ETR0212-004

Voltage Detector with Delay Circuit Built-In

GENERAL DESCRIPTION

The XC61H series is a highly accurate, low power consumption CMOS voltage detector with a delay circuit. Detect voltage is accurate with minimal temperature drift. Output configurations are available in both CMOS and N-channel open drain. Since the full delay circuit is built-in, an external delay-time capacitor is not necessary so that high density mounting is possible.

APPLICATIONS

Microprocessor reset circuitry

System battery life and charge voltage monitors

Memory battery back-up circuits

Power-on reset circuits

Power failure detection

Delay circuitry

■FEATURES

Detect Voltage Accuracy : ± 2%

 $\begin{array}{ll} \mbox{Low Power Consumption} & : 1.0 \ \mu \ A(TYP.)[\ V_{IN} = 2.0V \] \\ \mbox{Detect Voltage Range} & : 1.6V \sim 6.0V \ (0.1V \ increments) \end{array}$

Operating Voltage Range : 0.7V ~ 10.0V

Detect Voltage Temperature Characteristics

: ±100ppm/ (TYP.)

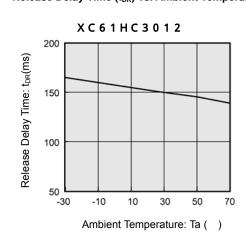
Built-In Release Delay time: 1ms (MIN.)

50ms (MIN.) 80ms (MIN.)

Output Configuration : N-ch open drain output or CMOS

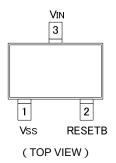
Operating Ambient Temperature : 30 ~ +80

Package : SOT-23


Environmentally Friendly : EU RoHS Compliant, Pb Free

TYPICAL APPLICATION CIRCUITS

RESETB INPUT RESETB INPUT XC61HN series Rpull is not necessary with CMOS output products


TYPICAL PERFORMANCE CHARACTERISTICS

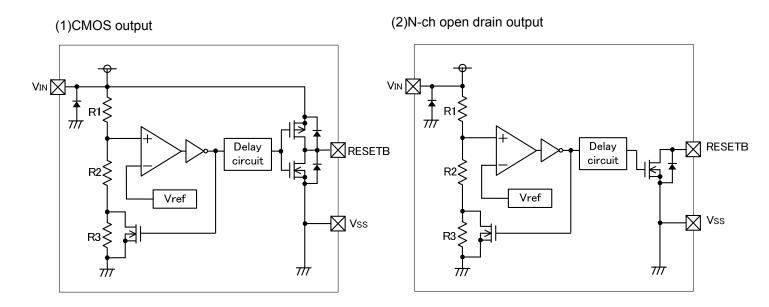
Release Delay Time (t_{DR}) vs. Ambient Temperature

PIN CONFIGURATION

PIN ASSIGNMENT

PIN NUMBER	PIN NAME	FUNCTION		
SOT-23	FININAIVIE	PONCTION		
1	V _{SS}	Ground		
2	RESETB	Output		
3	V_{IN}	Supply Voltage Input		

PRODUCT CLASSIFICATION


Ordering Information

XC61H - (*1)

DESIGNATOR	ITEM	SYMBOL	DESCRIPTION	
	Output Configuration	С	CMOS output	
	Output Configuration	N	N-ch open drain output	
	Detect Voltage (V _{DF})	16 ~ 60	e.g. 2.5V 2, 5	
		1	50ms ~ 200ms	
	Release Delay Time	4	80ms ~ 400ms	
		5	1ms ~ 50ms	
	Detect Accuracy	2	± 2.0% ^(*2)	
_ (*1)	Package (Oder Unit)	MR-G	SOT-23 (3000/Reel)	

^(*1) The "-G" suffix indicates that the products are Halogen and Antimony free as well as being fully RoHS compliant.

