Low-Voltage, 2.8 Ω SPDT Analog Switch

General Description

The GS4157/4157B is a high-bandwidth, fast single-pole double-throw (SPDT) CMOS switch. It can be used as an analog switch or as a lowdelay bus switch. Specified over a wide operating power supply voltage range, 1.65 V to 5.5 V , the GS4157/4157B has a maximum ON resistance of 5.1 -ohms at $1.65 \mathrm{~V}, 3.9$-ohms at 2.3 V \& 2.85 -ohms at 4.5 V . Break-beforemake switching prevents both switches being enabled simultaneously. This eliminates signal disruption during switching.

The control input, S, tolerates input drive signals up to 5.5 V , independent of supply voltage.

GS4157/4157B is an improved direct replacement for the FSA4157/NC7SB4157

Features

-CMOS Technology for Bus and Analog Applications

- Low ON Resistance: 3-ohms @ 2.7V
- Wide VCC Range: 1.65 V to 5.5 V
- Rail-to-Rail Signal Range
- Control Input Overvoltage Tolerance: 5.5 V min.
- High Off Isolation: 57 dB at 10 MHz
- $54 \mathrm{~dB}(10 \mathrm{MHz})$ Crosstalk Rejection Reduces Signal Distortion
- Break-Before-Make Switching
- High Bandwidth: 300 MHz
- Extended Industrial Temperature Range: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- Improved Direct Replacement for NC7SB4157
- Packaging (Pb-free \& Green available):

Applications

Cell Phones
PDAs
Portable Instrumentation
Battery Powered Communications
Computer Peripherals
Connection Diagram(Top View)

Pin Description

Name	Description
S	Logic Control
Vcc	Positive Power Supply
A	Common Output/Data Port
B0	Data Port (Normally Closed)
GND	Ground
B1	Data Port

Logic Function Table

Logic Input (S)	Function
0	B0 Connected to A
1	B1 Connected to A

ORDERING INFORMATION

Ordering Code	Package Description	Temp Range	Top Marking
GS4157EXT-TR	6-pin SC70	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	ABG
GS4157BEXT-TR	6 -pin TDFN 1.45×1	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	ABG

GS4157／4157B

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$
Supply Voltage V_{CC} ． \qquad -0.5 V to +7 V
DC Switch Voltage（ $\left.\mathrm{V}_{\mathrm{S}}\right)^{(2)}$ ． \qquad -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Input Voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)^{(2)}$ \qquad .-0.5 V to +7.0 V
DC VCC or Ground Current（ICC／IGND） \qquad $\pm 100 \mathrm{~mA}$
DC Output Current（VOUT） \qquad 128 mA
Storage Temperature Range（TSTG）$\ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature under Bias（ T_{J} ） \qquad $.150^{\circ} \mathrm{C}$
Junction Lead Temperature（ T_{L} ）
（Soldering， 10 seconds）．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． $260^{\circ} \mathrm{C}$
Power Dissipation（PD）＠$+85^{\circ} \mathrm{C}$ \qquad .180 mW

RECOMMENDED OPERATING CONDITIONS ${ }^{(3)}$

Control Input Voltage（ V_{IN} ）．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． OV to V_{CC}
Switch Input Voltage（ V_{IN} ）．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．OV to VCC
Output Voltage（VOUT）
． OV to VCC

Thermal Resistance（ $\theta \mathrm{JA}$ ）．
$350^{\circ} \mathrm{C} / \mathrm{W}$

Note 1：Absolute Maximum Ratings＂may cause permanent damage to the device．This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied．
Note 2 ：The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed．
Note 3：Control input must be held HIGH or LOW；it must not float．

