General Description

The HG3085M +5 V , half-duplex, $\pm 15 \mathrm{kV}$ ESDprotected RS-485/RS-422-compatible transceivers feature one driver and one receiver. The HG3085M include a hot-swap capability to eliminate false transitions on the bus during power-up or live insertion.

TheHG3085Mfeatures reduced slew-rate drivers that minimize EMI and reduce reflections caused by improperly terminated cables, allowing errorfree transmission up to 500 kbps .

The HG3085M feature a $1 / 8$-unit load receiver input impedance, allowing up to 256 transceivers on the bus. These devices are intended for halfduplex communications. All driver outputs are protected to $\pm 15 \mathrm{kV}$ ESD using the Human Body Model.

TheHG3085M is available in an 8-pin SO package. The devices operate over the extended $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.
ABSOLUTE MAXIMUM RATINGS(All voltages referenced to GND.)Supply Voltage VCC.
$\qquad$$+6 \mathrm{~V}$
DE, RE, DI -0.3 V to +6
A, B 8 V to +13 V
Short-Circuit Duration (RO, A, B) to GND Continuous
Continuous Power Dissipation (TA $=+70^{\circ} \mathrm{C}$)
8-Pin SO (derate $5.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)
\qquad .471 mW
Operating Temperature Range

\qquad
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature.$+150^{\circ} \mathrm{C}$
Storage Temperature Range

\qquad
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$Lead Temperature (soldering 10s)$+300^{\circ} \mathrm{C}$

Features

- $\quad+5 \mathrm{~V}$ Operation
- Hot-Swappable for Telecom Applications
- Enhanced Slew-Rate Limiting Facilitates Error-
Free Data Transmission
- Extended ESD Protection for RS-485 I/O Pins $\pm 15 \mathrm{kV}$ Human Body Model
- 1/8Unit Load , Allowing Up to 256Transceivers on the Bus
- 8 Pin-SOP/DIP Package

Applications

- Isolated RS-485 Interfaces
- Utility Meters
- Industrial Controls
- Industrial Motor Drives
- Automated HVAC Systems

Stresses beyond those listed under "Absolute

 Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
HG3085E	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$	DIP8
HG3085M	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$	SOP8

DC ELECTRICAL CHARACTERICS

$\left(\mathrm{VCC}=+5 \mathrm{~V} \pm 5 \%, \mathrm{TA}=\mathrm{TMIN}\right.$ to TMAX, unless otherwise noted. Typical values are at $\mathrm{VCC}=+5 \mathrm{~V}$ and $\left.\mathrm{TA}=+25^{\circ} \mathrm{C}.\right)$

SWITCHING CHARACTERISTICS

$\left(\mathrm{VCC}=+5 \mathrm{~V} \pm 5 \%, \mathrm{TA}=\mathrm{TMIN}\right.$ to TMAX, unless otherwise noted. Typical values are at $\mathrm{VCC}=+5 \mathrm{~V}$ and $\left.\mathrm{TA}=+25^{\circ} \mathrm{C}.\right)$

Note 4: The device is put into shutdown by bringing RE high and DE low. If the enable inputs are in this state for less than 50ns, the device is guaranteed not to enter shutdown. If the enable inputs are in this state for at least 600 ns , the device is guaranteed to have entered

