

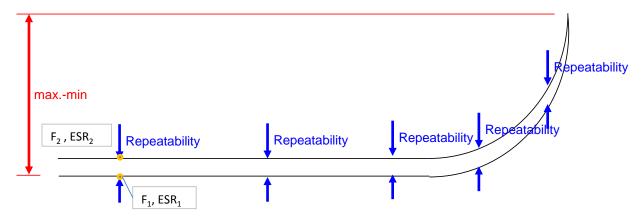
SPECIFICATION

Customer: RIC-VIVO		
		Receipt
Item:	Crystal Unit	
Type:	NX1612SB	
Nominal Frequency:	38.4 MHz	
Customer's Spec. No.:		
NDK Spec. No.:	EXS00A-CS10526	

Revision Record			
Items Contents Approved Checked Draw	Items	Date	Rev.
issue I. Miyahara Y. Tak	issue	27. Mar. 2017	
9.5. Reliability Item Change : Reliability Assurance Item According to Customer's request. I. Miyahara Y. Tak	9.5. Reliability Item	05. Jun. 2017	

1. Customer's Spec. No. : ---

2. NDK Spec. No. : EXS00A-CS10526


3. Type : NX1612SB

4. Electrical Specifications

	Description of the second of t	0)/14		Electri	cal Spec	D.	Neter
	Parameters	SYM.	Min	TYP	MAX	Units	Notes
1	Nominal frequency	f_{nom}		38.4		MHz	-
2	Overtone order	-	Fundamental -		-	AT-CUT	
3	Frequency tolerance	-	-10	-	+10	ppm	at +25°C
4	Frequency versus temperature characteristics	-	-12	•	+12	ppm	at -30~+85°C The reference temperature shall be +29°C
5	Equivalent resistance	-	-	-	30	Ω	IEC π-Network / Series
6	Load capacitance	C_L	-	8	-	pF	IEC π-Network
7	Level of drive	DL	10	ı	200	μW	-
8	Inflection point	T0	27.5	29	30.5	°C	
9	Constant range	C0	-10	-	10	ppm	
10	1 st order curve fitting parameter	C1	-0.40	-	-0.1	ppm/°C	
11	2 nd order curve fitting parameter	C2	-4.5	•	4.5	x 10 ⁻⁴ ppm/°C ²	
12	3 rd curve fitting parameter	С3	8.5	-	11.5	x 10 ⁻⁵ ppm/°C ³	
13	Pulling Sensitivity	PS	10	-	16	ppm/pF	CL=8pF/ Not grounded This value is calculated by following formula. $PS = [ppm/pF] = \frac{Cm \times 1000}{2(C_p + C_L)^2}$ Unit: C _p (pF), C _m (fF) and C _L (pF)
14	Quality factor (Q)	-	75,000	-	-	-	-
15	Spurious mode series resistance	-	1,100	ı	-	Ω	± 1 MHz
16	Aging	-	-0.7	-	0.7	ppm	1 st year
17	Frequency drift after reflow	-	-2	-	2	ppm	after two reflow passed.
18	Insulation resistance	-	500	-	-	МΩ	Terminal to terminal insulation resistance also terminal to cover insulation resistance when DC100V ±15V is applied.
19	Operating temperature range	-	-30	-	+105	°C	-
20	Storage temperature range	-	-40	-	+105	°C	-
21	Air-tightness	-	-	-	1.1×10 ⁻⁹	Pa m³/s	Helium leak detector
22	MSL	-	-	-	-	-	MSL 1
23	ESD(HBM)	-	-	-	1000	V	Guarantee voltage
24	ESD(MM)	-	-	-	200	V	Guarantee voltage

5. Drive level dependency (DLD) : Measurement method and specs are defined below.

	Measurement condition						
Drive level	0.01uW to 100uW to 0.01uW						
Number of points	29 points (15 points up, 15 points down)						
Max Min. spec.	Difference between max and min in two way measurement.	<3ppm	<20%				
	Freq.: F _{MAX} -F _{MIN}						
	ESR: (ESR _{MAX} -ESR _{MIN})/ESR _{MIN}						
Repeatability spec.	Repeatability of two way measurement in above condition.	<0.7ppm	<10%				
	Freq.: F ₂ -F ₁						
	ESR: (ESR ₂ -ESR ₁)/ESR ₁						
	ESR ₁ : first measurement on each drive levels						
	ESR ₂ : second measurement on each drive levels						

6. 1. Residual frequency stability slope

: ±50 ppb/°C Max.