DC ELECTRICAL CHARACTERISTICS（TA $=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Description	Test Conditions	Supply Voltage	Temp（ ${ }^{(} \mathrm{C}$ ）	Min．	Typ	Max．	$\begin{gathered} \hline \text { Unit } \\ \mathrm{s} \end{gathered}$
VIAR	Analog Input Signal Range		Vcc	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \& \\ -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{gathered}$	0		Vcc	V
Ron	ON Resistance ${ }^{(4)}$	$\begin{aligned} & \mathrm{l}_{\text {out }}=100 \mathrm{~mA}, \\ & \mathrm{Bo}_{0} \text { or } \mathrm{B}_{1}=1.5 \mathrm{~V} \end{aligned}$	2.7 V	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3	4.5	Ω
Ron	ON Resistance ${ }^{(4)}$	$\begin{aligned} & l_{\text {out }}=100 \mathrm{~mA}, \\ & B_{0} \text { or } B_{1}=3.5 \mathrm{~V} \end{aligned}$	4.5 V	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			3	
$\Delta \mathrm{RoN}$	ON Resistance Match Between Channels ${ }^{(4,5,6)}$	$\begin{aligned} & \mathrm{I}_{\text {out }}=100 \mathrm{~mA}, \\ & \mathrm{~B}_{0}=\mathrm{B}_{1}=1.5 \mathrm{~V} \end{aligned}$	2.7 V	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			0.75	Ω
Ronf	ON Resistance ${ }^{(4,5}$ ， 7） Flatness	$\begin{aligned} & I(A)=-100 \mathrm{~mA} ; B 0 \\ & \text { or } B 1=0 \mathrm{~V}, 1.5 \mathrm{~V} \text {, } \\ & 1.5 \mathrm{~V} \end{aligned}$	2.7 V	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			1.5	Ω
Ronf	ON Resistance ${ }^{(4,5,}$ 7） Flatness	$\begin{aligned} & I(A)=-100 \mathrm{~mA} ; B 0 \\ & \text { or } \mathrm{B} 1=0 \mathrm{~V}, 1.5 \mathrm{~V} \text {, } \\ & 3.0 \mathrm{~V} \text {, } \end{aligned}$	4.5 V	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			0.5	Ω
V_{IH}	Input High Voltage	Logic High Level	$\begin{gathered} \hline \mathrm{V} \mathrm{cc}= \\ 1.65 \mathrm{~V} \text { to } \\ 1.95 \mathrm{~V} \\ \hline \mathrm{~V} \mathrm{cc}= \\ 2.3 \mathrm{~V} \text { to } \\ 5.5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { \& } \\ & -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{aligned}$	1.5 1.7			V
VIL	Input Low Voltage	Logic Low Level	$\begin{gathered} \mathrm{V} \mathrm{CC}= \\ 1.65 \mathrm{~V} \text { to } \\ 1.95 \mathrm{~V} \\ \hline \mathrm{~V} \mathrm{CC}= \\ 2.3 \mathrm{~V} \text { to } \\ 5.5 \mathrm{~V} \\ \hline \end{gathered}$				0.5 0.8	V

DC ELECTRICAL CHARACTERISTICS $\left(\mathrm{TA}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

IIN	Input Leakage Current	$0 \leq \mathrm{V}_{\mathrm{IN}} \leq 5.5 \mathrm{~V}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} \\ \text { to } 5.5 \mathrm{~V} \end{gathered}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		± 0.1	$\mu \mathrm{A}$
				$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } \\ & 85^{\circ} \mathrm{C} \end{aligned}$		± 1.0	
loff	OFF State Leakage Current	$\begin{gathered} \mathrm{A}=1 \mathrm{~V}, 4.5 \mathrm{~V}, \\ \mathrm{BO} \text { or } \mathrm{B} 1=4.5 \mathrm{~V}, 1 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}= \\ & 5.5 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	－2．0	2.0	
Icc	Quiescent Supply Current	All channels ON or OFF， $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}$ or	$\begin{aligned} & \mathrm{VCC}= \\ & 5.5 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1	
		GND， $\text { IOUT }=0$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }$		10	

Note 4：Measured by voltage drop between A and B pins at the indicated current through the device．ON resistance is determined by the lower of the voltages on two ports（A or B）
Note 5：Parameter is characterized but not tested in production．
Note 6： $\mathrm{DR}_{\mathrm{ON}}=$ RON $_{\mathrm{O}}$ max - R $_{\mathrm{ON}}$ min．measured at identical V_{CC} ，temperature and voltage levels
Note 7：Flatness is defined as difference between maximum and minimum value of ON resistance over the specified range of conditions．．
Note 8：Guaranteed by design．
CAPACITANCE ${ }^{12}$

