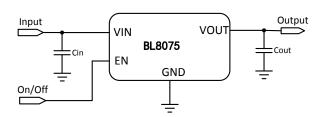


BL8075

16V 500mA Low Consumption Linear Regulator

DESCRIPTION


BL8075 series is a group of positive voltage output, low power consumption, low dropout voltage regulator. It can provide 300mA output current when input / output voltage differential drops to 600mV (Vout= 3.3V), and it also provides foldback short-circuit protection, thermal protection and output current limit function. The very low power consumption of BL8075 (Iq=10uA)can greatly improve natural life of batteries.

BL8075 can provide output value in the range of $1.2V^{5.0V}$ in 0.1V steps. It also can customize on command.

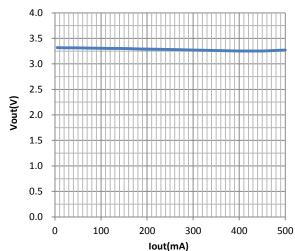
BL8075 includes high accuracy voltage reference, error amplifier, current limit circuit and output driver module.

BL8075 has well load transient response and good temperature characteristic, And it uses trimming technique to guarantee output voltage accuracy within $\pm\,2\%$.

TYPICAL APPLICATION

NOTE: Input capacitor (Cin=1uF) and Output capacitor (Cout=1uF) are recommended in all application circuit. *Ceramic capacitor is recommended.*

FEATURES


- Low Power Consumption: 10uA(Typ.)
- Maximum Output Current: 500mA
- Small Dropout Voltage 600mV@300mA (Vout=3.3V) 1.2V@500mA (Vout=3.3V)
- Input Voltage Range: 3V~16V
- Output Voltage Range: 1.2V~5.0V (customized on command in 0.1V steps)
- Highly Accurate:±2%(±1% customized)
- Output Current Limit: 650mA

APPLICATIONS

- Battery Powered equipment
- Power Management of MP3、PDA、DSC、 Mouse、PS2 Games
- Reference Voltage Source Regulation after Switching Power

ELECTRICAL CHARACTERISTICS

Load Regulation

ORDERING INFORMATION

BL8075 112345

Code	Description		
1	Temperature&Rohs:		
	C:-40~85°C ,Pb Free Rohs Std.		
	Package type:		
2	B5:SOT-23-5		
	C3:SOT-89-3		
3	Packing type:		
	TR:Tape&Reel (Standard)		
	Output voltage:		
4	e.g. 12=1.2V		
	15=1.5V		
	50=5.0V		
E	Voltage accuracy: 1=±1%		
5	Blank(default)= \pm 2%		

ABSOLUTE MAXIMUM RATING

Paramete	Value	
Max Input Voltage	20V	
Operating Junction Ter	125°C	
Ambient Temperature	-40°C -85°C	
Power Dissipation	SOT-23-5	400mW
(P _D @Ta=25°C)	SOT-89-3	500mW
Storage Temperature(-40°C -150°C	
Lead Temperature & T	260°C,10S	

Note:

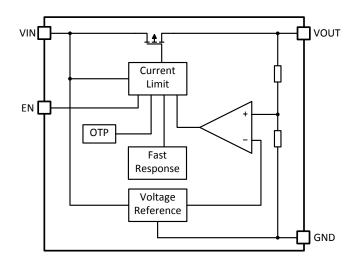
Exceed these limits to damage to the device. Exposure to absolute maximum rating conditions may affect device reliability.

PIN CONFIGURATION

Produc	ct Classification	BL8075CB5TR		
	Marking	SOT-23-5		
	P:Product Code	VIN 1 5 VOUT		
PXYW	X:Output Voltage	GND 2 PXYW		
	YW:Date Code	EN 3 4 NC		
Produc	t Classification	BL8075CC3TR□□□		
	Marking			
	P:Product Code	SOT-89-3		
PXX	XX:Output Voltage	PXX 1 GND 2 VIN		
LLXYW	LL:LOT NO.	3 VOUT		
	X:FAB Code	1 2 3		
	YW:Date Code			

Y: The Year of manufacturing,"1" stands for year 2011, "2" stands for year 2012, and "8" stands for year 2018. W: The week of manufacturing. "A" stands for week 1,"Z" stands for week 26," \overline{A} " stands for week 27," \overline{Z} " stands for week 52.

