

Low-Voltage, 2.8 Ω SPDT Analog Switch

General Description

The GS4157/4157B is a high-bandwidth, fast single-pole double-throw (SPDT) CMOS switch. It can be used as an analog switch or as a low-delay bus switch. Specified over a wide operating power supply voltage range, 1.65V to 5.5V, the GS4157/4157B has a maximum ON resistance of 5.1-ohms at 1.65V, 3.9-ohms at 2.3V & 2.85-ohms at 4.5V. Break-before-make switching prevents both switches being enabled simultaneously. This eliminates signal disruption during switching.

The control input, S, tolerates input drive signals up to 5.5V, independent of supply voltage.

GS4157/4157B is an improved direct replacement for the FSA4157/NC7SB4157

Applications

Cell Phones PDAs Portable Instrumentation Battery Powered Communications Computer Peripherals **Connection Diagram(Top View)**

Features

- ◆CMOS Technology for Bus and Analog Applications
- Low ON Resistance: 3-ohms @ 2.7V
- ♦ Wide VCC Range: 1.65V to 5.5V
- ♦ Rail-to-Rail Signal Range
- ♦ Control Input Overvoltage Tolerance: 5.5V min.
- ♦ High Off Isolation: 57dB at 10MHz
- ♦ 54dB (10MHz) Crosstalk Rejection Reduces Signal Distortion
- Break-Before-Make Switching
- ♦ High Bandwidth: 300 MHz
- Extended Industrial Temperature Range: -40°C to 85°C
- Improved Direct Replacement for NC7SB4157
- Packaging (Pb-free & Green available):

Pin Description

Name	Description			
S	Logic Control			
Vcc	Positive Power Supply			
А	Common Output/Data Port			
B0	Data Port (Normally Closed)			
GND	Ground			
B1	Data Port			

Logic Function Table

Logic Input (S)	Function
0	B0 Connected to A
1	B1 Connected to A

B0

4

Ordering Code	Package Description	Temp Range	Top Marking
GS4157EXT-TR	6-pin SC70	–40 ℃ to +85 ℃	ABG
GS4157BEXT-TR	6-pin TDFN 1.45X1	–40 ℃ to +85 ℃	ABG

A

Low-Voltage, 2.8 Ω SPDT Analog Switch

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Supply Voltage V _{CC}	–0.5V to +7V
DC Switch Voltage (VS) (2)	-0.5V to V _{CC} +0.5V
DC Input Voltage (VIN) (2)	–0.5V to +7.0V
DC VCC or Ground Current (ICC/IGND).	±100mA
DC Output Current (VOUT)	128mA
Storage Temperature Range (TSTG)	–65°C to +150°C
Junction Temperature under Bias (TJ)	150°C
Junction Lead Temperature (TL)	
(Soldering, 10 seconds)	260°C
Power Dissipation (PD) @ +85°C	180mW

RECOMMENDED OPERATING CONDITIONS⁽³⁾

Supply Voltage Operating (V _{CC})	1.65V to 5.5V
Control Input Voltage (VIN)	0V to VCC
Switch Input Voltage (VIN)	0V to VCC
Output Voltage (V _{OUT})	0V to VCC
Operating Temperature (TA)	40°C to +85°C
Thermal Resistance (θJA)	350°C/W

Note 1:Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.

Note 2:The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

Note 3:Control input must be held HIGH or LOW; it must not float.

Parameter	Description	Test Conditions	Supply Voltage	Temp (ºC)	Min.	Тур	Max.	Unit s		
VIAR	Analog Input Signal Range		V _{CC}	T _A = 25°C & –40°C to 85°C	0		V _{CC}	V		
Ron	ON Resistance ⁽⁴⁾	l _{out} = 100mA, B0 or B1=1.5V	2.7V	T _A = 25°C		3	4.5	Ω		
R _{ON}	ON Resistance ⁽⁴⁾	l _{out} = 100mA, B0 or B1=3.5V	4.5V	T _A = 25°C			3			
ΔR _{ON}	ON Resistance Match Between Channels ^(4,5,6)	l _{out} = 100mA, B0=B1=1.5V	2.7V	T _A = 25°C			0.75	Ω		
Ronf	ON Resistance ^{(4,5,} ⁷⁾ Flatness	I(A) = -100mA; B0 or B1= 0V, 1.5V, 1.5V	2.7V	T _A = 25°C			1.5	Ω		
Ronf	ON Resistance ^{(4,5,} ⁷⁾ Flatness	I(A) = -100mA; B0 or B1= 0V, 1.5V, 3.0V,	4.5V	T _A = 25°C			0.5	Ω		
Viu	Input High		V _{CC} = 1.65V to 1.95V	T _A = 25°C &	1.5			V		
VIH	Voltage		V _{CC} = 2.3V to 5.5V	–40°C to 85°C	–40°C to 85°C	–40°C to 85°C	1.7			v
Vu	Input Low		V _{CC} = 1.65V to 1.95V				0.5	V		
VIL	Voltage		V _{CC} = 2.3V to 5.5V				0.8	v		

