

12 A four-quadrant triacs, sensitive gate Rev. 02 — 12 March 2008

Product data sheet

1. Product profile

1.1 General description

Passivated sensitive gate triac in a SOT78 plastic package.

1.2 Features

- Very sensitive gate
- Direct interfacing to logic level ICs
- Gate triggering in four quadrants
- Direct interfacing to low power gate drive circuits

1.3 Applications

 General purpose switching and phase control

1.4 Quick reference data

- V_{DRM} ≤ 600 V (BT138-600D)
- V_{DRM} ≤ 600 V (BT138-600E)
- V_{DRM} ≤ 800 V (BT138-800E)
- I_{GT} \leq 5 mA (BT138-600D)
- I_{GT} \leq 10 mA (BT138-600E)
- $I_{GT} \le 10 \text{ mA} (BT138-800E)$
- I_{T(RMS)} ≤ 12 A
- I_{TSM} \leq 95 A (t = 20 ms)

230 V lamp dimmers

- $I_{GT} \le 10 \text{ mA} (T2 G +) (BT138-600D)$
- I $I_{GT} \le 25 \text{ mA} (T2-G+) (BT138-600E)$
- I_{GT} ≤ 25 mA (T2– G+) (BT138-800E)

12 A four-quadrant triacs, sensitive gate

2. Pinning information

Table 1. Pi	inning		
Pin	Description	Simplified outline	Graphic symbol
1	main terminal 1 (T1)		NI
2	main terminal 2 (T2)	mb	T2-T1
3	gate (G)	۲ 🔾 ۲	`G sym051
mb	mounting base; main terminal 2 (T2)		

SOT78 (TO-220AB)

3. Ordering information

Table 2.Ordering information

Type number	Package				
	Name	Description	Version		
BT138-600D	TO-220AB	plastic single-ended package; heatsink mounted; 1 mounting hole; 3-lead	d SOT78		
BT138-600E		ТО-220АВ			
BT138-800E					

4. Limiting values

Table 3.Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{DRM}	repetitive peak off-state voltage				
		BT138-600D	<u>[1]</u> _	600	V
		BT138-600E	<u>[1]</u> _	600	V
		BT138-800E	-	800	V
I _{T(RMS)}	RMS on-state current	full sine wave; T _{mb} ≤ 99 °C; see <u>Figure 4</u> and <u>5</u>	-	12	А
I _{TSM}	non-repetitive peak on-state current	full sine wave; $T_j = 25 \text{ °C prior to}$ surge; see Figure 2 and 3			
		t = 20 ms	-	95	А
		t = 16.7 ms	-	105	А
l ² t	I ² t for fusing	t _p = 10 ms	-	45	A ² s

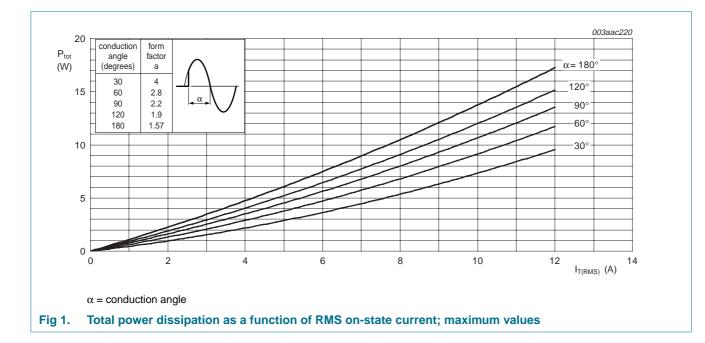
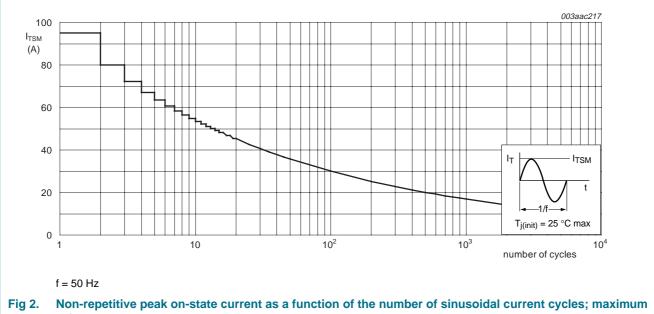
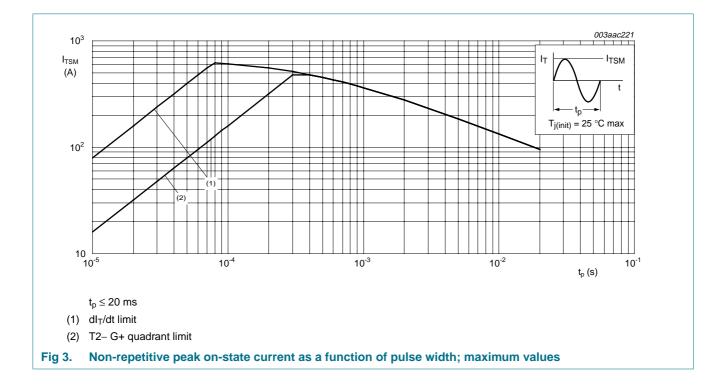