RECOMMENDED WORK CONDITIONS

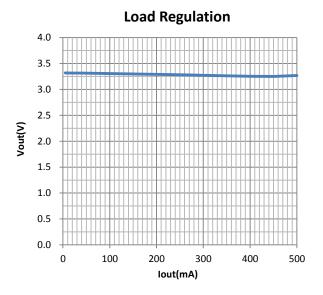

Item	Min	Recom- mended	Max.	Unit
Input Voltage Range	3		16	V
Ambient Temperature	-40		85	°C

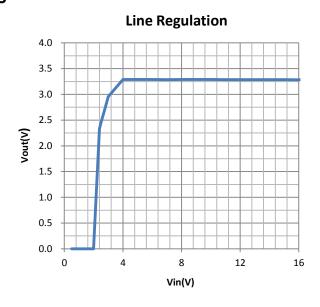
ELECTRICAL CHARACTERISTICS

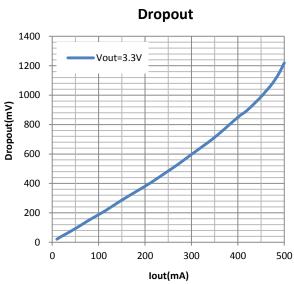
(Test Conditions: Cin=1uF, Cout=1uF, Ta=25°C, Unless Otherwise Specified)

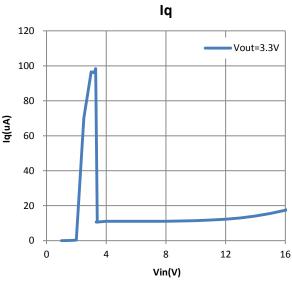
Symbol	Parameter		Conditions	Min	Type	Max	Units
Vin	Input Voltage			3		16	V
Vout	Output Voltage	Vout>1.5V	Vin-Vout=1.2V 1mA≤lout≤30mA	Vout x0.98	· Vout	Vout X1.02	V
		Vout≤1.5V		Vout -0.03		Vout +0.03	
Iout(Max.)	Maximum Output Current		Vin-Vout=1.2V	500			mA
Dropout Voltage	Input-Output Voltage Differential		lout=300mA, Vout = 3.3V		600		mV
ΔVout	Line Regulation		Line Regulation Iout=10mA, 4V≤Vin≤16V		0.2	0.3	%/V
$\Delta Vin \cdot Vout$,				
$\Delta Vout$	Load Regulation		Vin=Set Vout+1V 1mA≤lout≤100mA		20	40	mV
l es	Outres and Cu		Vin=Set Vout+1V, V _{EN} ="H"		10	20	uA
lq	Quiescent Cu	rrent	Vin=12V, V _{EN} =0V			1	uA
$\frac{\Delta Vout}{\Delta T \cdot Vout}$	Output Voltage Temperature Coefficient		lout=10mA		±100		ppm/°C
Venh	EN Input Volt	age "H"		1.5		Vin	V
Venl	EN Input Volt	age "L"		0		0.4	V
	Thermal Shut	down			150		°C

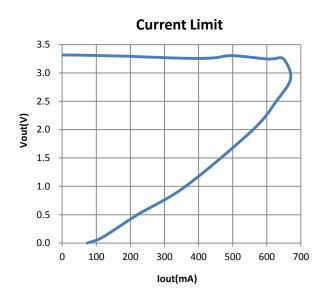
BLOCK DIAGRAM

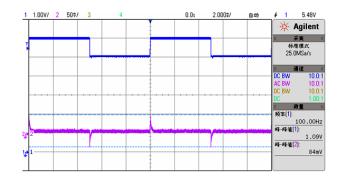

EXPLANATION

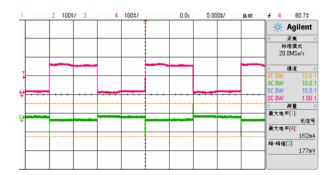

BL8075 is a series of low dropout voltage and low power consumption regulator. Its application circuit is very simple, which only needs two outside capacitors. It is composed of these modules: high accuracy voltage reference, current limit circuit, error amplifier, output driver and power transistor.