DC ELECTRICAL CHARACTERISTICS (TA = - 40°C to +85°C)

Low-Voltage, 2.8 Ω SPDT Analog Switch

DC ELECTRICAL CHARACTERISTICS (TA = - 40°C to +85°C)

Inp I _{IN} Lea Cui	Input	0 <1/100 <5 51/	$V_{CC} = 0V$	T _A = 25°C		±0.1	
	Current	0 <u>2 v IN</u> 25.5 v	to 5.5V	T _A = −40°C to 85°C		±1.0	
IOFF	OFF State Leakage Current	A=1V,4.5V, B0 or B1=4.5V, 1V	Vcc = 5.5V	T _A = 25°C	-2.0	2.0	μA
	Quiescent	All channels ON or OFF, V _{IN} = V _{CC} or	V _{CC} =	T _A = 25°C		1	
ICC	Supply Current	GND, I _{OUT} = 0	5.5V	T _A = −40°C to 85°C		10	

Note 4: Measured by voltage drop between A and B pins at the indicated current through the device. ON resistance is determined by the lower of the voltages on two ports (A or B)

Note 5: Parameter is characterized but not tested in production.

Note 6: DRON = RON max - RON min. measured at identical VCC, temperature and voltage levels.

Note 7: Flatness is defined as difference between maximum and minimum value of ON resistance over the specified range of conditions.. Note 8: Guaranteed by design.

Parameter	Description Test Conditions		Supply Voltage	Temp (ºC)	Min.	Тур	Max.	Units
CIN	Control Input					2.3		
Сю-в	For B Port,Switch OFF	f_ 1 MU=(12)	Vcc = 5.0V	T _A = 25°C		6.5		pF
C _{IOA-ON}	For A Port, Switch ON					18.5		

SWITCH AND AC CHARACTERISTICS

Parameter	Description	Test Conditions	Supply Voltage	Temp (ºC)	Min.	Тур	Max.	Units
tPLH Propagation Delay: A to	Soo tost circuit	V _{CC} = 2.3V to 2.7V			1.2			
	diagrams 1 and 2. V_{I}	V _{CC} = 3.0V to 3.6V	T _A = 25°C & -40 to 85°C		0.8			
	DU	Open ⁽¹⁰⁾	V _{CC} = 4.5V to 5.5V			0.3		
		diagrams 1 & 2. See test circuit	V _{CC} = 1.65V to 1.95V	T _A = 25°C	7		23	
tPZL Output tPZH ON Time: A to Bn	Output Enable Turn		V_{CC} = 2.3V to 2.7V		3.5		13	
	$V_I = 2V_{CC}$ for T_{PZL} , $V_I = 0V$ for t_{PZH}	V _{CC} = 3.0V to 3.6V	-	2.5		6.9	ns	
		V _{CC} = 4.5V to 5.5V		1.7		5.2		
	OUTPUT See ENABLE diag	$\begin{array}{ll} \text{UT} & \text{See test circuit} \\ \text{diagrams 1 and 2.} \\ \text{ME:} & \text{V}_{I} = 2\text{V}_{CC} \text{ for T}_{PZL}, \\ \text{SN} & \text{V}_{I} = 0\text{V for t}_{PZH} \end{array}$	$V_{CC} = 2.5V$				24	
tPZL tPZH			Vcc = 3.3V	T _A = 25°C & -40 to 85°C			14	
	NOTIME:		$V_{CC} = 3.0V \text{ to } 3.6V$				7.6	
	ATOBIN		$V_{CC} = 4.5 V \text{ to } 5.5 V$				5.7	