BLOCK DIAGRAMS

^(*2) No parts are available with an accuracy of \pm 1%

ABSOLUTE MAXIMUM RATINGS

Ta=25

PARAMETER		SYMBOL	RATINGS	UNITS	
Input Voltage		V_{IN}	V _{SS} -0.3 ~ 12.0	V	
Output Current		I _{OUT}	50	mA	
Output Voltage	CMOS	\/	V _{SS} -0.3 ~V _{IN} +0.3	V	
Output voltage	N-ch open drain output	V _{RESETB}	V _{SS} -0.3 ~ 12	V	
Power Dissipation SOT-23		Pd	250	mW	
Operating Ambient Temperature		Topr	-30 ~ +80		
Storage Temperature		Tstg	-40 ~ +125		

ELECTRICAL CHARACTERISTICS

Ta = 25

PARA	AMETER	SYMBOL	CONDITIONS		MIN.	TYP.	MAX.	UNITS	CIRCUIT
Detec	ct Voltage	V_{DF}			V _{DF(T)} x 0.98	$V_{DF(T)}$	V _{DF(T)} x 1.02	V	
Hyster	esis Width	V _{HYS}			V _{DF} x 0.02	V _{DF} x 0.05	V _{DF} x 0.08	V	
				V _{IN} = 1.5V	-	0.9	2.6		
				$V_{IN} = 2.0V$	ı	1.0	3.0		
Supply	Current (*1)	I_{SS}		$V_{IN} = 3.0V$	ı	1.3	3.4	μA	
				$V_{IN} = 4.0V$	ı	1.6	3.8		
				$V_{IN} = 5.0V$	ı	2.0	4.2		
Operati	ing Voltage	V _{IN}	V _{DF} =1.6V ~ 6.0V		0.7	-	10.0	V	
			N-ch, V _{DS} = 0.5V	$V_{IN} = 1.0V$	1.0	2.2	ı	mA	
		N-ch		$V_{IN} = 2.0V$	3.0	7.7	-		
				V _{IN} = 3.0V	5.0	10.1	-		
Outpu	ıt Current			V _{IN} = 4.0V	6.0	11.5	-		
				V _{IN} = 5.0V	7.0	13.0	-		
			P-ch, V _{DS} =2.1V (CMOS Output)	V _{IN} = 8.0V		-10.0	-2.0		
Leakage	CMOS Output (Pch)	I _{LEAK}	V _{IN} =V _{DF} x 0.9V, V _{RESETB} =0V		-	-0.01	-	μA	
Current	Nch Open Drain Output		V _{IN} =10.0V, V _{RES}	_{ETB} =10.0V	-	0.01	0.1		
_ state valuage		V _{DF} / (Topr• V _{DF})	-30 Topr 80			±100	-	ppm/	
Release	Delay Time				50	-	200		
	Release Delay Time (VDR RESETB inversion)		t _{DR} VIN changes from 0.6V to 10V		80	-	400	ms	
(1511	(VDR INLOCIBILITYEISION)				1	- 50			

VDF (T) is nominal detect voltage value Release Voltage: VDR = VDF + VHYS

^(*1) The supply current during power-start until output being stable (during release operation) is 2 µ A greater with comparison to the period after the completion of release operation because of the shoot-through current in delay current.

OPERATIONAL EXPLANATION

CMOS output

An input voltage V_{IN} starts higher than the release voltage V_{DR} . Then, V_{IN} voltage will gradually fall. When V_{IN} voltage is higher than detect voltage V_{DF} , output voltage RESETB is equal to the V_{IN} voltage.

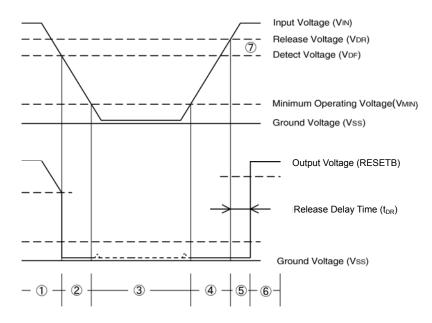
*Note that high impedance exists at RESETB with the N-channel open drain output configuration. If the RESETB pin is pulled up, RESETB will be equal to the pull up voltage.

