

F

Specification for Approval

Customer:	立创
Customer P/N:	
Product Name:	Power Inductors
Coilank P/N:	APW12A60 Series

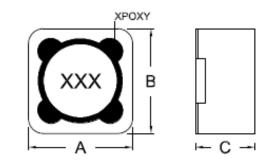
 $[\Box New Released, \boxtimes Revised]$

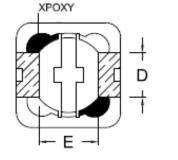
Approved by	Checked by	Prepared by
	Jean.lin	Bruce.lan

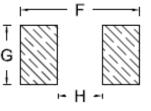
Coilank Technology Co.,Ltd

ADD: No.39, Chingao Rd.,(305)Hsinpu, Hs inchu Hsien Taiwan, R.O.C TEL : 00886-3-5894523 FAX : 00886-3-5894415 ADD: Unit D, 16/F Cheuk Nang Plaze 250 Hennessy Road, Wanchai HongKong TEL : 00852-31135161 FAX : 00852-31121631 SZ Office TEL : 0755-29452870/3 FAX : 0755-61658369 HTTP : www.coilank.com E-mail : sales@coilank.com

[For Customer approval O	nly】	Date:	
Qualification Status:	🗌 Full	Restricted	Rejected
Approved By	Verified	By Check	ced By
Comments:			




Change Note


Version	Comtent	Draw	Check	Approval	Date	Coding
1	New Design	Lijun.lan	Emie.luo	James.huang	2018.10.31	S02
2	Upgrade the Coilank P/N: APW-B to APW-A	Bruce.lan	Jean.lin	Jean.lin	2019.03.29	S153

1. External Dimensions (Unit:m/m)

TYPE	Α	В	С	D	Е	F	G	Н	Q'TY/Reel
APW12A60	12.5Max	12.5Max	6.0Max	5.0Ref	7.6Ref	12.6Ref	5.4Ref	7.0Ref	500

2. Part Number Code

.

<u>AP\</u> A	<u>W</u>	<u>12</u> B	<u>A</u> C	<u>60</u> D	<u>М</u> Е	<u>100</u> F	
B: C: D: E:	Dime Mate Thick Tolera	ness(r	(mm)		12: NC 60: M:	ver Inductors 12.5x12.5 Ma use 6.0 Max ±20% 9=10uH	x

3. Electrical Characteristics

Part Number	Inductance (uH)	Test Frequency (KHz)	DC Resistance (mΩ)Max.	Saturation Current (A)Max.
APW12A60M100	10.0	100KHz/0.25V	44.0	4.5
APW12A60M330	33.0	100KHz/0.25V	63.0	3.0
APW12A60M470	47.0	100KHz/0.25V	85.0	2.5
APW12A60M151	150.0	100KHz/0.25V	260.0	1.0

Notes:

- 1) AEC-Q200 qualified.
- 2) All test data is referenced to 25° C ambient.
- 3) Operating temperature range -40°C to +125°C.
- 4) Isat: DC current(A) that will cause lo to drop approximately 35%.
- 5) The part temperature(ambient + temp rise)should not exceed 125°C under worst case operating conditions. circuit design,component placement, PWB trace size and thickness,airflow and other cooling provisions all affect the part temperature,part temperature should be verified in the end application.

4. Test Data

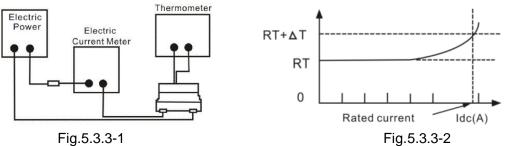
E	LECTRICA	L CHARCTE	RISTIC	MECHANICAL DIMENSIONS				
SPEC	L(uH)	DCR(mΩ)	Isat(uH)	A(mm)	B(mm)	C(mm)	D(mm)	
TOL	10.0	44.0	4.5A	12.5	12.5	6.0	5.0	
NO	±20%	Max	(L0A-L4.5A) /L0A≤35%	Max	Max	Max	Ref	
1	9.86	31.37	9.46	12.02	11.99	5.73	OK	
2	9.96	28.22	9.35	11.95	12.02	5.72	OK	
3	9.92	23.83	9.33	11.96	12.01	5.76	OK	
4	9.94	27.32	9.46	12.02	11.95	5.69	OK	
5	9.92	24.98	9.45	12.01	12.01	5.72	OK	
6	9.86	26.21	9.35	11.96	12.02	5.71	OK	
7	9.88	28.89	9.33	11.95	11.97	5.68	OK	
8	9.95	27.83	9.46	12.02	12.01	5.71	OK	
9	9.96	26.42	9.35	11.99	11.98	5.69	OK	
10	9.92	25.78	9.37	12.02	11.97	5.68	OK	