Condition 1A - Test condition (continuous temperature rate change of ~1.0°C/min)

The residual is defined as the difference between the crystal measured FT curve and the 5th order polynomial fit of the FT curve. Frequency is measured between
 30 to +85°C every 1°C. Residual slope is calculated by the formula below.

FIT
$$\Delta f(t_{N}) = a(t_{N} - t_{o})^{5} + b(t_{N} - t_{o})^{4} + c(t_{N} - t_{o})^{3} + d(t_{N} - t_{o})^{2} + e(t_{N} - t_{o}) + f(t_{N} - t_{o})^{2} + e(t_{N} - t_{o}) + f(t_{N} - t_{o})^{2} + e(t_{N} - t_{o}) + f(t_{N} - t_{o})^{2} + e(t_{N} - t_{o})$$

6.2. 5°C small hysteresis 1 : ± 50 ppb/°C Max. Ta = -30 to +85°C

Condition1B test condition (continuous temperature rate change of ~1.0°C/min.)

- Measure FT points every 0.5°C while cycling temperature over a 5°C small temperature orbit, an example 5°C small orbit temperature cycle is +30°C to +35°C to +30°C.
- During every individual heating/cooling cycle there should be 11 points; discard the first point of each heating and cooling cycle; this leaves 10 points for each heating and cooling cycle.
- Subtract the fifth-order polynomial best fit from 1A for each of the 10 points, and

then calculate the slope of the residual for each of these heating and cooling 10 point curves.

- The residual slope should be within +/-50 ppb/°C.

6.3. 5°C small orbit hysteresis 2 : 100 ppb (magnitude) peak-peak. Ta = -30 to +85°C Condition 2 test condition (continuous temperature rate change of ~1.0°C/min.)

- Measure FT points every 0.5°C while cycling temperature over a 5°C small temperature orbit, an example 5°C small orbit temperature cycle is +30°C to +35°C to +30°C.
- During every individual heating/cooling cycle there should be 11 points; discard
 the first and last point of each heating and cooling cycle, which results in 9
 temperature points. Calculate the average measured peak-to-peak frequency
 difference for these 9 temperature points.
- The average difference is the magnitude of the small orbit hysteresis 2.
- The temperature is based on thermistor.

7. Thermistor characteristics

7.1. Size $: 0.6 \times 0.3 \times 0.15 \text{ (mm)}$ 7.2. Resistance value (at +25°C) $: 100 \text{ (k}\Omega) \pm 1\%$ 7.3. B Constant (+25/+50°C) $: 4250 \text{ (K)} \pm 1\%$ 7.4. Rated power (at 25°C) : 100 (mW) Max.

8. Examination results document

Since a performance is guaranteed, an examination results document does not submit.

9. Application drawing

9.1. Dimension Drawing : EXD14B-00597 9.2. Taping and Reel figure : EXK17B-00405 9.3. Holder Marking : EXH11B-00319 9.4. Packing Label : EXK17B-00422 9.5. Reliability assurance Item : EXS30B-01030

10. Notice

- 10.1 Order items are manufactured according to specification. As to conditions, which are not indicated in this specification and unpredictable such as applied condition and oscillation margin, please check them beforehand.
- 10.2 Unless we receive request for modification within 3 weeks from the issue date of this NDK specification sheet, we will supply products according to this specification. Also, if you'd like to modify specification of order, which has been placed with delivery request within 3 weeks from the issue data of this specification sheet, we would like to discuss with you separately.
- 10.3 In no event shall the company be liable for any product failure resulting from an inappropriate handling or operation of the product beyond the scope of its guarantee.
- 10.4 Where any change to the process condition is made due to the change(s) in the production line, inform personnel of the specifications.
- 10.5 Should this specification data give rise to any disputes relating to any intellectual property rights or any other rights of a third person, the company shall not indemnify anyone for any damage.