12 A four-quadrant triacs, sensitive gate

Table 3. Limiting values ...continued

In accordance with the Absolute Maximum Rating System (IEC 60134).

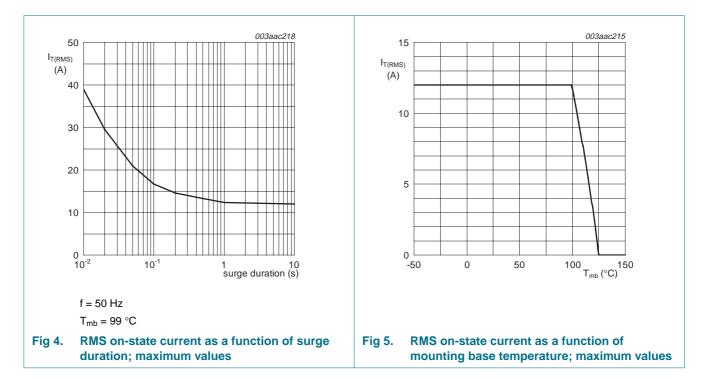
Symbol	Parameter	Conditions	Min	Мах	Unit
dl _T /dt rate of rise of c	rate of rise of on-state current	I _{TM} = 20 A; I _G = 0.2 A; dI _G /dt = 0.2 A/μs			
		T2+ G+	-	50	A/μs
		T2+ G-	-	50	A/μs
		T2– G–	-	50	A/μs
		T2– G+	-	10	A/μs
I _{GM}	peak gate current		-	2	А
P _{GM}	peak gate power		-	5	W
P _{G(AV)}	average gate power	over any 20 ms period	-	0.5	W
T _{stg}	storage temperature		-40	+150	°C
Tj	junction temperature		-	125	°C


[1] Although not recommended, off-state voltages up to 800 V may be applied without damage, but the triac may switch to the on-state. The rate of rise of current should not exceed 15 A/µs.


