

SPECIFICATION

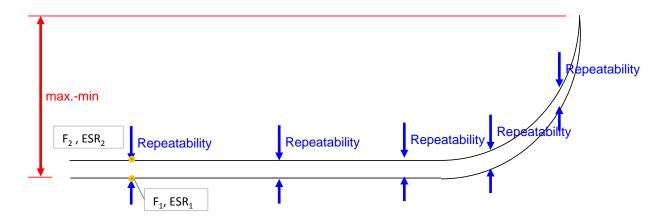
Customer: RIC-VIVO		
		Receipt
Item:	Crystal Unit	_ '
Type:	NX2016SF	
Nominal Frequency:	19.2 MHz	_
Customer's Spec. No.:		_
NDK Spec. No.:	EXS00A-CS09986	

	Revision Record										
Rev.	Rev. Date	Items	Contents	Approved	Checked	Drawn					
	22. Jun. 2016	Issue		I. Miyahara	T. Asamizu	Y. Takaki					

1. Customer Specifications Number : ---

2. NDK Specification Number : EXS00A-CS09986

3. Type : NX2016SF


4. Electrical Characteristics

	Parameters	SYM.		Electri	cal Spe	С.	Notes
	Parameters	STIVI.	Min	TYP	MAX	Units	Notes
1	Nominal frequency	f _{nom}		19.2		MHz	-
2	Overtone order	-	Fu	ındamer	ıtal	-	AT-CUT
3	Frequency tolerance	-	-10	-	+10	ppm	at +25°C
4	Frequency stability over temperature	-	-12	-	+12	ppm	at - 30 to +85°C The reference temp. shall be +32°C
5	Equivalent resistance	-	-	-	80	Ω	IEC π-Network / Series
6	Load capacitance	C_L	-	7	-	pF	IEC π-Network
7	Level of drive	DL	-	10	100	μW	-
8	Temperature coefficient (Compliar	t with Qu	ualcomm	Mini-Sp	ec. 80-\	/9690-26)	
8.1	Inflection temperature	T0	+30.5	+32	+33.5	°C	-
8.2	Constant range	C0	-10	-	10	ppm	-
8.3	1 st order coefficient range	C1	-0.4	-	-0.1	ppm/°C	-
8.4	2 nd order coefficient range	C2	-4.5	-	+4.5	x 10 ⁻⁴ ppm/°C ²	-
8.5	3 rd order coefficient range	С3	+8.5	1	+11.5	x 10 ⁻⁵ ppm/°C ³	-
9	Shunt Capacitance	Cp	0.3	-	1.3	pF	Not grounded
10	Motional Capacitance	C _m	1.2	-	3.1	fF	Not grounded
11	Motional Inductance	L _m	22.2	-	57.3	mΗ	Not grounded
12	Pulling Sensitivity	PS	8.7	,	29.1	ppm/pF	at CL = 7pF This value is calculated by following formula. Pulling Sensitivitiy(PS) [ppm/pF] = $\frac{C_m \times 1000}{2 (C_p + C_L)^n}$
13	Q-factor	-	75,000	-	-	•	-
14	Spurious resistance	-	1,100	-	-	Ω	within Fnom +/- 1MHz
15	Insulation Resistance	-	500	-	-	МΩ	Terminal to terminal insulation resistance also terminal to cover insulation resistance must be $500M\Omega$ (Min.) when DC100V \pm 15V is applied.
16	Air-tightness	-	-	-	1.1×10 ⁻⁹	Pa m ³ /s	Helium leak detector
17	Operating temperature range	-	-30	-	+105	°C	-
18	Storage temperature range	-	-40	-	+105	°C	-
19	Frequency drift after reflow	-	-2	-	+2	ppm	after two reflow passed.
20	Aging	_	-0.7	-	+0.7	ppm	1 st year
	Aging	-	-5	-	+5	ppm	7 th years

5. Drive level dependency (DLD)

: Measurement method and specs are defined below.

