Dual 4-Bit Static Shift Register The MC14015B dual 4-bit static shift register is constructed with MOS P-Channel and N-Channel enhancement mode devices in a single monolithic structure. It consists of two identical, independent 4-state serial-input/parallel-output registers. Each register has independent Clock and Reset inputs with a single serial Data input. The register states are type D master-slave flip-flops. Data is shifted from one stage to the next during the positive-going clock transition. Each register can be cleared when a high level is applied on the Reset line. These complementary MOS shift registers find primary use in buffer storage and serial-to-parallel conversion where low power dissipation and/or noise immunity is desired. #### **Features** - Diode Protection on All Inputs - Supply Voltage Range = 3.0 Vdc to 18 Vdc - Logic Edge-Clocked Flip-Flop Design - Logic state is retained indefinitely with clock level either high or low; information is transferred to the output only on the positive going edge of the clock pulse - Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load Over the Rated Temperature Range - These Devices are Pb-Free and are RoHS Compliant - NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable #### ON Semiconductor® http://onsemi.com #### MARKING DIAGRAMS PDIP-16 P SUFFIX CASE 648 16<u>ኩሉሉሉሉሉ</u> MC14015BCP o AWLYYWWG 1 ሆូ ሆូ ሆូ ሆូ ሆូ ሆូ ሆូ ሆ SOIC-16 D SUFFIX CASE 751B A = Assembly Location WL, L = Wafer Lot YY, Y = Year WW, W = Work Week G = Pb-Free Indicator #### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet. #### MAXIMUM RATINGS (Voltages Referenced to V_{SS}) | Symbol | Parameter | Value | Unit | |------------------------------------|---|-------------------------------|------| | V_{DD} | DC Supply Voltage Range | -0.5 to +18.0 | V | | V _{in} , V _{out} | Input or Output Voltage Range (DC or Transient) | -0.5 to V _{DD} + 0.5 | V | | I _{in} , I _{out} | Input or Output Current (DC or Transient) per Pin | ±10 | mA | | P _D | Power Dissipation, per Package (Note 1) | 500 | mW | | T _A | Ambient Temperature Range | -55 to +125 | °C | | T _{stg} | Storage Temperature Range | -65 to +150 | °C | | TL | Lead Temperature (8-Second Soldering) | 260 | °C | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open. ^{1.} Temperature Derating: Plastic "P and D/DW" Packages: - 7.0 mW/°C From 65°C To 125°C #### **PIN ASSIGNMENT** #### **BLOCK DIAGRAM** TRUTH TABLE | С | D | R | Q0 | Q _n | |---|---|---|-----------|----------------| | | 0 | 0 | 0 | Q_{n-1} | | | 1 | 0 | 1 | Q_{n-1} | | ~ | Х | 0 | No Change | No Change | | Х | Х | 1 | 0 | 0 | X = Don't Care $Q_n = Q0$, Q1, Q2, or Q3, as applicable. Q_{n-1} = Output of prior stage. #### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |----------------|----------------------|--------------------------| | MC14015BCPG | PDIP-16