When VIN falls below VDF, RESETB will be equal to ground voltage Vss level (detect state).

- * Note that this also applies to N-channel open drain output configurations.
- When VIN falls to a level below that of the minimum operating voltage VMIN, output will become unstable.
- *When the output pin is generally pulled up with N-channel open drain output configurations, output will be equal to pull up voltage.

When VIN rises above the Vss level (excepting levels lower than minimum operating voltage), RESETB will be equal to Vss until VIN reaches the VDR level.

Although Vin will rise to a level higher than VDR, RESETB maintains ground voltage level via the delay circuit.


After taking a release delay time, VIN voltage will be output at the RESETB pin.

*High impedance exists with the N-channel open drain output configuration and that voltage will be dependent on pull up.

Notes:

- 1. The difference between VDR and VDF represents the hysteresis width.
- 2. Release delay time (t_{DR}) represents the time it takes until when VIN voltage appears at RESETB pin once the input voltage has exceeded the VDR level.

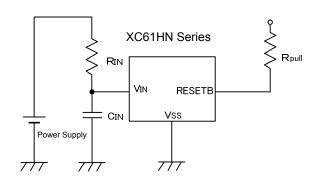
Timing Chart

NOTES ON USE

- 1. Please use this IC within the stated maximum ratings. For temporary, transitional voltage drop or voltage rising phenomenon, the IC is liable to malfunction should the ratings be exceeded.
- When a resistor is connected between the V_{IN} pin and the power supply with CMOS output configurations, irregular oscillation may occur as a result of voltage drops at R_{IN} if load current (I_{OUT}) exists. It is therefore recommend that no resistor be added. (refer to Figure 1 below)
- 3. When a resistor (R_{IN}) is connected between the V_{IN} pin and the power supply with CMOS output configurations, irrespective of N-ch open drain output configurations, oscillation may occur as a result of shoot-through current at the time of voltage release even if load current (I_{OUT}) does not exist. (refer to Figure 2 below)
- 4. If a resistor (R_{IN}) must be used, then please use with as small a level of input impedance as possible in order to control the occurrences of oscillation as described above. Further, please ensure that R_{IN} is less than $10k\Omega$ and that C_{IN} is more than 0.1μ F, please test with the actual device. However, N-ch open drain output only. (Figure 1).
- 5. With a resistor RIN connected between the V_{IN} pin and the power supply, the V_{IN} pin voltage will be getting lower than the power supply voltage as a result of the IC's supply current flowing through the V_{IN} pin.
- 6. Depending on circuit's operation, release delay time of this IC can be widely changed due to upper limits or lower limits of operational ambient temperature.
- 7. Torex places an importance on improving our products and its reliability.

 However, by any possibility, we would request user fail-safe design and post-aging treatment on system or equipment.

Irregular Oscillations


(1) Irregular oscillation as a result of load current with the CMOS output configuration:

When the voltage applied at power supply, release operations commence and the detector's output voltage increases. Load current (I_{OUT}) will flow through R_L . Because a voltage drop ($R_{IN} \times I_{OUT}$) is produced at the R_{IN} resistor, located between the power supply and the V_{IN} pin, the load current will flow via the IC's VIN pin. The voltage drop will also lead to a fall in the voltage level at the V_{IN} pin. When the V_{IN} pin voltage level falls below the detect voltage level, detect operations will commence. Following detect operations, load current flow will cease and since voltage drop at R_{IN} will disappear, the voltage level at the V_{IN} pin will rise and release operations will begin over again. Irregular oscillation may occur with this "release - detect - release" repetition.

Further, this condition will also appear via means of a similar mechanism during detect operations.