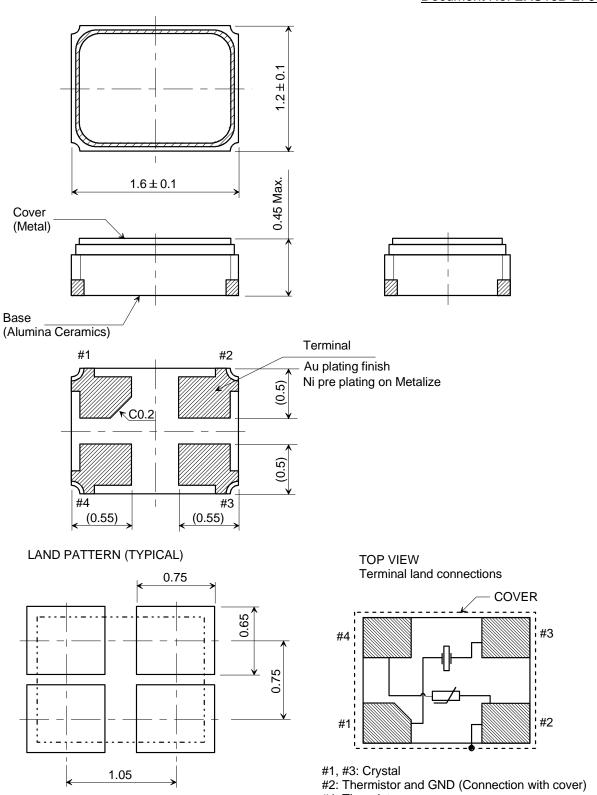
Their disclosure must not be construed as the grant of a license to use any of the intellectual property

rights owned by the company.

- 10.6 If you intend to use products listed on this specification for applications that may result in loss of life or assets (controls relating to safety, medical equipment, aeronautical equipment, space equipment, etc.), please do not fail to advise us of your intention beforehand.
- 10.7 In the company's production process whatever amount of ozone depleting substances (ODS) as specified in the Montreal protocol is not used.
- 10.8 Information contained in this specification must not be quoted, reproduced or used for other purposes including processing either in part or in full without obtaining prior approval from the company.
- 10.9 The appearance color and so on have a different case by purchasing it more than 2 suppliers of the component, but characteristic and reliability are guaranteed.
- 10.10 In case of the product long time keep at high temperature and humidity, may affect product characteristic (solder ability) and a packing condition.
 - Please keep at storage condition of temperature +5°C ~+35°C, humidity ~85%RH.
- 10.11 Crystal units will be damaged by ultrasonic welding process due to resonance of crystal wafer itself. NDK does not recommend using ultrasonic welding. If Ultra Sonic welding used, NDK strongly recommend verifying crystal unit damage by ultrasonic weld.

11. Prohibited items

Be sure to use the product under the following conditions. Otherwise, the characteristics deterioration or destruction of the product may result.

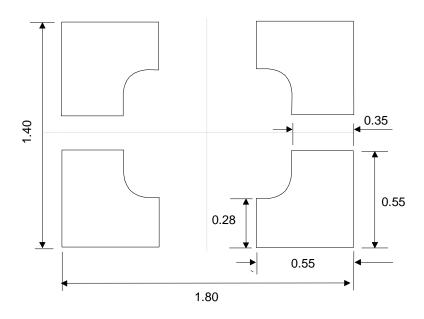

(1) Reflow soldering heat resistance

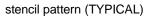
Peak temperature: 265°C, 10 sec Heating: 230°C or higher, 40 sec Preheating: 150°C to 180°C, 120 sec

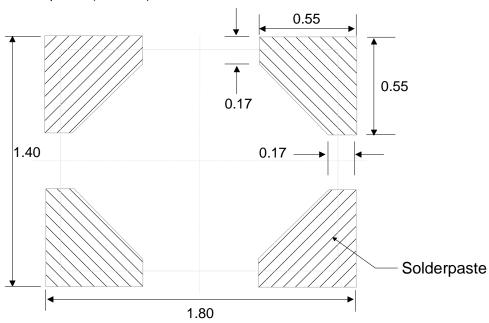
Reflow passage times: twice

(2) Manual soldering heat resistance

Pressing a soldering iron of 400°C on the terminal electrode for four seconds (twice).