(Pb-Free) | 500 Units / Rail | | MC14015BDG | SOIC-16 | 48 Units / Rail | | MC14015BDR2G | SOIC-16 | 2500 Units / Tape & Reel | | NLV14015BDR2G* | (Pb-Free) | | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ^{*}NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable. #### **ELECTRICAL CHARACTERISTICS** (Voltages Referenced to V_{SS}) | | | | | - 5 | 5°C | | 25°C | | 125 | 5°C | | |--|-----------|-----------------|------------------------|-----------------------------------|----------------------|-----------------------------------|--|----------------------|-----------------------------------|----------------------|------| | Characteristic | | Symbol | V _{DD}
Vdc | Min | Max | Min | Typ
(Note 2) | Max | Min | Max | Unit | | Output Voltage
V _{in} = V _{DD} or 0 | "0" Level | V _{OL} | 5.0
10
15 | -
-
- | 0.05
0.05
0.05 | -
-
- | 0
0
0 | 0.05
0.05
0.05 | -
-
- | 0.05
0.05
0.05 | Vdc | | $V_{in} = 0$ or V_{DD} | "1" Level | V _{OH} | 5.0
10
15 | 4.95
9.95
14.95 | -
-
- | 4.95
9.95
14.95 | 5.0
10
15 | -
-
- | 4.95
9.95
14.95 | -
-
- | Vdc | | Input Voltage
(V _O = 4.5 or .05 Vdc)
(V _O = 9.0 or 1.0 Vdc)
(V _O = 13.5 or 1.5 Vdc) | "0" Level | V _{IL} | 5.0
10
15 | -
-
- | 1.5
3.0
4.0 | -
-
- | 2.25
4.50
6.75 | 1.5
3.0
4.0 | -
-
- | 1.5
3.0
4.0 | Vdc | | $(V_O = 0.5 \text{ or } 4.5 \text{ Vdc})$
$(V_O = 1.0 \text{ or } 9.0 \text{ Vdc})$
$(V_O = 1.5 \text{ or } 13.5 \text{ Vdc})$ | "1" Level | V _{IH} | 5.0
10
15 | 3.5
7.0
11 | -
-
- | 3.5
7.0
11 | 2.75
5.50
8.25 | -
-
- | 3.5
7.0
11 | -
-
- | Vdc | | Output Drive Current $(V_{OH}=2.5~Vdc) \\ (V_{OH}=4.6~Vdc) \\ (V_{OH}=9.5~Vdc) \\ (V_{OH}=13.5~Vdc)$ | Source | I _{OH} | 5.0
5.0
10
15 | - 3.0
- 0.64
- 1.6
- 4.2 | -
-
- | - 2.4
- 0.51
- 1.3
- 3.4 | - 4.2
- 0.88
- 2.25
- 8.8 | -
-
- | - 1.7
- 0.36
- 0.9
- 2.4 | -
-
- | mAdc | | $(V_{OL} = 0.4 \text{ Vdc})$
$(V_{OL} = 0.5 \text{ Vdc})$
$(V_{OL} = 1.5 \text{ Vdc})$ | Sink | I _{OL} | 5.0
10
15 | 0.64
1.6
4.2 | -
-
- | 0.51
1.3
3.4 | 0.88
2.25
8.8 | -
-
- | 0.36
0.9
2.4 | -
-
- | mAdc | | Input Current | | l _{in} | 15 | _ | ± 0.1 | - | ±0.00001 | ± 0.1 | _ | ± 1.0 | μAdc | | Input Capacitance
(V _{in} = 0) | | C _{in} | - | - | - | - | 5.0 | 7.5 | - | - | pF | | Quiescent Current
(Per Package) | | I _{DD} | 5.0
10
15 | -
-
- | 5.0
10
20 | -
-
- | 0.005
0.010
0.015 | 5.0
10
20 | -
-
- | 150
300
600 | μAdc | | Total Supply Current (Note
(Dynamic plus Quiesco
Per Package)
(C _L = 50 pF on all outp
buffers switching) | ent, | I _T | 5.0
10
15 | | | $I_T = ($ | 1.2 μA/kHz)f
2.4 μA/kHz)f
3.6 μA/kHz)f | + I _{DD} | | | μAdc | Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance. The formulas given are for the typical characteristics only at 25°C. To calculate total supply current at loads other than 50 pF: $$I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ Vfk}$$ where: I_T is in μA (per package), C_L in pF, $V = (V_{DD} - V_{SS})$ in volts, f in kHz is input frequency, and k = 0.002. ## SWITCHING CHARACTERISTICS (Note 5) (C_L = 50 pF, T_A = 25°C) | Characteristic | Symbol | V _{DD} | Min | Typ
