150KHz, 2A PWM BUCK DCIDC CONVERTER

Description

The AP1509 series are monolithic IC designed for a stepdown DC/DC converter, and own the ability of driving a 2A load without additional transistor. It saves board space. The external shutdown function can be controlled by logic level and then come into standby mode. The internal compensation makes feedback control having good line and load regulation without external design. Regarding protected function, thermal shutdown is to prevent over temperature operating from damage, and current limit is against over current operating of the output switch. If current limit function occurs and V_{FB} is down below 0.5 V , the switching frequency will be reduced. The AP1509 series operates at a switching frequency of 150 KHz thus allow smaller sized filter components than what would be needed with lower frequency switching regulators. Other features include a guaranteed $\pm 4 \%$ tolerance on output voltage under specified input voltage and output load conditions, and $\pm 15 \%$ on the oscillator frequency. The output version included fixed $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}$, and an adjustable type. The chips are available in a standard 8-lead SOP-8 package.

Features

- Output Voltage: $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}$ and Adjustable Output Version
- Adjustable Version Output Voltage Range, 1.23 V to 18V+4\%
- $150 \mathrm{KHz}+15 \%$ Fixed Switching Frequency
- Voltage Mode Non-Synchronous PWM Control
- Thermal-Shutdown and Current-Limit Protection
- ON/OFF Shutdown Control Input
- Operating Voltage can be up to 22 V
- Output Load Current: 2A
- SOP-8L Packages
- Low Power Standby Mode
- Built-in Switching Transistor On Chip
- SOP-8L: Available in "Green" Molding Compound (No Br, Sb)
- Lead Free Finish/ RoHS Compliant (Note 1)

Pin Assignments

(Top View)

Applications

- Simple High-Efficiency Step-Down Regulator
- On-Card Switching Regulators
- Positive to Negative Converter

AP1509

Typical Application Circuit

(1) Fixed Type Circuit

(2) Adjustable Type Circuit

(3) Delay Start Circuit

Pin Descriptions

Pin Name	Description
$\mathrm{V}_{\text {IN }}$	Operating voltage input
Output	Switching output
GND	Ground
FB	Output voltage feedback control
SD	ON/OFF Shutdown

Functional Block Diagram

AP1509

Absolute Maximum Ratings

Symbol	Parameter	Rating	Unit
ESD HBM	Human Body Model ESD Protection	2	KV
ESD MM	Machine Model ESD Protection	200	V
$\mathrm{~V}_{\text {IN }}$	Supply Voltage	+24	V
$\mathrm{~V}_{\mathrm{SD}}$	ON/OFF Pin Input Voltage	-0.3 to +18	V
$\mathrm{~V}_{\text {FB }}$	Feedback Pin Voltage	-0.3 to +18	V
$\mathrm{~V}_{\text {OUT }}$	Output Voltage to Ground	-1	V
P_{D}	Power Dissipation	Internally Limited	W
$\mathrm{T}_{\text {ST }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{J}	Operating Junction Temperature	-40 to +125	${ }^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Unit
$\mathrm{I}_{\text {OUT }}$	Output Current	0	2	A
$\mathrm{~V}_{\mathrm{OP}}$	Operating Voltage	4.5	22	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Ambient Temperature	-20	85	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