5. Test and Measurement Procedures

5.1 Test Conditions

- 5.1.1 Unless otherwise specified, the standard atmospheric conditions for measurement/test as:
 - a. Ambient Temperature: 20±15°C
 - b. Relative Humidity: 65%±20%
 - c. Air Pressure: 86KPa to 106KPa
- 5.1.2 If any doubt on the results, measurements/tests should be made within the following limits:
 - a. Ambient Temperature: 20±2°C
 - b. Relative Humidity: 65%±5%
 - c. Air Pressure: 86KPa to 106Kpa

5.2 Visual Examination


a. Inspection Equipment: 10X magnifier

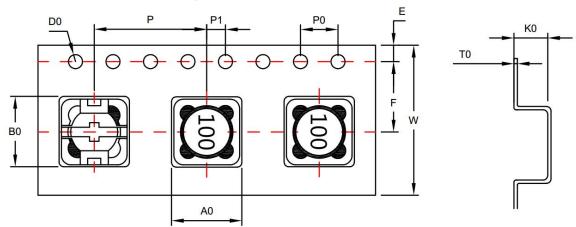
5.3 Electrical Test

- 5.3.1 Inductance (L)
 - a. Refer to the third item.
 - b. Test equipment: IM3536 LCR meter or equivalent.
 - c. Test Frequency and Voltage: Refer to the third item.
- 5.3.2 Direct Current Resistance (DCR)
 - a. Refer to the third item.
 - b. Test equipment: VR126 or equivalent.
- 5.3.3 Current
 - a. Refer to the third item.
 - b. Test equipment (see Fig.5.3.3-1): Electric Power, Electric current meter, Thermometer.
 - c. Measurement method (see Fig. 5.3.3-1):

- 1. Set test current to be 0 mA.
- 2. Measure initial temperature of chip surface.
- 3. Gradually increase voltage and measure chip temperature for corresponding current.
- d. Definition of Temperature rise current: DC current that causes the temperature rise ($\bigtriangleup T$
 - =40°C)from 20°C ambient (see Fig. 5.3.3-2).

5.4 Reliability Test

ltem	Specifications	Test conditions
5.4.1 High temperature storage test	No visible mechanical damage. Inductance change: Within ±10%.	Temperature: 125±2°C. Duration:1000hrs. Measured at room temperature after placing for 24±4 hrs. Temp 125°C High temperature 25°C 0°C 1000H Test Time
5.4.2 Temperature cycling test	No visible mechanical damage. Inductance change: Within ±10%.	Condition for 1 cycle. Step1: $-40\pm2^{\circ}$ C 30min Min. Step2: $125\pm2^{\circ}$ C, transition time 1min Max. Step3: $125\pm2^{\circ}$ C 30min Min. Step4: Low temp, transition time 1min Max. Number of cycles: 1000. Measured at room temperature after placing for 24±4 hrs. Temp 125°C 0°C -40°C
5.4.3 Biased humidity test	No visible mechanical damage. Inductance change: Within ±10%.	Humidity :85 $\% \pm 3$ RH. Temperature: 85 $^{\circ}C \pm 2^{\circ}C$. Duration : 1000hrs. Measured at room temperature after placing for24±4 hrs.


ltem	Specifications	Test conditions
5.4.4 Operational life test	No visible mechanical damage. Inductance change: Within ±10%.	Temperature:105±2℃. Duration :1000hrs. Measured at room temperature after placing for24±4 hrs.
5.4.5 Resistance to solvent test	No visible mechanical damage. Inductance change: Within ±10%.	Add aqueous wash chemical - OKEM clean or equivalent.
5.4.6 Vibration test	No visible mechanical damage. Inductance change: Within ±10%.	Oscillation Frequency: 10~2K~10Hz for 20 minute. Total Amplitude:1.52mm±10%. Testing Time : 12 hours(20 minutes, 12 cycles each of 3 orientations).
5.4.7 Resistance to soldering heat test	No visible mechanical damage. Inductance change: Within ±10%.	Temperature (°C): 260 ±5 (solder temp). Time (s): 10 ±1. ramp/immersion and emersion rate: 25mm/s ±6 mm/s. Number of heat cycles:1. 260°C 150°C 60 sec. 10 ± 1 sec.
5.4.8 Solderability test	More than 95% of the terminal electrode should be covered with solder.	Steam Aging: 8 hours \pm 15 min. Preheat: 150°C,60sec. Solder: Sn99.5%-Cu0. 5%. Temperature: 245 \pm 5°C. Flux for lead free: Rosin. 9.5%. Dip time: 4 \pm 1sec. Depth: completely cover the termination. 245°C 150°C 60 sec. $4\pm$ 1sec.
5.4.9 Terminal strength (SMD) test	No visible mechanical damage.	With the component mounted on a PCB with the device to be tested,apply a 17.7 N (1.8 Kg) force to the side of a device being tested. This force shall be applied for 60 +1 seconds. Also the force shall be applied radually as not to apply a shock to the component being tested.