NXP Semiconductors

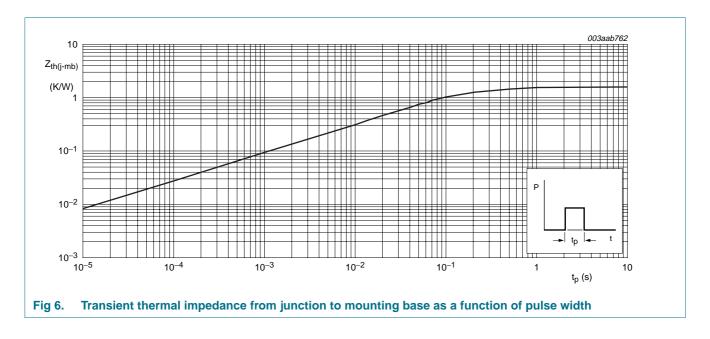
BT138 series D and E

12 A four-quadrant triacs, sensitive gate


values

NXP Semiconductors

BT138 series D and E


12 A four-quadrant triacs, sensitive gate

5. Thermal characteristics

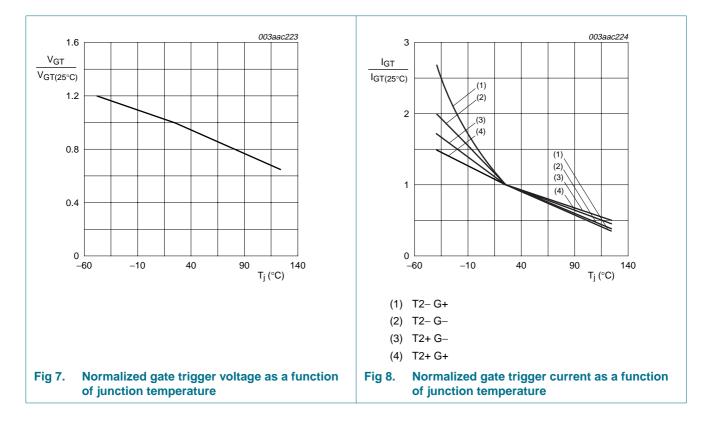
Table 4. Thermal characteristics

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
$R_{\text{th}(j-mb)}$	thermal resistance from junction to mounting base	full cycle; see Figure 6	-	-	1.5	K/W
R _{th(j-a)}	thermal resistance from junction to ambient	full cycle; in free air	-	60	-	K/W

12 A four-quadrant triacs, sensitive gate

6. Static characteristics

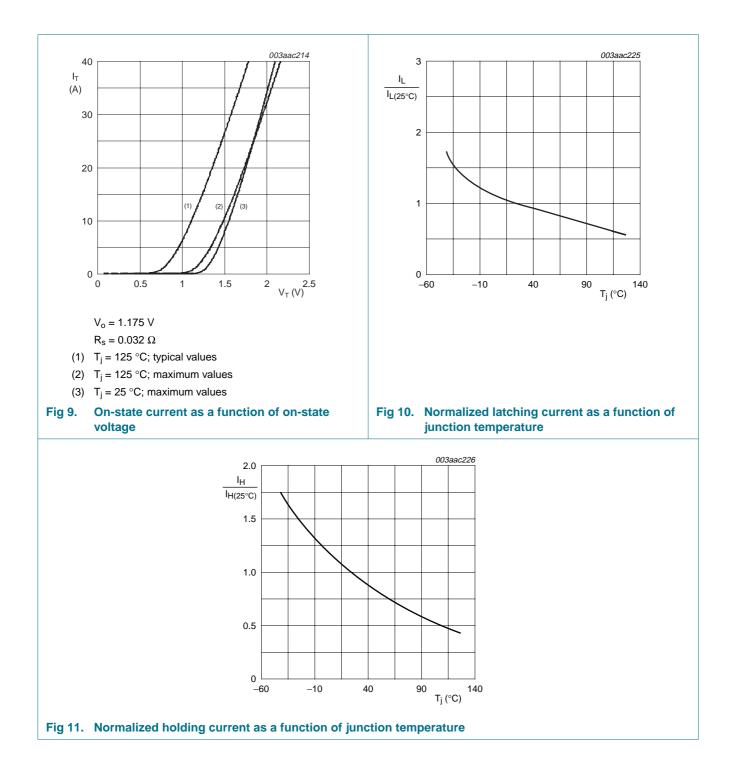
Table 5. Static characteristics


 $T_i = 25 \circ C$ unless otherwise specified.

Symbol	Parameter	Conditions	BT138	-600D		BT138 BT138			Unit
			Min	Тур	Max	Min	Тур	Max	
I _{GT}	gate trigger current	$V_D = 12 \text{ V}; \text{ I}_T = 0.1 \text{ A};$ see Figure 8						·	·
		T2+ G+	-	1.3	5	-	2.5	10	mA
		T2+ G–	-	2.8	5	-	4.0	10	mA
		T2– G–	-	3.2	5	-	5.0	10	mA
		T2– G+	-	5.5	10	-	11	25	mA
IL	L latching current	V _D = 12 V; I _G = 0.1 A; see <u>Figure 10</u>							
		T2+ G+	-	-	15	-	-	30	mA
		T2+ G–	-	-	20	-	-	40	mA
		T2– G–	-	-	15	-	-	30	mA
		T2– G+	-	-	20	-	-	40	mA
I _H	holding current	V _D = 12 V; I _G = 0.1 A; see <u>Figure 11</u>	-	-	10	-	-	30	mA
V _T	on-state voltage	I _T = 15 A; see Figure 9	-	1.4	1.65	-	1.4	1.65	V
V _{GT}	gate trigger voltage	I _T = 0.1 A; see Figure 7							
		V _D = 12 V;	-	0.7	1.5	-	0.7	1.5	V
		$V_D = V_{DRM}; T_j = 125 \ ^{\circ}C$	0.25	0.4	-	0.25	0.4	-	V
I _D	off-state current	V _D = V _{DRM(max)} ; T _j = 125 °C	-	0.1	0.5	-	0.1	0.5	mA