Unless otherwise specified, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$ for $3.3 \mathrm{~V}, 5 \mathrm{~V}$, adjustable version and $\mathrm{V}_{\mathrm{IN}}=18 \mathrm{~V}$ for the 12 V version. $\mathrm{I}_{\text {LOAD }}=0.5 \mathrm{~A}$
Specifications with boldface type are for full operating temperature range, the other type are for $T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions		Min	Typ.	Max	Unit
$\mathrm{I}_{\text {FB }}$	Feedback Bias Current	$\mathrm{V}_{\mathrm{FB}}=1.3 \mathrm{~V}$ (Adjustable version only)			-10	-50	nA
					-10	-100	
Fosc	Oscillator Frequency			127	150	173	KHz
				110		173	
$\mathrm{F}_{\text {SCP }}$	Oscillator Frequency of Short Circuit Protect	When and V_{FB}	limit occurred $5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	10	30	50	KHz
$\mathrm{V}_{\text {SAT }}$	Saturation Voltage	$\mathrm{loUt}=2 \mathrm{~A}$ No outside circuit $\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}$ force driver on			1.25	1.4	V
						1.5	
DC	Max. Duty Cycle (ON)	$\mathrm{V}_{\text {FB }}=0 \mathrm{~V}$	driver on		100		\%
	Min. Duty Cycle (OFF)	$\mathrm{V}_{\text {FB }}=12 \mathrm{~V}$	ce driver off		0		
ICL	Current Limit	Peak cur No outsid $\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}$	rcuit driver on	3			A
I_{L}	Output $=0$ Output Leakage Oun	No outsid $V_{F B}=12 V$	rcuit ce driver off			-200	uA
	Output $=-1$ Current	$\mathrm{V}_{1 \text { IN }}=22 \mathrm{~V}$			-5		mA
l	Quiescent Current	$\mathrm{V}_{\mathrm{FB}}=12 \mathrm{~V}$	ce driver off		5	10	mA
$\mathrm{I}_{\text {stby }}$	Standby Quiescent Current	ON/OFF $V_{\text {IN }}=22 \mathrm{~V}$	$=5 \mathrm{~V}$		70	150	uA
VIL	ON/OFF Pin Logic Input Threshold Voltage	Low (reg	ON)	-	1.3	0.6	V
$\mathrm{V}_{\text {IH }}$		High (reg	or OFF)	2.0			
I_{H}	ON/OFF Pin Logic Input Current	$\mathrm{V}_{\text {Logic }}=2.5 \mathrm{~V}$ (OFF)				-0.01	uA
I_{L}	ON/OFF Pin Input Current	$\mathrm{V}_{\text {LOGIC }}=0.5 \mathrm{~V}(\mathrm{ON})$			-0.1	-1	
$\theta_{\text {JA }}$	Thermal Resistance	SOP-8L	Junction to case		15		${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {Jc }}$	Thermal Resistance with a copper area of approximately 3 in 2	SOP-8L	Junction to ambient		70		${ }^{\circ} \mathrm{C} / \mathrm{W}$

AP1509

Electrical Characteristics (Continued)

Specifications with boldface type are for full operating temperature range, the other type are for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.

	Symbol	Parameter	Conditions	$\mathrm{V}_{\text {Min }}$	Typ.	$\mathrm{V}_{\text {Max }}$	Unit
AP1509-ADJ	$\mathrm{V}_{\text {FB }}$	Output Feedback	$\begin{aligned} & 4.5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 22 \mathrm{~V} \\ & 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 2 \mathrm{~A} \\ & \mathrm{~V}_{\text {OUT }} \text { programmed for } 3 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{gathered} 1.193 \\ 1.18 \end{gathered}$	1.23	$\begin{gathered} 1.267 \\ 1.28 \end{gathered}$	V
	η	Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=2 \mathrm{~A}$	76	76		\%
AP1509-3.3V	$V_{\text {Out }}$	Output Voltage	$\begin{aligned} & 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 22 \mathrm{~V} \\ & 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 2 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 3.168 \\ & 3.135 \\ & \hline \end{aligned}$	3.3	$\begin{aligned} & 3.432 \\ & 3.465 \\ & \hline \end{aligned}$	V
	η	Efficiency	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=2 \mathrm{~A}$	78	78		\%
AP1509-5V	$V_{\text {out }}$	Output Voltage	$\begin{aligned} & 7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 22 \mathrm{~V} \\ & 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 2 \mathrm{~A} \end{aligned}$	$\begin{gathered} \hline 4.8 \\ 4.75 \\ \hline \end{gathered}$	5	$\begin{gathered} 5.2 \\ 5.25 \\ \hline \end{gathered}$	V
	η	Efficiency	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=2 \mathrm{~A}$	83	83		\%
AP1509-12V	$V_{\text {Out }}$	Output Voltage	$\begin{aligned} & 15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 22 \mathrm{~V} \\ & 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 2 \mathrm{~A} \end{aligned}$	$\begin{gathered} 11.52 \\ \mathbf{1 1 . 4} \end{gathered}$	12	$\begin{gathered} 12.48 \\ 12.6 \end{gathered}$	V
	η	Efficiency	$\mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=2 \mathrm{~A}$	90	90		\%

AP1509

Typical Performance Characteristics

AP1509 Efficiency vs. Temperature
$\left(\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=5 \mathrm{~V}, \mathrm{Io}=2 \mathrm{~A}\right)$

AP1509 Saturation Voltage vs. Temperature ($\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0 \mathrm{~V}, \mathrm{VSD}=0$)

AP1509 Efficiency vs. Temperature
($\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3.3 \mathrm{~V}, \mathrm{lo}=2 \mathrm{~A}$)

AP1509 Switch Current Limit vs. Temperature
$\left(\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0 \mathrm{~V}\right.$)