(2) Irregular oscillation as a result of shoot-through current:

Since the XC61H series are CMOS ICs, shoot-through current will flow when the IC's internal circuit switching operates (during release and detect operations). Consequently, irregular oscillation is liable to occur during release voltage operations as a result of output current which is influenced by this shoot-through current (Figure 3). Since hysteresis exists during detect operations, irregular oscillation is unlikely to occur.

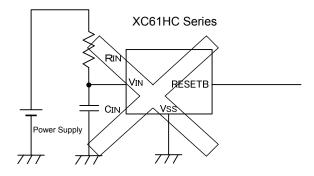


Figure 1 Use of input resistor R_{IN}

NOTES ON USE (Continued)

Irregular Oscillations (Continued)

XC61HC Series

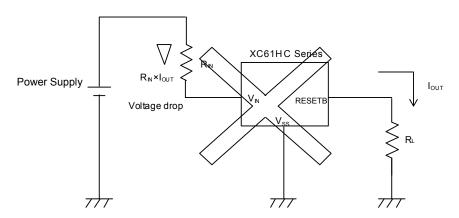


Figure 2 Irregular Oscillation by output current

XC61HC Series XC61HN Series

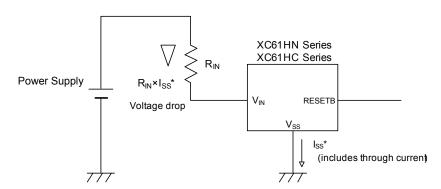
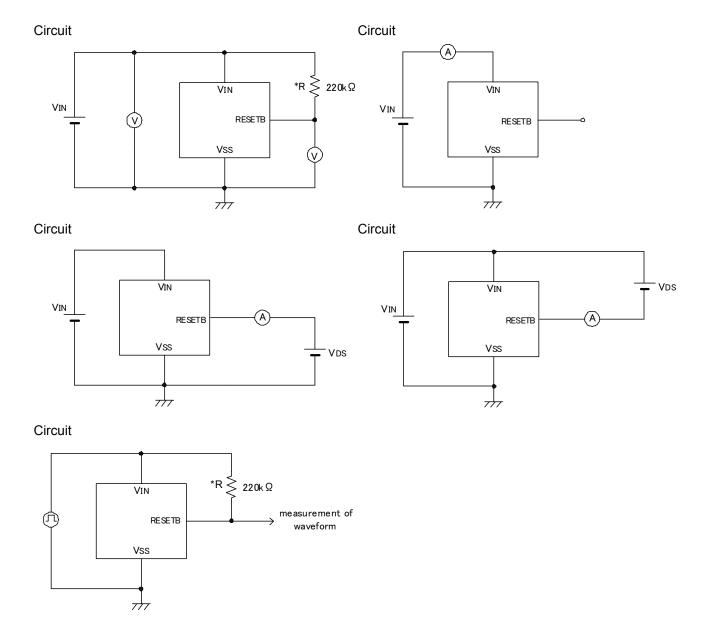
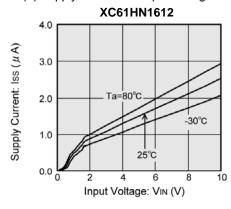
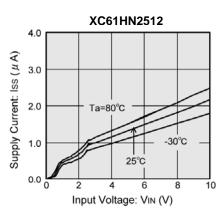
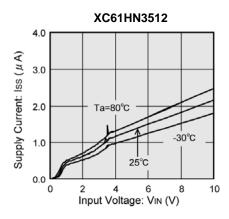



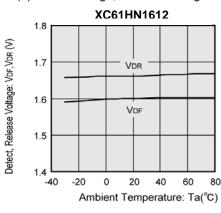
Figure 3 Irregular Oscillation by shoot-through current

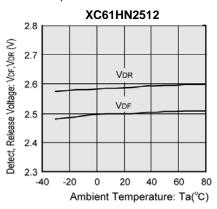

TEST CIRCUITS

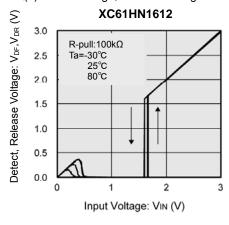



*R is not necessary with CMOS output products.