	Measurement condition	Freq.	ESR
Drive level	0.01uW to 100uW to 0.01uW		
Number of points	29 points (15 points up, 15 points down)		
Max Min. spec.	Difference between max and min in two way measurement.	<3ppm	<20%
	Freq.: F _{MAX} -F _{MIN}		
	ESR: (ESR _{MAX} -ESR _{MIN})/ESR _{MIN}		
Repeatability spec.	Repeatability of two way measurement in above condition.	<0.7ppm	<10%
	Freq.: F ₂ -F ₁		
	ESR: (ESR ₂ -ESR ₁)/ESR ₁		
	ESR ₁ : first measurement on each drive levels		
	ESR ₂ : second measurement on each drive levels		

6. Residual frequency stability slope

: ±50 ppb/°C Max.

Condition 1A - Test condition (continuous temperature rate change of $\sim 1.0^{\circ}$ C/min) The residual is defined as the difference between the crystal measured FT curve and the 5th order polynomial fit of the FT curve. Frequency is measured between -30 to +85°C every 1°C. Residual slope is calculated by the formula below.

$$FIT\Delta f(t_N) = a(t_N - t_0)^5 + b(t_N - t_0)^4 + c(t_N - t_0)^3 + d(t_N - t_0)^2 + e(t_N - t_0) + f$$

$$t_1 = -30, t_2 = -29, \dots t_{114} = +84, t_{115} = +85^{\circ}C$$

$$t_0 = +32^{\circ}C$$

$$\begin{aligned} RES(t_N) &= F(t_N) - FIT\Delta f(t_N) \\ RES &_ SLP = RES(t_{N+1}) - RES(t_N) \end{aligned}$$

7.1. 5°C small orbit hysteresis 1

: $\pm 50 \text{ ppb/}^{\circ}\text{C Max}$. Ta = -30 to +85°C

Condition1B test condition (continuous temperature rate change of ~1.0°C/min.)

- Measure FT points every 0.5°C while cycling temperature over a 5°C small temperature orbit, an example 5°C small orbit temperature cycle is +30°C to +35°C to +30°C.
- During every individual heating/cooling cycle there should be 11 points; discard the first point of
 each heating and cooling cycle; this leaves 10 points for each heating and cooling cycle.
 Subtract the fifth-order polynomial best fit from 1A for each of the 10 points, and then calculate
 the slope of the residual for each of these heating and cooling 10 point curves.
- The residual slope should be within +/-50 ppb/°C.

7.2. 5°C small orbit hysteresis 2

: 100 ppb (magnitude) peak-peak. Ta = -30 to +85°C

Condition 2 test condition (continuous temperature rate change of ~1.0°C/min.)

- Measure FT points every 0.5°C while cycling temperature over a 5°C small temperature orbit, an example 5°C small orbit temperature cycle is +30°C to +35°C to +30°C.
- During every individual heating/cooling cycle there should be 11 points; discard the first and last point of each heating and cooling cycle, which results in 9 temperature points. Calculate the average measured peak-to-peak frequency difference for these 9 temperature points.
- The average difference is the magnitude of the small orbit hysteresis 2.
- The temperature is based on thermistor.

8. Thermistor characteristics

 8.1. Size
 : $0.6 \times 0.3 \times 0.15$ (mm)

 8.2. Resistance value (at +25°C)
 : $100 (k\Omega) \pm 1\%$

 8.3. B Constant (+25/+50°C)
 : $4250 (K) \pm 1\%$

 8.4. Rated power (at 25°C)
 : 100 (mW) Max.

9. Examination results document

Since a performance is guaranteed, an examination results document does not submit.