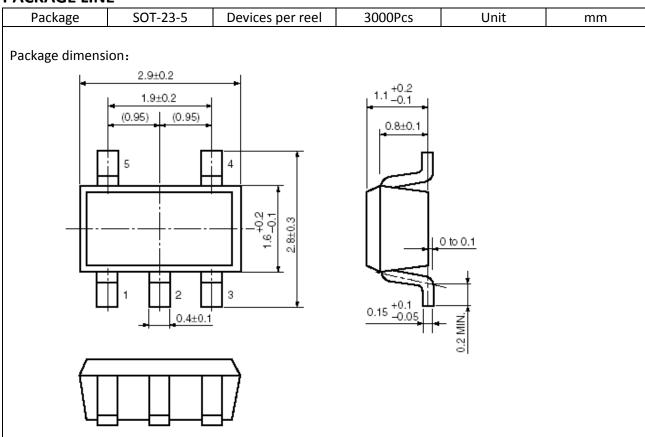

Current Limit module can keep chip and power system away from danger when load current is more than 500mA.


BL8075 uses trimming technique to assure the accuracy of output value within±2%, at the same time, temperature compensation is elaborately considered in this chip, which makes BL8075's temperature coefficient within $\pm 100 \text{ppm}/^{\circ}\text{C}_{\circ}$

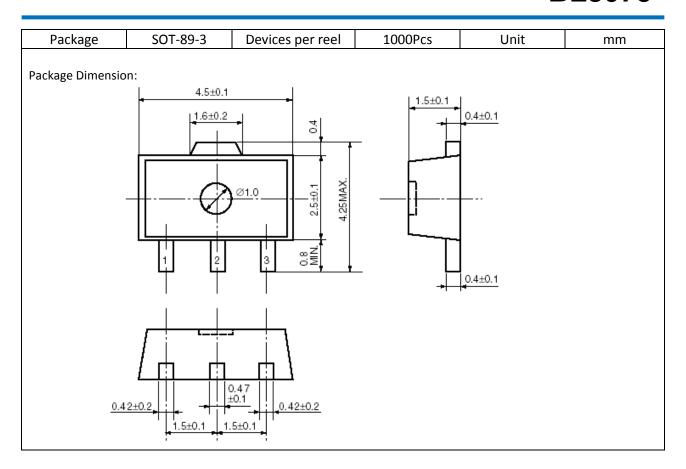

TYPICAL PERFORMANCE CHARACTERISTICS






Line transient response Vin=5V~6V, lout=10mA Ch1—Vin, Ch2—Vout

Load transient response Vin=5V, lout=5mA~150mA Ch2—Vout, Ch4—lout



PACKAGE LINE

BL8075

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Linear Voltage Regulators category:

Click to view products by Belling manufacturer:

Other Similar products are found below:

LV56831P-E LV5684PVD-XH MAX202ECWE-LF MCDTSA6-2R L4953G L7815ACV-DG PQ3DZ53U LV56801P-E

TCR3DF13,LM(CT TCR3DF39,LM(CT TLE42794G L78L05CZ/1SX L78LR05DL-MA-E L78MR05-E 033150D 033151B 090756R

636416C NCV78M15BDTG 702482B 714954EB TLE42794GM TLE42994GM ZMR500QFTA BA033LBSG2-TR

NCV78M05ABDTRKG NCV78M08BDTRKG NCP7808TG NCV571SN12T1G LV5680P-E CAJ24C256YI-GT3 L78M15CV-DG L9474N

TLS202B1MBV33HTSA1 L79M05T-E NCP571SN09T1G MAX15006AASA/V+ MIC5283-5.0YML-T5 L4969URTR-E L78LR05D-MA-E

NCV7808BDTRKG L9466N NCP7805ETG SC7812CTG NCV7809BTG NCV571SN09T1G NCV317MBTG MC78M15CDTT5G

MC78M12CDTT5G L9468N