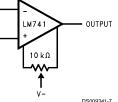

LM741 Operational Amplifier


General Description

The LM741 series are general purpose operational amplifiers which feature improved performance over industry standards like the LM709. They are direct, plug-in replacements for the 709C, LM201, MC1439 and 748 in most applications. The amplifiers offer many features which make their application nearly foolproof: overload protection on the input and output, no latch-up when the common mode range is exceeded, as well as freedom from oscillations.

Schematic Diagram

The LM741C/LM741E are identical to the LM741/LM741A except that the LM741C/LM741E have their performance guaranteed over a 0°C to +70°C temperature range, instead of -55°C to +125°C.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

(Note 6)

	LM741A	LM741E	LM741	LM741C
Supply Voltage	±22V	±22V	±22V	±18V
Power Dissipation (Note 2)	500 mW	500 mW	500 mW	500 mW
Differential Input Voltage	±30V	±30V	±30V	±30V
Input Voltage (Note 3)	±15V	±15V	±15V	±15V
Output Short Circuit Duration	Continuous	Continuous	Continuous	Continuous
Operating Temperature Range	-55°C to +125°C	0°C to +70°C	–55°C to +125°C	0°C to +70°C
Storage Temperature Range	-65°C to +150°C	-65°C to +150°C	–65°C to +150°C	–65°C to +150°C
Junction Temperature	150°C	100°C	150°C	100°C
Soldering Information				
N-Package (10 seconds)	260°C	260°C	260°C	260°C
J- or H-Package (10 seconds)	300°C	300°C	300°C	300°C
M-Package				
Vapor Phase (60 seconds)	215°C	215°C	215°C	215°C
Infrared (15 seconds)	215°C	215°C	215°C	215°C
See AN-450 "Surface Mounting Me	ethods and Their Effect of	on Product Reliability" fo	or other methods of sold	dering
surface mount devices.				-
	1001/	1001	1001	1001/

ESD Tolerance (Note 7) 400V 400V 400V 400V	ESD Tolerance (Note 7)	400V	400V	400V	400V

Electrical Characteristics (Note 4)

Parameter	Conditions	LM7	41A/LN	1741E	LM741			LM741C			Units
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Input Offset Voltage	T _A = 25°C										
	$R_{S} \le 10 \ k\Omega$					1.0	5.0		2.0	6.0	mV
	$R_{S} \le 50\Omega$		0.8	3.0							mV
	$T_{AMIN} \le T_A \le T_{AMAX}$										
	$R_{S} \leq 50\Omega$			4.0							mV
	$R_{S} \le 10 \ k\Omega$						6.0			7.5	mV
Average Input Offset				15							µV/°C
Voltage Drift											
Input Offset Voltage	$T_{A} = 25^{\circ}C, V_{S} = \pm 20V$	±10				±15			±15		mV
Adjustment Range											
Input Offset Current	T _A = 25°C		3.0	30		20	200		20	200	nA
	$T_{AMIN} \le T_A \le T_{AMAX}$			70		85	500			300	nA
Average Input Offset				0.5							nA/°C
Current Drift											
Input Bias Current	T _A = 25°C		30	80		80	500		80	500	nA
	$T_{AMIN} \le T_A \le T_{AMAX}$			0.210			1.5			0.8	μA
Input Resistance	$T_A = 25^{\circ}C, V_S = \pm 20V$	1.0	6.0		0.3	2.0		0.3	2.0		MΩ
	$T_{AMIN} \le T_A \le T_{AMAX},$	0.5									MΩ
	$V_{s} = \pm 20V$										
Input Voltage Range	T _A = 25°C							±12	±13		V
	$T_{AMIN} \le T_A \le T_{AMAX}$				±12	±13					V

Electrical Characteristics (Note 4) (Continued)