(Note 6) | Max | Unit | |---|--|------------------------------|-------------------|---------------------------------------|--|------| | Output Rise and Fall Time $t_{TLH}, t_{THL} = (1.5 \text{ ns/pF}) \text{ C}_{L} + 25 \text{ ns} \\ t_{TLH}, t_{THL} = (0.75 \text{ ns/pF}) \text{ C}_{L} + 12.5 \text{ ns} \\ t_{TLH}, t_{THL} = (0.55 \text{ ns/pF}) \text{ C}_{L} + 9.5 \text{ ns} \\ \end{cases}$ | t _{TLH} ,
t _{THL} | 5.0
10
15 | -
-
- | 100
50
40 | 200
100
80 | ns | | $\label{eq:propagation} \begin{split} & \text{Propagation Delay Time} \\ & \text{Clock, Data to Q} \\ & \text{t_{PLH}, $t_{\text{PHL}} = (1.7 \text{ ns/pF}) C_{L} + 225 \text{ ns}} \\ & \text{t_{PLH}, $t_{\text{PHL}} = (0.66 \text{ ns/pF}) C_{L} + 92 \text{ ns}} \\ & \text{t_{PLH}, $t_{\text{PHL}} = (0.5 \text{ ns/pF}) C_{L} + 65 \text{ ns}} \\ & \text{Reset to Q} \\ & \text{t_{PLH}, $t_{\text{PHL}} = (1.7 \text{ ns/pF}) C_{L} + 375 \text{ ns}} \\ & \text{t_{PLH}, $t_{\text{PHL}} = (0.66 \text{ ns/pF}) C_{L} + 147 \text{ ns}} \\ & \text{t_{PLH}, $t_{\text{PHL}} = (0.5 \text{ ns/pF}) C_{L} + 95 \text{ ns}} \end{split}$ | t _{PLH} ,
t _{PHL} | 5.0
10
15
5.0
10 | -
-
-
- | 310
125
90
460
180
120 | 750
250
170
750
250
170 | ns | | Clock Pulse Width | t _{WH} | 5.0
10
15 | 400
175
135 | 185
85
55 | -
-
- | ns | | Clock Pulse Frequency | f _{cl} | 5.0
10
15 | -
-
- | 2.0
6.0
7.5 | 1.5
3.0
3.75 | MHz | | Clock Pulse Rise and Fall Times | t _{TLH} , t _{THL} | 5.0
10
15 | -
-
- | -
-
- | 15
5
4 | μs | | Reset Pulse Width | t _{WH} | 5.0
10
15 | 400
160
120 | 200
80
60 | -
-
- | ns | | Setup Time | t _{su} | 5.0
10
15 | 350
100
75 | 100
50
40 | -
-
- | ns | - 5. The formulas given are for typical characteristics only at 25°C. 6. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance. Figure 1. Power Dissipation Test Circuit and Waveform Figure 2. Switching Test Circuit and Waveforms Figure 3. Setup and Hold Time Test Circuit and Waveforms ## **CIRCUIT SCHEMATICS** #### **LOGIC DIAGRAMS** #### **SINGLE BIT** #### **COMPLETE DEVICE** #### PACKAGE DIMENSIONS #### PDIP-16 **P SUFFIX** PLASTIC DIP PACKAGE CASE 648-08 **ISSUE T** - NOTES: 1. DIMENSIONING AND TOLERANCING PER - DIMENSIONING AND TOLERANCING F ANSI Y14 5M, 1982. CONTROLLING DIMENSION: INCH. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. DIMENSION B DOES NOT INCLUDE - MOLD FLASH. ROUNDED CORNERS OPTIONAL. | | INC | HES | MILLIN | IETERS | |-----|-------|---------|--------|--------| | DIM | MIN | MIN MAX | | MAX | | Α | 0.740 | 0.770 | 18.80 | 19.55 | | В | 0.250 | 0.270 | 6.35 | 6.85 | | С | 0.145 | 0.175 | 3.69 | 4.44 | | D | 0.015 | 0.021 | 0.39 | 0.53 | | F | 0.040 | 0.70 | 1.02 | 1.77 | | G | 0.100 | BSC | 2.54 | BSC | | Н | 0.050 | BSC | 1.27 | BSC | | J | 0.008 | 0.015 | 0.21 | 0.38 | | K | 0.110 | 0.130 | 2.80 | 3.30 | | L | 0.295 | 0.305 | 7.50 | 7.74 | | М | 0° | 10 ° | 0 ° | 10 ° | | S | 0.020 | 0.040 | 0.51 | 1.01 | #### SOEIAJ-16 **F SUFFIX** PLASTIC EIAJ SOIC PACKAGE CASE 966-01 **ISSUE A** #### NOTES: - JIES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE, MOLD FLASH - MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 5. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018). | | MILLIN | IETERS | INC | HES | | | |----------------|--------|--------|-------|-----------|--|--| | DIM | MIN | MAX | MIN | MAX | | | | Α | | 2.05 | | 0.081 | | | | A ₁ | 0.05 | 0.20 | 0.002 | 0.008 | | | | b | 0.35 | 0.50 | 0.014 | 0.020 | | | | С | 0.10 | 0.20 | 0.007 | 0.011 | | | | D | 9.90 | 10.50 | 0.390 | 0.413 | | | | Е | 5.10 | 5.45 | 0.201 | 0.215 | | | | е | 1.27 | BSC | 0.050 | 0.050 BSC | | | | HE | 7.40 | 8.20 | 0.291 | 0.323 | | | | L | 0.50 | 0.85 | 0.020 | 0.033 | | | | LE | 1.10 | 1.50 | 0.043 | 0.059 | | | | M | 0 ° | 10 ° | 0 ° | 10 ° | | | | Q ₁ | 0.70 | 0.90 | 0.028 | 0.035 | | | | Z | | 0.78 | | 0.031 | | | #### PACKAGE DIMENSIONS #### SOIC-16 **D SUFFIX** PLASTIC SOIC PACKAGE CASE 751B-05 - 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. - CONTROLLING DIMENSION: MILLIMETER. DIMENSIONS A AND B DO NOT INCLUDE MOLD - PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. - DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. | | MILLIN | IETERS | INC | HES | |-----|--------|--------|-------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 9.80 | 10.00 | 0.386 | 0.393 | | В | 3.80 | 4.00 | 0.150 | 0.157 | | C | 1.35 | 1.75 | 0.054 | 0.068 | | D | 0.35 | 0.49 | 0.014 | 0.019 | | F | 0.40 | 1.25 | 0.016 | 0.049 | | G | 1.27 | BSC | 0.050 |) BSC | | 7 | 0.19 | 0.25 | 0.008 | 0.009 | | K | 0.10 | 0.25 | 0.004 | 0.009 | | M | 0° | 7° | 0° | 7° | | Р | 5.80 | 6.20 | 0.229 | 0.244 | | R | 0.25 | 0.50 | 0.010 | 0.019 | #### SOLDERING FOOTPRINT ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, ON semiconductor and war registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking, pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implications the polar or other applications intended to surgical implications which the failure of the SCILLC expects existing where surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 N. American Technical Support: 800-282-9855 Toll Free Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative # **X-ON Electronics** Largest Supplier of Electrical and Electronic Components Click to view similar products for Counter Shift Registers category: Click to view products by ON Semiconductor manufacturer: Other Similar products are found below: 5962-9172201M2A MC74HC597ADG MC100EP142MNG MC100EP016AMNG 5962-9172201MFA MC74HC164BDR2G TC74HC165AP(F) 74AHC164T14-13 MC74LV594ADR2G NLV14094BDTR2G NLV74HC595ADTG MC74HC165AMNTWG TPIC6C595PWG4 74VHC164MTCX CD74HC195M96 CD4073BM96 CD4053BM96 MM74HC595MTCX 74HCT164T14-13 74HCT164S14-13 74HC4094D-Q100J NLV14014BFELG NLV74HC165ADR2G NLV74HC589ADTR2G NPIC6C595D-Q100,11 NPIC6C595PW,118 NPIC6C596ADJ NPIC6C596APW-Q100J NPIC6C596D-Q100,11 BU4094BCF-E2 BU4094BCFV-E2 74HC164D14 74HC164T14-13 TPIC6C596PWRG4 STPIC6D595MTR STP08CP05MTR CD74HC123E 74HC164D.653 74HC165D.653