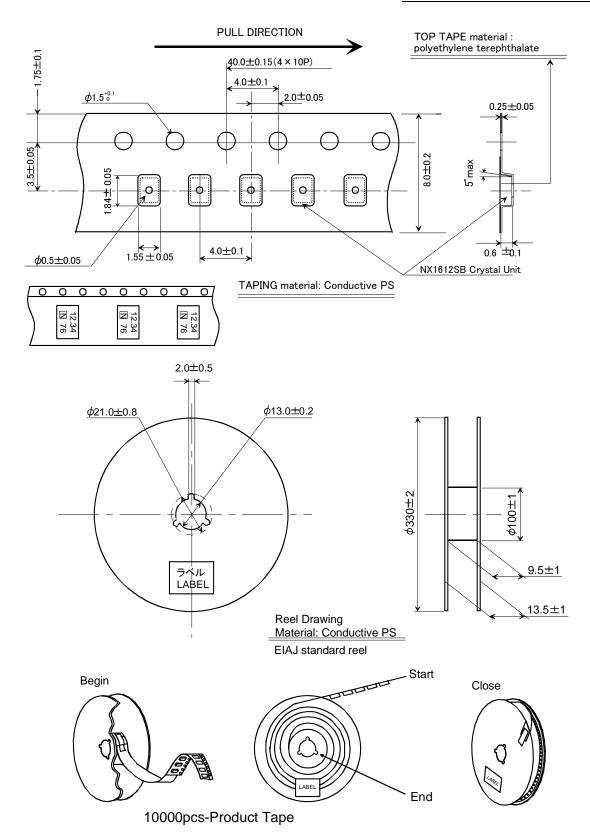


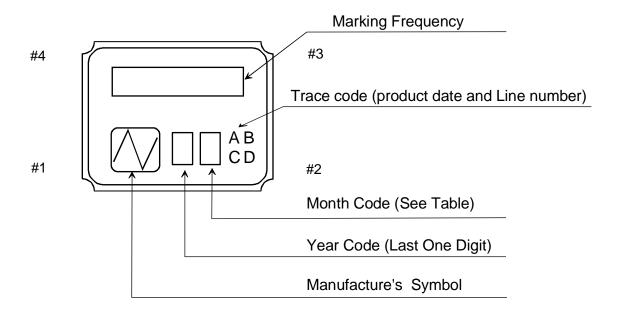

	Dat	e of Revise	Charge	Approved	Reason				
		Date	Name	Third Angle Projection To		Tolerance	Scale		
Draw	/n	26. Jul. 2013	Y. Takaki	Dimension:mr	imension:mm		/	-/	
Desi	igned	26. Jul. 2013	Y. Takaki	Title		Drawing No.		Rev.	
Che	cked	26. Jul. 2013		NX161	2SB	EVD14B 0	NEO7/4/2\		
Appr	roved	26. Jul. 2013	Y.Yamauchi	Dimension	Drawing	EXD14B-00	J597 (172)		


#4: Thermistor

NIHON DEMPA KOGYO CO., LTD.

LAND PATTERN (TYPICAL)





	Dat	e of Revise	Charge	Approved	Reason			
		Date	Name	Third Angle Projection To		Tolerance	Sca	ale
Drav	wn	26. Jul. 2013	Y. Takaki	Dimension:mm			/	
Des	signed	26. Jul. 2013	Y. Takaki	Title		Drawing No.		Rev.
Che	ecked	26. Jul. 2013	,	NX161	2SB	EVD14B 0	NEO7/2/2\	
App	roved	26. Jul. 2013	Y.Yamauchi	Dimension	Drawing	EXD14B-00	J391 (ZIZ)	

NIHON DEMPA KOGYO CO., LTD.

	Dat	te of Revise	Charge	Approved	Reason			
Α	19 Oct	. 2015	H. Ohkubo	H. Murakoshi	Correction of the error.			
		Date	Name	Third Angle Projection To		Tolerance	Sc	ale
Dra	wn	16 Oct. 2015	H. Ohkubo	Dimension:mi	m			/
Des	signed	16 Oct. 2015	H. Ohkubo	Title		Drawing No.		Rev.
Che	ecked			NX161	2SB	EVV47D	00405	۸
App	oroved	16 Oct. 2015	H. Murakoshi	Taping and Reel Spec.		. EARI/B	EXK17B-00405	

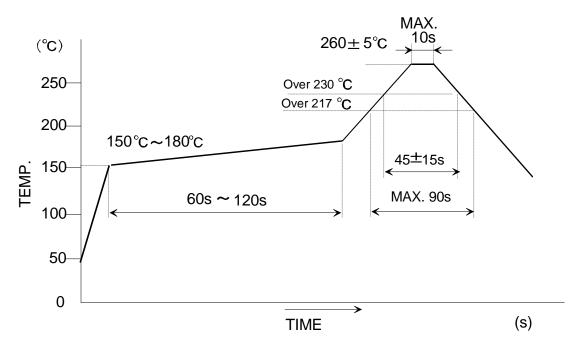
NOTE

1. Month Code Table

Month	1	2	3	4	5	6	7	8	9	10	11	12
	Jan.	Feb.	Mar.	Apr.	May.	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
Month Code	1	2	3	4	5	6	7	8	9	X	Υ	Z

^{*}Marking digits are not include a decimal point and dot mark.