Figure 1. Driver DC Test Load

Fiqure 3 Driver Timing Test Circuit

Figure 5 Driver Prodacation Delavs

Figure 2. Receiver Enable/Disable Timing Test Load

Fiqure 4 Driver Enable/Disable Timina Test Load

Figure 6. Driver Enable and Disable Times

Fiaure 7. Receiver PropagationDelays

Figure 8. Receiver Enable and Disable Times

Pin Description

PIN	NAME	FUNCTION
1	RO	Receiver Output. When RE is low and if $A-B \geq-50 \mathrm{mV}$, RO will be high; if $A-B \leq-200 \mathrm{mV}$, RO will be low.
2	RE	Receiver Output Enable. Drive RE low to enable RO; RO is high impedance when RE is high. Drive RE high and DE low to enter low-power shutdown mode. RE is a hot-swap input (see the Hot-Swap Capability section for more details).
3	DE	Driver Output Enable. Drive DE high to enable driver outputs. These outputs are high impedance when DE is low. Drive RE high and DE low to enter low-power shutdown mode. DE is a hot-swap input (see the Hot-Swap Capability section for more details).
4	DI	Driver Input. With DE high, a low on DI forces non-inverting output low and inverting output high. Similarly, a high on DI forces non-inverting output high and inverting output low.
5	GND	Ground
6	A	Non-inverting Receiver Input and Non-inverting Driver Output
7	B	Inverting Receiver Input and Inverting Driver Output
8	Vcc	Positive Supply, $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$. Bypass V_{CC} to GND with a $0.1 \mu \mathrm{~F}$ capacitor.

Function Table

TRANSMITTING				OUTPUTS	
INPUTS		DI	B/Z	A/Y	
RE	DE	1	0	1	
X	1	0	1	0	
X	1	X	High-Z		
0	0	X	Shutdown		
1	0	High-Z			

RECEIVING			
INPUTS		A-B	OUTPUTS
RE	DE	$\geq-0.05 \mathrm{~V}$	RO
0	X	$\leq-0.2 \mathrm{~V}$	1
0	X	Open/shorted	0
0	X	X	1
1	1	X	High-Z
1	0	Shutdown	

Applications Information

256 Transceivers on the Bus

The standard RS-485 receiver input impedance is $12 \mathrm{k} \Omega$ (one-unit load), and the standard driver can drive up to 32 unit loads. The HG3085M family of transceivers have a 1/8-unit-load receiver input impedance $(96 \mathrm{k} \Omega$), allowing up to 256 transceivers to be connected in parallel on one communication line. Any combination of these devices and/or other RS-485 transceivers with a total of 32 unit loads or less can be connected to the line.

Low-Power Shutdown Mode

Low-power shutdown mode is initiated by bringing both RE high and DE low. In shutdown, the devices typically draw only 2 uA of supply current.
RE and DE may be driven simultaneously; the parts are guaranteed not to enter shutdown if RE is high and DE is low for less than 50 ns . If the inputs are in this state for at least 600 ns , the parts are guaranteed to enter shutdown.

Reduced EMI and Reflections

HG3085M isslew-rate limited, minimizing EMI and reducing reflections caused by improperly terminated cables.

Driver Output Protection

Two mechanisms prevent excessive output current and power dissipation caused by faults or by bus contention. The first, a fold-back current limit on the output stage, provides immediate protection against short circuits over the whole common-mode voltage range (see Typical Operating Characteristics). The second, a thermal shutdown circuit, forces the driver outputs into a high-impedance state if the die temperature becomes excessive.

Figure 9 : Pin Configuration and Typical Half-Duplex Operating Circuit

Figure 10 Typical Half-Duplex RS-485 Network

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RS-422/RS-485 Interface IC category:
Click to view products by HGSEMI manufacturer:

Other Similar products are found below :
402824F 702835FB MAX488ECPA MAX3491CSDT MAX3490AEGSA+ MAX3483AEASA+ MAX3491EESDT MAX3488AEGSA+ MAX3083CSD MAX487CSA SP3071EEN-L SP3072EEN-L/TR SP3075EEN-L SP3075EEN-L/TR SP3077EEN-L SP3078EEN-L SP3078EEN-L/TR SP3082EEN-L SP3088EEN-L SP3483CN-L SP3483CN-L/TR SP3483EN-L SP3485CN-L SP3485CN-L/TR SP3485EN-
\underline{L} SP3485EN-L/TR SP3490EN-L SP3494EN-L SP481EEN-L/TR SP483EN-L/TR SP490EEN-L/TR SP491EN-L/TR XR3078XID-F SP3082EEN-L/TR SP330EEY-L/TR MAX14783EATA+T MAX3098EBCEE+T MAX3045BESE+T MAX22501EATA+T MAX22502EATC+T MAX3042BCSE+T SP3077EEN-L/TR MAX487ESA+TCBX MAX1483CUA+T MAX487CUA+T CA-IS3082W CAIS3088W SP3074EEN-L/TR NSI83085 MAX3097EESE+T