10. Application drawing

 10.1. Dimension Drawing
 : EXD14B-00584

 10.2. Taping and Reel figure
 : EXK17B-00371

 : EXK17B-00370

 10.3. Holder Marking
 : EXH11B-00319

10.3. Holder Marking : EXH11B-00319 10.4. Reliability assurance Item : EXS30B-00808

11. Notice

- 11.1. Order items are manufactured according to specification. As to conditions, which are not indicated in this specification and unpredictable such as applied condition and oscillation margin, please check them beforehand.
- 11.2. Unless we receive request for modification within 3 weeks from the issue date of this NDK specification sheet, we will supply products according to this specification. Also, if you'd like to modify specification of order, which has been placed with delivery request within 3 weeks from the issue data of this specification sheet, we would like to discuss with you separately.
- 11.3. In no event shall the company be liable for any product failure resulting from an inappropriate handling or operation of the product beyond the scope of its guarantee.
- 11.4. Where any change to the process condition is made due to the change(s) in the production

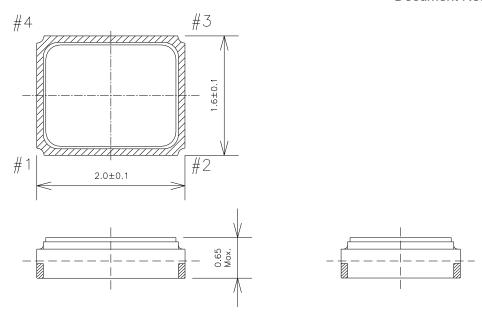
line, inform personnel of the specifications.

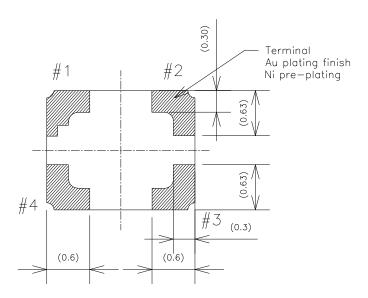
- 11.5. Should this specification data give rise to any disputes relating to any intellectual property rights or any other rights of a third person, the company shall not indemnify anyone for any damage. Their disclosure must not be construed as the grant of a license to use any of the intellectual property rights owned by the company.
- 11.6. If you intend to use products listed on this specification for applications that may result in loss of life or assets (controls relating to safety, medical equipment, aeronautical equipment, space equipment, etc.), please do not fail to advise us of your intention beforehand.
- 11.7. In the company's production process whatever amount of ozone depleting substances (ODS) as specified in the Montreal protocol is not used.
- 11.8. Information contained in this specification must not be quoted, reproduced or used for other purposes including processing either in part or in full without obtaining prior approval from the company.
- 11.9. The appearance color has a different case by purchasing it more than 2 suppliers of the component, but characteristic and reliability are guaranteed.
- 11.10. In case of the product long time keep at high temperature and humidity, may affect product characteristic (solder ability) and a packing condition.

Please keep at storage condition of temperature +5°C ~+35°C, humidity ~85%RH.

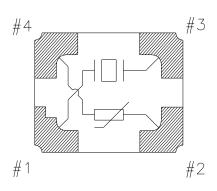
11.11. Crystal units will be damaged by ultrasonic welding process due to resonance of crystal wafer itself. NDK does not recommend using ultrasonic welding. If Ultra Sonic welding used, NDK strongly recommend verifying crystal unit damage by ultrasonic weld.

12. Prohibited items

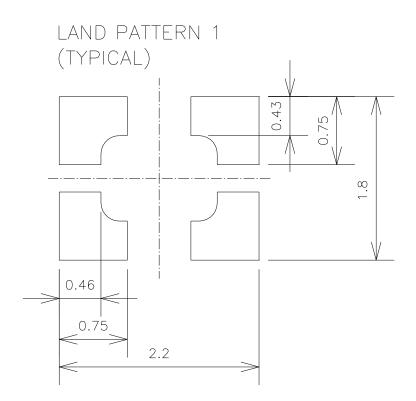

Be sure to use the product under the following conditions. Otherwise, the characteristics deterioration or destruction of the product may result.