	Dat	te of Revise	Charge	Approved	Reasor	า			
Α	10	. Jul. 2008	T.Asamizu	K.Kubota					
		Date	Name	Third Angle Pro			Tolerance	rance Scale	
Drav	vn	14. Feb. 2006	T.Asamizu	Dimension:	Dimension:mm			/	1
Des	igned	14. Feb. 2006	T.Asamizu	Title			Drawing No.		Rev.
Che	cked	14. Feb. 2006	I.Miyahara	Converted Lines	lan Man	l.:	EVIIIAD	00040	Δ.
App	roved	14. Feb. 2006	K.Okamoto	Crystal Holo	ier iviari	King	EXH11B	-00319	А


Reliability assurance item (1/1)

(page: 1/2)

				(page: 1/2)				
No.	Test Item	Te	est Methods	Spec. Code				
1	High temperature	Temperature: +125 °C Test time: 1000 Hr.						
2	Cold resistance	Temperature: -40 °C Test time: 1000 Hr.		A, B				
3	Humidity	at +85 °C with 80 to 85 % RF	H for 1000 hr.	A, B				
4	Thermal shock (TS)	-40±3°C / +125±3°C 300Cycle/1H per cyc.		A, B				
5	Thermal cycle(TC)	-40±3°C / +125±3°C 300Cycle/1H per cyc.		A, B				
6	Vibration	Frequency Range Amplitude or Acceleration Test time	Frequency Range 10 to 2000Hz Amplitude or Acceleration 1.55 mm or 100m/s ²					
7	Bending	Test board Test time	A, B					
8	Shock 1	Shock Height Drop times	Device are put on the weight of 200 g onto concrete 1.8 m 3 times for each six side derection and four corner. Totally 30 drops.	А, В				
9	Shock 2	Shock Height Drop times	Device are put on the weight of 200g and concrete. 1.0 m 300 drops . 12drops/ min.	А, В				
10	Blank Shear Test	Pull the center of crystal blan	k vertically.					
11	Reflow resistance	Temperature cycle as shown	A, B					
12	Air Tightness	Helium leak test.	С					
13	瞬停 Test	Devices are shocked to half six mutually perpendicular ax	D					

Specification code	Specification
A	Δ F/F \leq ± 2.0 ppm Δ Cl \leq ± 20 % or ±15 Ω greater value
В	Thermistor resistance: $\Delta R/R \le 5\%$
С	No leak
D	No 瞬停

Recommended reflow profile

A: 150 to 180 °C (90 ± 30 sec.)

B: 230°C min. (45 ± 15 sec.)

C: Peak temperature. 260°C ± 5 °C (10sec. max.)

D: 217 °C Min. (90 sec. max.)

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Crystals category:

Click to view products by Nihon Dempa Kogyo manufacturer:

Other Similar products are found below:

CS325S24000000ABJT 718-13.2-1 MC405 32.0000K-R3:PURE SN FC-135R 32.7680KF-A3 7A-40.000MAAE-T 7B-27.000MBBK-T FL2000085 9B-15.360MBBK-B 9C-7.680MBBK-T ASH7K-32.768KHZ AT-41.600MAGQ-T BTD1062E05A-513 LFXTAL066198Cutt 9C-14.31818MBBK-T FA-238 50.0000MB30X-K3 FC-12M 32.7680KA-AC3 SSPT7F-9PF20-R FX325BS-38.88EEM1201 LFXTAL065253Cutt LFXTAL066431Cutt XT9S20ANA14M7456 XT9SNLANA16M 646G-24-2 7A-24.576MBBK-T 7B-30.000MBBK-T WX26-32.768K-6PF 9B-14.31818MBBK-B CD1AM 7B-25.000MAAE-T 7A-14.31818MBBK-T 6504-202-1501 6526-202-1501 FA-118T 27.1200MB50P-K0 FC-135R 32.7680KA-A3 ABM12-104-37.400MHZT ABLS-10.000MHZ-D3W-T BTJ112E01E-513 BTJ722K01C-7067 BTL-20-513 TSX-3225 24.0000MF15X-AC TSX-3225 16.0000MF18X-AC BTJ120E02C BTL-12-513 7A-10.000MBBK-T 7A-11.0592MBBK-T ABM12-103-24.000MHZT CS325S25000000ABJT ABM3B-25.000MHZ-B2-X-T FC-135 32.7680KA-A5 FX0800015