Parameter	Conditions	LM741A/LM741E			LM741			LM741C			Units
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	1
Large Signal Voltage Gain	$T_A = 25^{\circ}C, R_L \ge 2 \ k\Omega$										
	$V_{S} = \pm 20V, V_{O} = \pm 15V$	50									V/m'
	$V_{S} = \pm 15V, V_{O} = \pm 10V$				50	200		20	200		V/m'
	$T_{AMIN} \le T_A \le T_{AMAX}$,										
	$R_L \ge 2 \ k\Omega$,										
	$V_{S} = \pm 20V, V_{O} = \pm 15V$	32									V/m'
	$V_{s} = \pm 15V, V_{o} = \pm 10V$				25			15			V/m
	$V_{S} = \pm 5V, V_{O} = \pm 2V$	10									V/m
Output Voltage Swing	$V_{S} = \pm 20V$										
	$R_L \ge 10 \ k\Omega$	±16									v
	$R_L \ge 2 k\Omega$	±15									v
	$V_{s} = \pm 15V$										
	$R_L \ge 10 \ k\Omega$				±12	±14		±12	±14		v
	$R_L \ge 2 k\Omega$				±10	±13		±10	±13		v
Output Short Circuit	$T_A = 25^{\circ}C$	10	25	35		25			25		mA
Current	$T_{AMIN} \leq T_{A} \leq T_{AMAX}$	10		40							mA
Common-Mode	$T_{AMIN} \leq T_{A} \leq T_{AMAX}$										
Rejection Ratio	$R_{S} \le 10 \text{ k}\Omega, \text{ V}_{CM} = \pm 12 \text{V}$				70	90		70	90		dB
	$R_{S} \leq 50\Omega$, V_{CM} = ±12V	80	95								dB
Supply Voltage Rejection	$T_{AMIN} \leq T_A \leq T_{AMAX},$										
Ratio	$V_{S} = \pm 20V$ to $V_{S} = \pm 5V$										
	$R_S \le 50\Omega$	86	96								dB
	$R_{S} \le 10 \text{ k}\Omega$				77	96		77	96		dB
Transient Response	T _A = 25°C, Unity Gain										
Rise Time			0.25	0.8		0.3			0.3		μs
Overshoot			6.0	20		5			5		%
Bandwidth (Note 5)	$T_A = 25^{\circ}C$	0.437	1.5								MHz
Slew Rate	T _A = 25°C, Unity Gain	0.3	0.7			0.5			0.5		V/µs
Supply Current	$T_A = 25^{\circ}C$					1.7	2.8		1.7	2.8	mA
Power Consumption	$T_A = 25^{\circ}C$										
	$V_{S} = \pm 20V$		80	150							mW
	$V_{S} = \pm 15V$					50	85		50	85	mW
LM741A	$V_{s} = \pm 20V$										
	$T_A = T_{AMIN}$			165							mW
	$T_A = T_{AMAX}$			135							m٧
LM741E	$V_{S} = \pm 20V$										
	$T_A = T_{AMIN}$			150							mW
	$T_A = T_{AMAX}$			150							m٧
LM741	$V_{\rm S} = \pm 15 V$										
	$T_A = T_{AMIN}$					60	100				m٧
	$T_A = T_{AMAX}$					45	75				mW

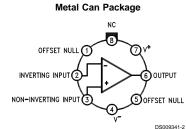
Note 1: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.

Electrical Characteristics (Note 4) (Continued)

Note 2: For operation at elevated temperatures, these devices must be derated based on thermal resistance, and T_j max. (listed under "Absolute Maximum Ratings"). $T_j = T_A + (\theta_{jA} P_D)$.

Thermal Resistance	Cerdip (J)	DIP (N)	HO8 (H)	SO-8 (M)
θ_{jA} (Junction to Ambient)	100°C/W	100°C/W	170°C/W	195°C/W
θ _{jC} (Junction to Case)	N/A	N/A	25°C/W	N/A

Note 3: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.


Note 4: Unless otherwise specified, these specifications apply for $V_S = \pm 15V$, $-55^{\circ}C \le T_A \le +125^{\circ}C$ (LM741/LM741A). For the LM741C/LM741E, these specifications are limited to $0^{\circ}C \le T_A \le +70^{\circ}C$.

Note 5: Calculated value from: BW (MHz) = 0.35/Rise Time(µs).

Note 6: For military specifications see RETS741X for LM741 and RETS741AX for LM741A.

Note 7: Human body model, 1.5 kΩ in series with 100 pF.

Connection Diagram

 NC
 2
 13
 → NC

 + OFFSET NULL
 3
 12
 → NC

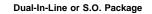
 -IN
 4
 11
 → V+

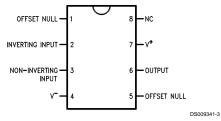
 +IN
 5
 10
 → OUT

 V
 6
 9
 → OFFSET NULL

Ceramic Dual-In-Line Package

14 NC

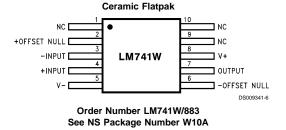

8 NC


DS009341-5

Note 8: LM741H is available per JM38510/10101

Order Number LM741H, LM741H/883 (Note 8), LM741AH/883 or LM741CH

See NS Package Number H08C



Order Number LM741J, LM741J/883, LM741CM, LM741CN or LM741EN See NS Package Number J08A, M08A or N08E Note 9: also available per JM38510/10101 Note 10: also available per JM38510/10102

NC

NC

Order Number LM741J-14/883 (Note 9), LM741AJ-14/883 (Note 10) See NS Package Number J14A

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Operational Amplifiers - Op Amps category:

Click to view products by HGSEMI manufacturer:

Other Similar products are found below :

 OPA2991IDSGR
 OPA607IDCKT
 007614D
 633773R
 635798C
 635801A
 702115D
 709228FB
 741528D
 NCV33072ADR2G

 SC2903VDR2G
 LM258AYDT
 LM358SNG
 430227FB
 430228DB
 460932C
 AZV831KTR-G1
 409256CB
 430232AB
 LM2904DR2GH

 LM358YDT
 LT1678IS8
 042225DB
 058184EB
 070530X
 714228XB
 714846BB
 873836HB
 MIC918YC5-TR
 TS912BIYDT

 NCS2004MUTAG
 NCV33202DMR2G
 M38510/13101BPA
 NTE925
 SC2904DR2G
 SC358DR2G
 LM358EDR2G
 AZV358MTR-G1

 AP4310AUMTR-AG1
 HA1630D02MMEL-E
 NJM358CG-TE2
 HA1630S01LPEL-E
 LM324AWPT
 HA1630Q06TELL-E
 NJM4558CG-TE2

 AZV358MMTR-G1
 SCY33178DR2G
 NCS4325DR2G
 LM7301SN1T1G
 NJU77806F3-TE1