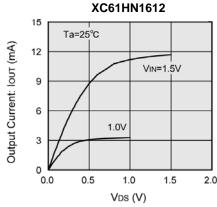
TYPICAL PERFORMANCE CHARACTERISTICS

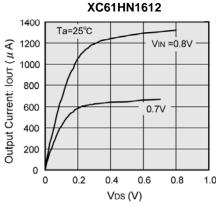

(1) Supply Current vs. Input Voltage

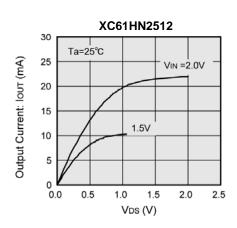



(2) Detect Voltage, Release Voltage vs. Ambient Temperature

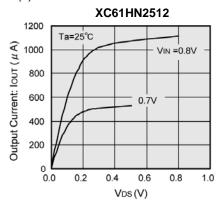


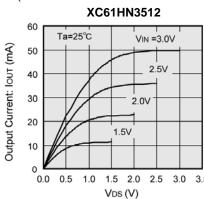

(3) Detect Voltage, Release Voltage vs. Input Voltage

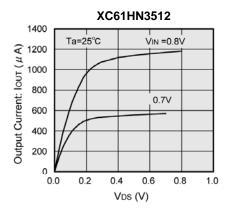




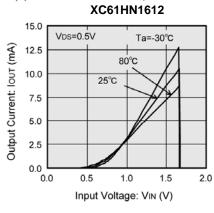
(4) N-Channel Driver Output Current vs. VDS

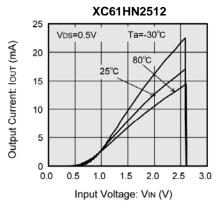


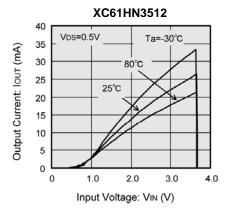


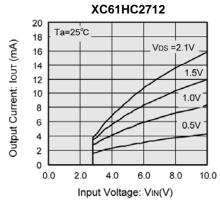


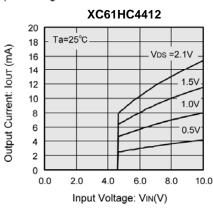
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

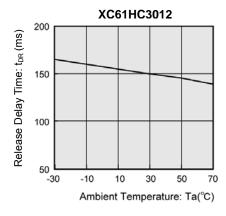

(4) N-Channel Driver Output Current vs. VDS (Continued)

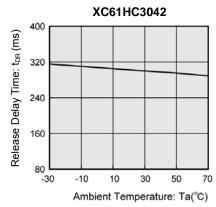


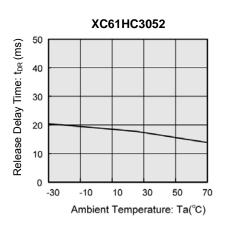



(5) N-Channel Driver Output Current vs. Input Voltage

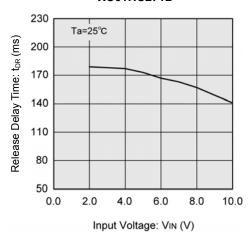





(6) P-Channel Driver Output Current vs. Input Voltage

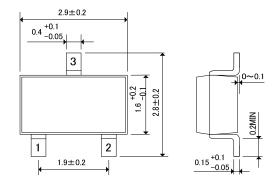


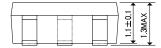
(7) Ambient Temperature vs. Release Delay Time (t_{DR})



TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(8) Input Voltage vs. Release Delay Time $(t_{\mbox{\scriptsize DR}})$