Parameter	Description	Test Conditions	Supply Voltage	Temp（ ${ }^{\circ} \mathrm{C}$ ）	Min．	Typ	Max．	Units
CIN	Control Input		$\mathrm{VCC}=5.0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.3		pF
CIo－B	For B Port，Switch OFF	$\mathrm{f}=1 \mathrm{MHz}{ }^{(12)}$				6.5		
CIoA－On	For A Port，Switch ON					18.5		

SWITCH AND AC CHARACTERISTICS

Parameter	Description	Test Conditions	Supply Voltage	Temp（ ${ }^{\left({ }^{\circ} \mathrm{C}\right)}$	Min．	Typ	Max．	Units
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay：A to Bn	See test circuit diagrams 1 and 2． $\mathrm{V}_{\text {I }}$ Open（10）	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2．7V	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \& \\ & -40 \text { to } 85^{\circ} \mathrm{C} \end{aligned}$		1.2		ns
			$\mathrm{VCC}=3.0 \mathrm{~V}$ to 3.6 V			0.8		
			$\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}$ to 5.5 V			0.3		
$\begin{aligned} & \text { tpZL } \\ & \text { tpZH } \end{aligned}$	Output Enable Turn ON Time： A to Bn	diagrams 1 \＆2．See test circuit $\mathrm{V}_{\mathrm{I}}=2 \mathrm{~V}_{\mathrm{CC}}$ for $\mathrm{T}_{\mathrm{PZL}}$ ， $\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ for tpzH	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V} \text { to } \\ & 1.95 \mathrm{~V} \\ & \hline \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	7		23	
			$\mathrm{VCC}=2.3 \mathrm{~V}$ to 2．7V		3.5		13	
			$\mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}$ to 3.6 V		2.5		6.9	
			$\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}$ to 5.5 V		1.7		5.2	
$\begin{aligned} & \text { tpZL } \\ & \text { tpzH } \end{aligned}$	OUTPUT ENABLE TURN NOTIME： A TOBN	See test circuit diagrams 1 and 2. $\mathrm{V}_{\mathrm{I}}=2 \mathrm{~V}_{\mathrm{cc}}$ for $\mathrm{T}_{\mathrm{PzL}}$ $\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ for tpzH	$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \& \\ & -40 \text { to } 85^{\circ} \mathrm{C} \end{aligned}$			24	
			$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$				14	
			$\mathrm{V}_{\text {cc }}=3.0 \mathrm{~V}$ to 3.6 V				7.6	
			$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V				5.7	