AP1509 Supply Current vs. Temperature
$\left(\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}\right.$, No Load, Von/off $=0 \mathrm{~V}($ Switch ON$), \mathrm{Von} /$ off $=5 \mathrm{~V}($ Switch OFF) $)$

Typical Performance Characteristics (Continued)

AP1509 Threshold Voltage vs. Temperature
$\left(\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{lo}=100 \mathrm{~mA}\right)$

AP1509 Frequency vs. Temperature $\left(\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, 1 \mathrm{lo}=500 \mathrm{~mA}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}\right.$)

AP1509 ON/OFF Current vs. ON/OFF Voltage ($\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$)

AP1509 Feedback Current vs. Temperature ($\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=5 \mathrm{~V}, \mathrm{Vfb}=1.3 \mathrm{~V}$)

AP1509 Output Voltage vs. Temperature
$\left(\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{lo}=2 \mathrm{~A}\right)$

AP1509

Typical Performance Characteristics (Continued)

Functions Description

Pin Functions

$+\mathrm{V}_{\text {IN }}$
This is the positive input supply for the IC switching regulator. A suitable input bypass capacitor must be presented at this pin to minimize voltage transients and to supply the switching currents needed by the regulator.

Ground

Circuit ground.

Output

Internal switch. The voltage at this pin switches between ($+\mathrm{V}_{\mathrm{IN}_{\mathrm{N}}}-\mathrm{V}_{\mathrm{SAT}}$) and approximately -0.5 V , with a duty cycle of approximately $\mathrm{V}_{\text {out }} / \mathrm{V}_{\text {IN }}$. To minimize coupling to sensitive circuitry, the PC board copper area connected to this pin should be minimized.

Feedback

Senses the regulated output voltage to complete the feedback loop.

SD

Allows the switching regulator circuit to be shutdown using logic level signals thus dropping the total input supply current to approximately 150 uA . Pulling this pin below a threshold voltage of approximately 1.3 V turns the regulator on, and pulling this pin above 1.3 V (up to a maximum of 18 V) shuts the regulator down. If this shutdown feature is not needed, the SD pin can be wired to the ground pin.

Thermal Considerations

The SOP-8L package needs a heat sink under most conditions. The size of the heat sink depends on the input voltage, the output voltage, the load current and the ambient temperature. The AP1509 junction temperature rises above ambient temperature for a 2A load and different input and output voltages. The data for these curves was taken with the AP1509 (SOP-8L package) operating as a buck-switching regulator in an ambient temperature of $25^{\circ} \mathrm{C}$ (still air). These temperature increments are all approximate and are affected by many factors. Higher ambient temperatures require more heat sinker.

For the best thermal performance, wide copper traces and generous amounts of printed circuit board copper should be used in the board layout (One exception is the output (switch) pin, which should not have large areas of copper). Large areas of copper provide the best transfer of heat (lower thermal resistance) to the surrounding air, and moving air lowers the thermal resistance even further.

Package thermal resistance and junction temperature increments are all approximate. The increments are affected by a lot of factors. Some of these factors include board size, shape, thickness, position, location, and even board temperature. Other factors are, trace width, total printed circuit copper area, copper thickness, single or double-sided, multi-layer board and the amount of solder on the board.

The effectiveness of the PC board to dissipate heat also depends on the size, quantity and spacing of other components on the board, as well as whether the surrounding air is still or moving. Furthermore, some of these components such as the catch diode will add heat to the PC board and the heat can vary as the input voltage changes. For the inductor, depending on the physical size, type of core material and the DC resistance, it could either act as a heat sink taking heat away from the board, or it could add heat to the board.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Isolated DC/DC Converters category:
Click to view products by HGSEMI manufacturer:
Other Similar products are found below :
ESM6D044440C05AAQ FMD15.24G PSL486-7LR PSR152.5-7IR Q48T30020-NBB0 AVO240-48S12B-6L AVO250-48S28B-6L NAN0505 HW-L16D JAHW100Y1 217-1617-001 22827 SPB05C-12 SQ24S15033-PS0S $18952 \underline{19-130041}$ CE-1003 CE-1004 GQ2541-7R PSE1000DCDC-12V RDS180245 MAU228 419-2065-201 449-2075-101 TME 0303S TME 0505S TME 1205S TME 1212S TME 2405S TME 2412S V300C24C150BG 419-2062-200 419-2063-401 419-2067-101 419-2067-501 419-2068-001 DCG40-5G DFC15U48D15 449-2067-000 XGS-0512 XGS-1205 XGS-1212 XGS-2412 XGS-2415 XKS-1215 033456 NCT1000N040R050B SPB05B-15 SPB05C-15 TME 0509S

