20\%$		Jon oyon				
		D.F.	Char. SL : 2.5% max.	<temp< td=""><td>erature o</td><td>cvcle></td><td></td><td></td></temp<>	erature o	cvcle>			
		D.F.	Char. B, E : 5.0% max.		Step	Temperati	ure(°C)	Time	
		I.R.		_	1	-40+0		30 min	
			3000MΩ min. Per item 3	_	2	Room te		3 min	
		Dielectric strength	Per item 3		3	+125+		30 min	
		Strength			4	Room te		3 min	
							Cycle tin	ne:500 cycles	
				~Imme	rsion cyc		Cycle III	ne.500 cycles	
						0102		Immersion	
				Step	Tempe	erature(°C)	Time	water	
						/ -		Clean	
				1	+65	5+5/-0	15 min	water	
				0			45	Salt	
				2	(0 <u>+</u> 3	15 min	water	
							Cycle tin	ne:2 cycles	
				Pre-treatment : Capacitor should be stored at					
				125±2°C for 1 h, and apply the					
								0s then placed	
								1 for 24±2 h	
							itial measu		
				Derti	(Do not apply to Char. SL) Post-treatment : Capacitor should be stored for				
				Post-tr	earment				
*1 "	om oondition" Terrer		C Polotivo humiditur 45 to 750/ Ale	l noonh-r'	Droos		at * ¹ room o	onalion.	
*2 "C"	om condition" Tempel	ature. 15 (0 35°)	C, Relative humidity: 45 to 75%, Atm	nospheric	, pressur	e. oo io 10	UKFA		
	CAPICOSCO HUIHIIIdi (apachanice valu							

Unit : mm

	1				
Item	Code	Dimensions	Remarks		
Pitch of component	Р	25.4±2.0			
Pitch of sprocket hole	P0	12.7±0.3			
Lead spacing	F	10.0±1.0			
Length from hole center to lead	P1	7.7±1.5			
Body diameter	D	Please refer to [Part number list].			
Deviation along tape, left or right	ΔS	0±2.0	They include deviation by lead bend .		
Carrier tape width	W	18.0±0.5			
Position of sprocket hole	W1	9.0±0.5	Deviation of tape width direction		
Lead distance between reference and bottom planes	H0	$18.0\pm_{0}^{2.0}$			
Protrusion length	Q	+0.5~-1.0			
Diameter of sprocket hole	φD0	4.0±0.1			
Lead diameter	φd	0.60±0.05			
Total tape thickness	t1	0.6±0.3			
Total thickness, tape and lead wire	t2	1.5 max.	They include hold down tape thickness.		
Deviation across tape, front	∆h1				
Deviation across tape, rear	∆h2	2.0 max.			
Portion to cut in case of defect	L	11.0± ⁰ _{1.0}			
Hold down tape width	W0	11.5 min.			
Hold down tape position	W2	1.5±1.5			
Coating extension on lead	е	Up to the end of crimp			
Body thickness	Т	Please refer to [Part number list].			

EU RoHS and Halogen Free

This products of the following crresponds to EU RoHS and Halogen Free

(1) RoHS

EU RoHs 2011/65/EC compliance

maximum concentration values tolerated by weight in homogeneous materials •1000 ppm maximum Lead

- •1000 ppm maximum Mercury
- •100 ppm maximum Cadmium
- •1000 ppm maximum Hexavalent chromium
- •1000 ppm maximum Polybrominated biphenyls (PBB)
- •1000 ppm maximum Polybrominated diphenyl ethers (PBDE)

(2) Halogen-Free

The International Electrochemical Commission's (IEC) Definition of Halogen-Free (IEC 61249-2-21) compliance

- •900 ppm maximum chlorine
- •900 ppm maximum bromine
- •1500 ppm maximum total chlorine and bromine

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Ceramic Disc Capacitors category:

Click to view products by Murata manufacturer:

Other Similar products are found below :

009377XM 5AS560JCFCA 5AU100JCECA 5AU470JCJCA DEF2CLH020CA3B HSE102MAQBF0KR 432202101621 432202282431 DEF2CLH030CJ3B W1X223MCVCF0KR 564RC0GBA302EJ470K 5AS270JCDCA 5AS330JCDCA 5AU330JCGCA DE1E3KX2222MJ4BN01F 440LT68AP-R JN222MQ47FAAAAKPLP H8000090-245 H8000090-225RY H8000090-309RY H8000090-291RY F471K39S3NR63K7R DEF2CLH040CN3A DEF2CLH080DA3B 564R3DF0T22 CC2150KY5P1KVB5LS-LF CC2180KY5P1KVB5LS-LF CC2470KY5P1KVB5LS-LF CC2820KY5P1KVB5LS-LF 0838-040-X7R0-220K JN102MQ35FAAAAKPLP 0841-040-X5U0-103M CCH-6K8-5/1000V 140-50N2-101J-TB-RC ECK-DGL102ME 562R5GAD47RR S103K75Y5PN8BT0R 615R100GAD10 615R150GAD10 NCD100K1KVSLF NCD682M1KVZ5UF CCK-100N CCK-100P CCK-22N CCK-2N2 CCK-47N CCK-47P CCK-4N7 CCK-4P7 CK45-B3FD681KYNNA