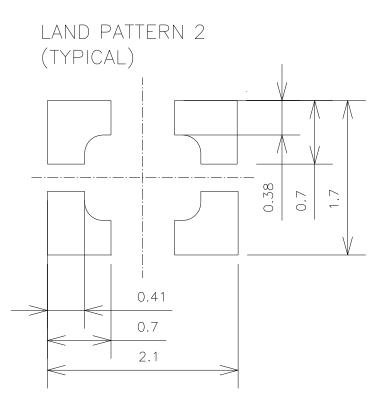

(1) Reflow soldering heat resistance

Peak temperature: 265°C, 10 sec Heating: 230°C or higher, 40 sec Preheating: 150°C to 180°C, 120 sec

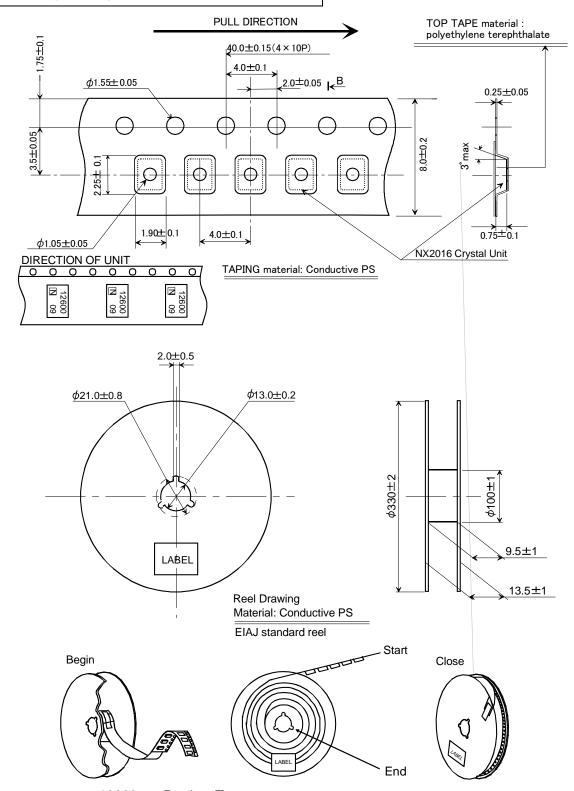

Reflow passage times: twice (2) Manual soldering heat resistance

Pressing a soldering iron of 400°C on the terminal electrode for four seconds (twice).

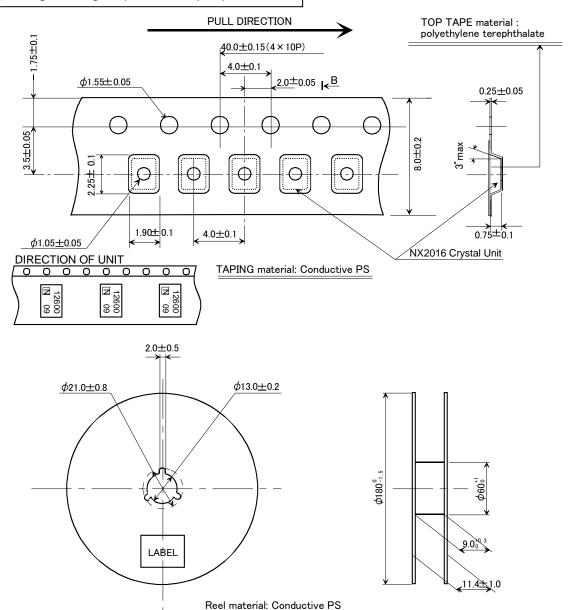


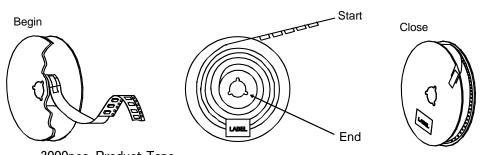

Terminal land connection (TOP VIEW)

# 1	XTAL IN
#2	THERMISTOR OUT, GND
#3	XTAL OUT
#4	THERMISTOR IN


Dat	te of Revise	Charge	Approved	Reason				
	Date	Name	Third Angle Proje	ection	Tolerance	Scale		
Drawn	15. Mar. 2013	15. Mar. 2013	Dimension:mm			/	/	
Designed	15. Mar. 2013	15. Mar. 2013	Title	Title			Rev.	
Checked	15. Mar. 2013	15. Mar. 2013	NX201	6SF	EVD14B 00	NEO 4/4/2\		
Approved _{15. Mar. 2013}		15. Mar. 2013	Dimension	Dimension Drawing		EXD14B-00584(1/2)		