$\begin{aligned} & \text { tpLZ } \\ & \text { tPHZ } \end{aligned}$	Output Disable Turn OFF Time： A to Bn	See test circuit diagrams 1 and 2. $\mathrm{V}_{\mathrm{I}}=2 \mathrm{~V}_{\mathrm{CC}}$ for $\mathrm{T}_{\text {PZL }}$ ， $\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ for tpzH	$\begin{aligned} & \text { VCC }=1.65 \mathrm{~V} \text { to } \\ & 1.95 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	3		12.5	
			$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2．7V		2		7	
			$\mathrm{V}_{C C}=3.0 \mathrm{~V}$ to 3.6 V		1.5		5	
			$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V		0.8		3.5	
$\begin{aligned} & \text { tpLZ } \\ & \text { tPHZ } \end{aligned}$	Output Disable Turn OFF Time： A to Bn	See test circuit diagrams 1 and 2. $\mathrm{V}_{\mathrm{I}}=2 \mathrm{~V}_{\text {Cc }}$ for $\mathrm{T}_{\mathrm{PZL}}$ ， $\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ for $\mathrm{t}_{\mathrm{Pz}} \mathrm{H}$	$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40 \text { to } \\ & 85^{\circ} \mathrm{C} \end{aligned}$			13	
			$\mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V}$				7.5	
			$\mathrm{VCC}=3.0 \mathrm{~V}$ to 3.6 V				5.3	
			$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V				3.8	
$t_{B M}$	Break Before Make Time	See test circuit diagram 9．（9）	$\mathrm{V}_{\text {cc }}=2.5 \mathrm{~V}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { \& } \\ & -40 \text { to } 85^{\circ} \mathrm{C} \end{aligned}$	0.5			
			$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$		0.5			
			$\mathrm{VCC}=3.0 \mathrm{~V}$ to 3.6 V		0.5			
			$\mathrm{VCC}=4.5 \mathrm{~V}$ to 5.5 V		0.5			
Q	Charge Injection	$\begin{aligned} & C_{L}=0.1 \mathrm{nF}, \mathrm{~V}_{\mathrm{GEN}}= \\ & 0 \mathrm{~V}, \mathrm{RGEN}=0 \Omega \text {. See } \\ & \text { test circuit } 4 \text {. } \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		7		pC
			$\mathrm{VCC}=3.3 \mathrm{~V}$			3		
OIRR	Off Isolation	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V} \text {, }$ $R_{G E N}=0 \Omega$ ．See test circuit 5．（11）	$\mathrm{V}_{\mathrm{cc}}=1.65 \mathrm{~V}$ to 5.5 V	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		－57		dB
$\mathrm{X}_{\text {talk }}$	Crosstalk Isolation	See test circuit 6.	$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 5.5 V	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		－54		
$\mathrm{f}_{3 \mathrm{~dB}}$	$\begin{aligned} & -3 \mathrm{~dB} \\ & \text { Bandwidth } \end{aligned}$	See test circuit 9	$\mathrm{V}_{\mathrm{cc}}=1.65 \mathrm{~V}$ to 5.5 V	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		300		MHz

Note 6：Guaranteed by design
Note 7：Guaranteed by design but not production tested．The device contributes no other propagation delay other than the RC delay of the switch ON resistance and the 50pF load capacitance，whne driven by an ideal voltage source with zero output impedance．
Note 8：Off Isolation $=20 \log 10\left[\mathrm{~V}_{\mathrm{A}} / \mathrm{V}_{\mathrm{Bn}}\right.$ ］and is measured in dB
Note 9： $\mathrm{TA}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$ ．Capacitance is characterized but not tested in production．

TEST CIRCUITS AND TIMING DIAGRAMS

Figure 1. AC Test Circuit

Figure 2. AC Waveforms

Logic
Input

Figure 3. Break Before Make Interval Timing

Figure 4．Charge Injection Test

Figure 5．Off Isolation

Figure 7．Channel Off Capacitance

Figure 6．Crosstalk

Figure 8．Channel On Capacitance

Figure 9．Bandwidth

Packaging Mechanical：6－Pin SC70（C）

Packaging Mechanical：6－Pin TDFN

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Gainsil manufacturer:

Other Similar products are found below :
FSA3051TMX NLVAS4599DTT1G MAX4992EVB+T MAX4684ETB+T BCM6522IPBG BCM65300IFSBG MAX14764ETA+T TMUX1113RSVR TMUX1112RSVR ADG1436TRUZ-EP BL4684C PE423422A PE42359SCAA PE42540F RS550YUCM12 ADGS1414DBCCZ ADG658YRUZ-REEL7 RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 SP2526A-1EN-L/TR FSA4157P6X BA7603F-E2 MAX4702EUE+ MAX4617CUE+ MAX4599EUT+T MAX4066ESD+ MAX4052ACSE+ MAX396CAI+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ MAX4051AEEE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR TS3A4751PWR NCN1154MUTAG DG444DY-E3 NLAS4157DFT2G NLAS4599DFT2G NLAS7242MUTBG NLASB3157DFT2G NLAST4599DFT2G NLAST4599DTT1G DG403DY-T1-E3 MAX4714EXTT MAX392CPE BGSX22G2A10E6327XTSA1 ADG1611BRUZ-REEL7