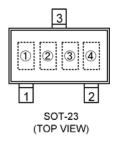

XC61HC2712



PACKAGING INFORMATION

SOT-23

(unit:mm)



XC61H Series

MARKING RULE

SOT-23

represents product series

MARK	PRODUCTS SERIES	
8	XC61H*****-G	

standard: represents output configuration and integer number of detect voltage

CMOS output (XC61HC series)

MARK	VOLTAGE (V)	
Α	1. X	
В	2. X	
С	3. X	
D	4. X	
E	5. X	
F	6. X	

N-channel open drain (XC61HN series)

MARK	VOLTAGE (V)	
Р	1. X	
R	2. X	
S	3. X	
Т	4. X	
U	5. X	
V	6. X	

represents decimal number of detect voltage and delay time.

DETECT	MARK					
VOLTAGE (V)	DELAY TIME 50ms~200ms (XC61H***1***-G)	DELAY TIME 80ms~400ms (XC61H***4***-G)	DELAY TIME 1ms~50ms (XC61H***5***-G)			
X.0	0	Α	N			
X.1	1	В	Р			
X.2	2	С	R			
X.3	3	D	S			
X.4	4	E	Т			
X.5	5	F	U			
X.6	6	Н	V			
X.7	7	K	X			
X.8	8	L	Y			
X.9	9	M	Z			

represents production lot number

0 to 9, A to Z or inverted characters of 0 to 9, A to Z repeated.

(G, I, J, O, Q,W excluded)

*No character inversion used.

- 1. The products and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date.
- 2. We assume no responsibility for any infringement of patents, patent rights, or other rights arising from the use of any information and circuitry in this datasheet.
- 3. Please ensure suitable shipping controls (including fail-safe designs and aging protection) are in force for equipment employing products listed in this datasheet.
- 4. The products in this datasheet are not developed, designed, or approved for use with such equipment whose failure of malfunction can be reasonably expected to directly endanger the life of, or cause significant injury to, the user.
 - (e.g. Atomic energy; aerospace; transport; combustion and associated safety equipment thereof.)
- Please use the products listed in this datasheet within the specified ranges.
 Should you wish to use the products under conditions exceeding the specifications, please consult us or our representatives.
- 6. We assume no responsibility for damage or loss due to abnormal use.
- 7. All rights reserved. No part of this datasheet may be copied or reproduced without the prior permission of TOREX SEMICONDUCTOR LTD.

TOREX SEMICONDUCTOR LTD.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Microprocessors - MPU category:

Click to view products by Torex Semiconductor manufacturer:

Other Similar products are found below:

MC7457RX1000LC MC7457RX1267LC MC7457VG1267LC A2C00010998 A A2C52004004 R5F117BCGNA#20 R5F52106BDLA#U0 R5S72690W266BG#U0 ADJ3400IAA5DOE MPC8245TVV266D MPC8245TZU300D MPC8260ACVVMHBB MPC8323ECVRAFDCA MPC8536ECVJAVLA BOXNUC5PGYH0AJ 20-668-0024 P1010NSN5DFB P2020NXE2HHC P5020NSE7TNB P5020NSE7VNB LS1020ASN7KQB LS1020AXN7HNB LS1020AXN7KQB A2C00010729 A A2C00039344 T1022NSE7MQB T1022NXN7PQB T1023NSE7MQA T1024NXE7PQA T1042NSN7MQB T1042NXN7WQB T2080NSN8PTB T2080NXE8TTB T2081NXN8TTB R5F101AFASP#V0 MC68302CEH20C TS68040MF33A MPC8260ACVVMIBB MPC8280CZUUPEA MPC8313ECVRAFFC MPC8313ECVRAGDC MPC8313EVRADDC MPC8313EVRAFDC MPC8313VRADDC MPC8323EVRAFDCA BOXSTCK1A8LFCL UPD78F0503AMCA-CAB-G UPD78F0513AGA-8EU-AT UPD78F0730MC-CAB-AX DF2134BFA20V