12 A four-quadrant triacs, sensitive gate

7. Dynamic characteristics


Table 6.	Dynamic characteristics								
Symbol	Parameter	Conditions	BT13	8-600D		-	8-600E 8-800E		Unit
			Min	Тур	Max	Min	Тур	Max	
dV _D /dt	rate of rise of off-state voltage	$\begin{split} V_{DM} &= 0.67 \times V_{DRM(max)}; \\ exponential waveform; \\ gate open circuit; \\ T_j &= 110 \ ^\circ C \end{split}$	-	50	-	-	150	-	V/µs
t _{gt}	gate-controlled turn-on time	$ I_{TM} = 16 \text{ A}; \\ V_D = V_{DRM(max)}; \\ I_G = 0.1 \text{ A}; \text{ d}I_G/\text{d}t = 5 \text{ A}/\mu\text{s} $	-	2	-	-	2	-	μs

NXP Semiconductors

BT138 series D and E

12 A four-quadrant triacs, sensitive gate

12 A four-quadrant triacs, sensitive gate

8. Package outline

							Ш	q q L2			unting ase		-220A			
DIMENS	IONS (n	nm are t	he origi	nal dime	nsions)		0 LL		5 ale	0 mm بـــا						
UNIT	A	A1	b	b ₁	c	D	D ₁	E	e	L	L ₁	L ₂ max.	р	q	Q	
mm	4.7 4.1	1.40 1.25	0.9 0.6	1.45 1.00	0.7 0.4	16.0 15.2	6.6 5.9	10.3 9.7	2.54	15.0 12.8	3.30 2.79	3.0	3.8 3.5	3.0 2.7	2.6 2.2	
							EFERE									ISSUE DATE
	ITLINE RSION		IEO	2		JEDEC		JE	ITA				1100		•	

Fig 12. Package outline SOT78 (TO-220AB)

12 A four-quadrant triacs, sensitive gate

9. Revision history

Table 7. Revision histo	ory			
Document ID	Release date	Data sheet status	Change notice	Supersedes
BT138_SER_D_E_2	20080312	Product data sheet	-	BT138_SERIES_E_1
Modifications:	guidelines of • Legal texts h	f this data sheet has been red NXP Semiconductors. ave been adapted to the new o product added	.	
BT138_SERIES_E_1	19970901	Product data sheet	-	-

12 A four-quadrant triacs, sensitive gate

10. Legal information

10.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

10.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

10.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

10.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

11. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

12 A four-quadrant triacs, sensitive gate

12. Contents

1	Product profile 1
1.1	General description
1.2	Features
1.3	Applications 1
1.4	Quick reference data 1
2	Pinning information 2
3	Ordering information 2
4	Limiting values 2
5	Thermal characteristics 5
6	Static characteristics 6
7	Dynamic characteristics7
8	Package outline 9
9	Revision history 10
10	Legal information 11
10.1	Data sheet status 11
10.2	Definitions 11
10.3	Disclaimers
10.4	Trademarks 11
11	Contact information 11
12	Contents 12

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2008.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 12 March 2008 Document identifier: BT138_SER _D_E_2

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Triacs category:

Click to view products by WeEn Semiconductor manufacturer:

Other Similar products are found below :

 T2035H-6G
 BT137-600-0Q
 Z0409MF0AA2
 Z0109NA 2AL2
 ACST1635T-8FP
 BCR20RM-30LA#B00
 CMA60MT1600NHR
 NTE5611

 NTE5612
 NTE5613
 NTE5623
 NTE5629
 NTE5638-08
 NTE5688
 NTE5690
 T1235T-8I
 BTA312-600CT.127
 T1210T

 8G-TR
 Z0109NN0,135
 T2535T-8I
 T2535T-8T
 TN4050-12WL
 MAC4DLM-1G
 BT137-600E,127
 BT137X-600D
 BT148W-600R,115

 BT258-500R,127
 BTA08-800BW3G
 BTA140-800,127
 BTA30-600CW3G
 BTB08-800BW3G
 BTB16-600CW3G

 BTB16-600CW3G
 Z0410MF0AA2
 Z0109MN,135
 T825T-6I
 T1635T-6I
 T1220T-6I
 NTE5638
 TYN612MRG
 TYN1225RG
 TPDV840RG

 ACST1235-8FP
 ACS302-6T3-TR
 BT134-600D,127
 BT134-600G,127
 BT136X-600E,127