Da	te of Revise	Charge	Approved	Reason				
	Date	Name	Third Angle Projection		Tolerance So		ale	
Drawn	15. Mar. 2013	T.Asamizu	Dimension:mr	n			/	
Designed	15. Mar. 2013	T.Asamizu	Title			Drawing No.		Rev.
Checked	15. Mar. 2013	I.Miyahara	NX201	6SF	EXD14B-00584(2/2)		NEO 4/2/2\	
Approved	15. Mar. 2013	M.Kubota	Dimension Drawing		g	EAD 14B-00	J304(<i>2</i> /2)	

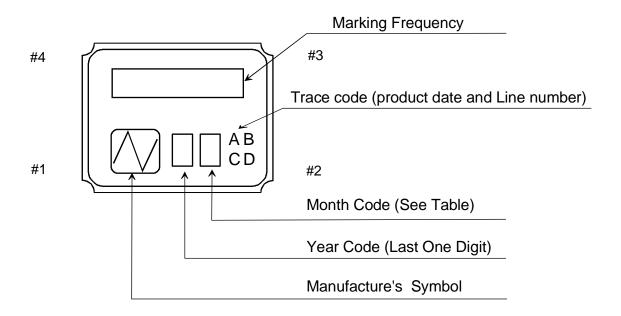

This packing drawing is specified for mass-production



10000pcs-Product Tape

		- 	-1				
D	ate of Revise	Charge	Approved	Reason			
Date		Name	Third Angle Projection T		Tolerance	Sc	ale
Drawn	30 Jul. 2013	H. Ohkubo	Dimension:mn	Dimension:mm			/
Designed	30 Jul. 2013	H. Ohkubo	Title		Drawing No.		Rev.
Checked			NX2016SF Taping and Reel Spec.		FVI/47	2 00274	
Approved	30 Jul. 2013	K. Oguri			ec.	EXK17B-00371	

This packing drawing is specified for pre-production



EIAJ standard reel

Г	ate of Revise	Charge	Approved	Reasor				
	ale of Nevise	Charge	Approved	Reason				
Date Na		Name	Third Angle Projection		Tolerance		So	ale
Drawn	30 Jul. 2013	H. Ohkubo	Dimension:mi	Dimension:mm				/
Designed	30 Jul. 2013	H. Ohkubo	Title			Drawing No.		Rev.
Checked			NX2016SF Taping and Reel Spec.		EXK17B-00370			
Approved	30 Jul. 2013	K. Oguri			EXKI/D.			

NIHON DEMPA KOGYO CO., LTD.

NOTE

1. Month Code Table

Month	1	2	3	4	5	6	7	8	9	10	11	12
	Jan.	Feb.	Mar.	Apr.	May.	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
Month Code	1	2	3	4	5	6	7	8	9	Х	Υ	Z

^{*}Marking digits are not include a decimal point and dot mark.

	Dat	te of Revise	Charge	Approved	Reason	1				
Α	10	. Jul. 2008	T.Asamizu	K.Kubota	K.Kubota Delete applica		cation period.			
Date		Date	Name	Third Angle Projection T		Tolerance	Scale			
Drav	wn	14. Feb. 2006	T.Asamizu	Dimension:	mm				/	
Des	signed	14. Feb. 2006	T.Asamizu	Title	Title		Drawing No.		Rev.	
Che	ecked	14. Feb. 2006	I.Miyahara	Crystal Holder Marking		rking EXH11B-00319		00240	_	
App	roved	14. Feb. 2006	K.Okamoto	Crystal Hol	uer wark	king	EVUIID.	-00319	А	

Reliability assurance item (1/1)