Coilank

6. Packaging, Storage

6.1 Tape and Reel Packaging Dimensions

- 6.1.1 Taping Dimensions (Unit: mm)
 - Please refer to Fig. 6.1.1-1

6.1.1-1

TYPE	A0	B0	W	Е	F	P0	Р	P1	D0	Т0	K0
APW12A60	12.7±0.1	12.7±0.1	24.0±0.3	1.75±0.1	11.5±0.1	4.0±0.1	16.0±0.1	2.0±0.1	1.5±0.1	0.4±0.1	6.2±0.1

6.1.2 Reel Dimensions (Unit: mm)

Please refer to Fig. 6.1.2-1.

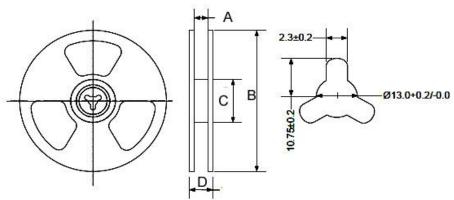



Fig. 6.1.2-1.

TYPE	А	В	С	D
APW12A60	24.5±2.0	330.0±2.0	100.0±2.0	28.5±2.0

Power Inductors

6.2 Packaging

Coilank

6.2.1 The inner box specification: 350*340*40MM

Packing quantity: 500PCS/ box

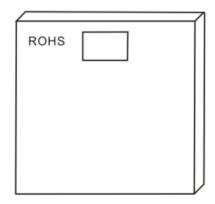
Bubble bag : 37*45CM

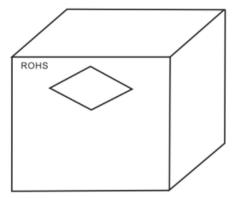
Job description: putting the air bubble bag products placed

inside the box, sealed with scotch tape

6.2.2 The outside box specification: 370*360*165MM

Packing quantity: 1500PCS/ box

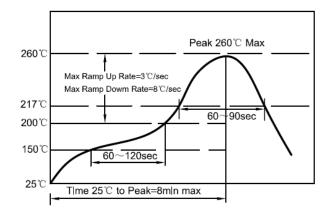

Job description: will be outside the box bottom


sealed, inner box into the box.

- a. With transparent tape sealed box at the top
- b. The specified location with a box labels in the outer box.
- c. If the mantissa box under a FCL with inner box or filling full

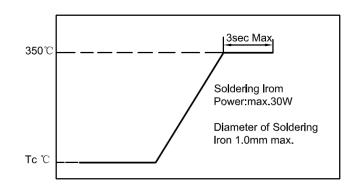
6.3 Storage

- a.To maintain the solderability of terminal electrodes and to keep the packing material in good condition, temperature and humidity in the storage area should be controlled.
- b. Recommended conditions: -10 °C ~40 °C, 70%RH (Max.)
- c.The ambient temperature must be kept below 30°C.Even under ideal storage conditions, solderability of products electrodes may decrease as time passes. For this reason, product should be used with one year from the time of delivery.
- d. In case of storage over 6 months, solderability shall be checked before actual usage.



Coilank

7. Recommended Soldering Technologies


- 7.1 Re-flowing Profile:
 - \triangle Preheat condition: 150~200°C/60~120sec.
 - \triangle Allowed time above 217°C: 60~90sec.
 - \triangle Max temp: 260°C
 - riangle Max time at max temp: 5sec.
 - \triangle Solder paste: Sn/3.0Ag/0.5Cu
 - $\bigtriangleup\,$ Allowed Reflow time: 2x max

7.2 Iron Soldering Profile:

- △ Iron soldering power: Max.30W
- \triangle Pre-heating: 150°C/60sec.
- △ Soldering Tip temperature: 350° CMax.
- △ Soldering time: 3sec Max.
- △ Solder paste: Sn/3.0Ag/0.5Cu
- △ Max.1 times for iron soldering

[Note: Take care not to apply the tip of the soldering iron to the]

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Fixed Inductors category:

Click to view products by COILANK manufacturer:

Other Similar products are found below :

MLZ1608M6R8WTD25 MLZ1608N6R8LT000 MLZ1608N3R3LTD25 MLZ1608N3R3LT000 MLZ1608N150LT000 MLZ1608M150WTD25 MLZ1608M3R3WTD25 MLZ1608M3R3WT000 MLZ1608M150WT000 MLZ1608A1R5WT000 MLZ1608N1R5LT000 B82432C1333K000 PCMB053T-1R0MS PCMB053T-1R5MS PCMB104T-1R5MS CR32NP-100KC CR32NP-151KC CR32NP-180KC CR32NP-181KC CR32NP-1R5MC CR32NP-390KC CR32NP-3R9MC CR32NP-680KC CR32NP-820KC CR32NP-8R2MC CR43NP-390KC CR43NP-560KC CR43NP-680KC CR54NP-181KC CR54NP-470LC CR54NP-820KC CR54NP-8R5MC MGDQ4-00004-P MGDU1-00016-P MHL1ECTTP18NJ MHL1JCTTD12NJ PE-51506NL PE-53601NL PE-53630NL PE-53824SNLT PE-62892NL PE-92100NL PG0434.801NLT PG0936.113NLT PM06-2N7 PM06-39NJ HC2LP-R47-R HC2-R47-R HC3-2R2-R HC8-1R2-R