Low-Voltage, 2.8 SPDT Analog Switch

			$V_{CC} = 1.65 V to$					
	Output	Cas test sizewit	1.95V		3		12.5	
tPLZ	Disable	diagrams 1 and 2.	$V_{CC} = 2.3V$ to 2.7V	T _A = 25°C	2		7	
tPHZ OFF Time:	$V_I = 2V_{CC}$ for T_{PZL} , $V_I = 0V$ for t_{PZH}	V _{CC} = 3.0V to 3.6V		1.5		5		
	A to Bn		$V_{CC} = 4.5V$ to 5.5V		0.8		3.5	
	Outrut		V _{CC} = 2.5V				13	
tPLZ	Disable	See test circuit diagrams 1 and 2.	V _{CC} = 3.3V	$T_A = -40$ to			7.5	
tphz	OFF Time:	$V_I = 2V_{CC}$ for T_{PZL} , $V_I = 0V$ for t_{PZH}	V _{CC} = 3.0V to 3.6V	85°C			5.3	
	A to Bh		$V_{CC} = 4.5V$ to 5.5V				3.8	
			V _{CC} = 2.5V		0.5			
Break t _{BM} Before Make Time	Break	See test circuit diagram 9. ⁽⁹⁾	V _{CC} = 3.3V	T _A = 25°C & -40 to 85°C	0.5			
	Before Make Time		V _{CC} = 3.0V to 3.6V		0.5			
			VCC = 4.5V to 5.5V		0.5			
	Charge	CL = 0.1nF, VGEN =	V _{CC} = 5.0V	T 0500		7		
Q	Injection	$0V$, R _{GEN} = 0Ω . See test circuit 4.	VCC = 3.3V	$1_{A} = 25^{\circ}C$		3		pC
OIRR	Off Isolation	$\label{eq:RL} \begin{split} R_L &= 50\Omega, \ V_{GEN} = 0V, \\ R_{GEN} &= 0\Omega. \ See \ test \\ circuit \ 5. \ ^{(11)} \end{split}$	V _{CC} = 1.65V to 5.5V	T _A = 25°C		-57		dB
X _{TALK}	Crosstalk Isolation	See test circuit 6.	V _{CC} = 1.65V to 5.5V	T _A = 25°C		-54		
f3dB	–3dB Bandwidth	See test circuit 9	V _{CC} = 1.65V to 5.5V	T _A = 25°C		300		MHz

Note 6: Guaranteed by design

GAINSIL

Note 7: Guaranteed by design but not production tested. The device contributes no other propagation delay other than the RC delay of the switch ON resistance and the 50pF load capacitance, whne driven by an ideal voltage source with zero output impedance.
Note 8: Off Isolation = 20 Log10 [V_A / V_{Bn}] and is measured in dB.

Note 9: TA = 25°C, f = 1MHz. Capacitance is characterized but not tested in production.

Low-Voltage, 2.8 Ω **SPDT Analog Switch**

TEST CIRCUITS AND TIMING DIAGRAMS

Figure 2. AC Waveforms

Figure 3. Break Before Make Interval Timing

Low-Voltage, 2.8Ω SPDT Analog Switch

Figure 4. Charge Injection Test

Figure 5. Off Isolation

Figure 7. Channel Off Capacitance

Figure 9. Bandwidth

Low-Voltage, 2.8 O SPDT Analog Switch

Packaging Mechanical: 6-Pin SC70 (C)

Packaging Mechanical: 6-Pin TDFN

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Analogue Switch ICs category:

Click to view products by Gainsil manufacturer:

Other Similar products are found below :

FSA3051TMX NLVAS4599DTT1G MAX4992EVB+T MAX4684ETB+T BCM6522IPBG BCM65300IFSBG MAX14764ETA+T TMUX1113RSVR TMUX1112RSVR ADG1436TRUZ-EP BL4684C PE423422A PE42359SCAA PE42540F RS550YUCM12 ADGS1414DBCCZ ADG658YRUZ-REEL7 RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 SP2526A-1EN-L/TR FSA4157P6X BA7603F-E2 MAX4702EUE+ MAX4617CUE+ MAX4599EUT+T MAX4066ESD+ MAX4052ACSE+ MAX396CAI+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ MAX4051AEEE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR TS3A4751PWR NCN1154MUTAG DG444DY-E3 NLAS4157DFT2G NLAS4599DFT2G NLAS7242MUTBG NLASB3157DFT2G NLAST4599DFT2G NLAST4599DTT1G DG403DY-T1-E3 MAX4714EXTT MAX392CPE BGSX22G2A10E6327XTSA1 ADG1611BRUZ-REEL7