		<u></u>	<u></u>	(page: 1/2)				
No.	Test Item	Те	est Methods	Spec. Code				
1	High temperature	Temperature: +85 °C Test time: 500 Hr.		A, C				
2	Cold resistance	Temperature: -40 °C Test time: 500 Hr.	A, C					
3	Humidity	at +85 °C with 80 to 85 % RI	A, C					
4	Thermal shock		Temperature cycle as shown in (Fig.1) for 100 cycle. ONE CYCLE (Fig.1)					
5	Vibration	10 to 2000Hz 1.52 mm or 20 G 20 minutes Three mutually perpendicular axes each 12 times.	A, C					
6	Shock 1	Shock Test time	3000 Gs 0.3 msec. Six mutually perpendicular axes each 1 times.	A, C				
7	Shock 2	Shock Height Drop times	Device are put on the weight of 200 g and dropped on concrete board. 1.5 m Six mutually perpendicular axes	A, C				

Specification code	Specification
A	Δ F/F \leq ±1.0 ppm Δ Cl \leq ±15 % or ±2 Ω greater value
В	The electrodes shall acquire a new solder coat over at least 90 % of immersed area.
С	Thermistor resistance: $\Delta R/R \le 5\%$

Temperature cycle as shown in (Fig2.) for 3 cycle.

Residual heat temperature Residual heat time

Peak temperature

8

9

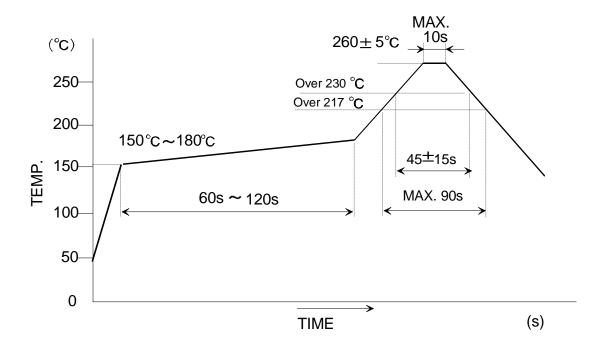
Solerability

Reflow resistance

each 10 times.

(more than 215 °C 10 to 30 sec)

150 °C 60 to 120 sec


240°C

В

A, C

Reliability assurance item (2/2)

Recommended reflow profile

A: 150 to 180 $^{\circ}\text{C}$ (90 ± 30 sec.)

B: 230°C min. (45 ± 15 sec.)

C: Peak temperature. 260°C ± 5 °C (10sec. max.)

D: 217 °C Min. (90 sec. max.)

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Crystals category:

Click to view products by Nihon Dempa Kogyo manufacturer:

Other Similar products are found below:

CS325S24000000ABJT 718-13.2-1 MC405 32.0000K-R3:PURE SN FC-135R 32.7680KF-A3 7A-40.000MAAE-T 7B-27.000MBBK-T FL2000085 9B-15.360MBBK-B 9C-7.680MBBK-T ASH7K-32.768KHZ AT-41.600MAGQ-T BTD1062E05A-513 LFXTAL066198Cutt 9C-14.31818MBBK-T FA-238 50.0000MB30X-K3 FC-12M 32.7680KA-AC3 SSPT7F-9PF20-R FX325BS-38.88EEM1201 LFXTAL065253Cutt LFXTAL066431Cutt XT9S20ANA14M7456 XT9SNLANA16M 646G-24-2 7A-24.576MBBK-T 7B-30.000MBBK-T WX26-32.768K-6PF 9B-14.31818MBBK-B CD1AM 7B-25.000MAAE-T 7A-14.31818MBBK-T 6504-202-1501 6526-202-1501 FA-118T 27.1200MB50P-K0 FC-135R 32.7680KA-A3 ABM12-104-37.400MHZT ABLS-10.000MHZ-D3W-T BTJ112E01E-513 BTJ722K01C-7067 BTL-20-513 TSX-3225 24.0000MF15X-AC TSX-3225 16.0000MF18X-AC BTJ120E02C BTL-12-513 7A-10.000MBBK-T 7A-11.0592MBBK-T ABM12-103-24.000MHZT CS325S25000000ABJT ABM3B-25.000MHZ-B2-X-T FC-135 32.7680KA-A5 FX0800015