

LDS MODULE

3A, High Efficiency LDS Module

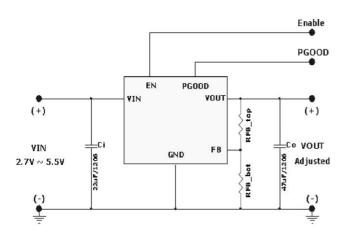
MUN3CAD03-MG

FEATURES:

- High Density LDS Module
- 3A Output Current
- 95% Peak Efficiency at 5VIN
- Input Voltage Range from 2.7V to 5.5V
- Adjustable Output Voltage
- Enable / PGOOD Function
- Automatic Power Saving/PWM Mode
- Protections (UVLO, OCP: Non-latching)
- Internal Soft Start
- Compact Size: 3.0mm*3.7mm*1.2mm
- Pb-free for RoHS compliant
- MSL 2, 260C Reflow

APPLICATIONS:

- Single Li-Ion Battery-Powered Equipment
- LDOs Replacement
- Cell Phones / PDAs / Palmtops


GENERAL DESCRIPTION:

The LDS module is non-isolated dc-dc converters that can deliver up to 3A of output current. The PWM switching regulator, high frequency power inductor are integrated in one hybrid package. It only need input/output capacitors and one voltage dividing resistor.

The module has automatic operation with PWM mode and power saving mode according to loading. Other features include remote enable function, internal soft-start, non-latching over current protection, power good, and input under voltage locked-out capability.

The low profile and compact size package $(3.0 \text{ mm} \times 3.7 \text{ mm} \times 1.2 \text{ mm})$ is suitable for automated assembly by standard surface mount equipment. The LDS module is Pb-free and RoHS compliance.

TYPICAL APPLICATION CIRCUIT & PACKAGE:

ELECTRICAL SPECIFICATIONS:

CAUTION: Do not operate at or near absolute maximum rating listed for extended periods of time. This stress may adversely impact product reliability and result in failures not covered by warranty.

Parameter	Description	Min.	Тур.	Max.	Unit
Absolute Maximum Ratings					
VIN to GND		-	-	+6.0	V
VOUT to GND		-	-	+6.0	V
SW to GND	Note 1			VIN+0.3	V
EN to GND	Note 1	-	-	+6.0	V
Тс	Case Temperature of Inductor	-	-	+110	°C
Тј	Junction Temperature	-40	-	+150	°C
Tstg	Storage Temperature	-40	-	+125	°C
	Human Body Model (HBM)	-	-	2k	V
ESD Rating	Machine Model (MM)	-	-	200	V
	Charge Device Model (CDM)	-	-	500	V
 Recommendation Operating Ratings 					
VIN	Input Supply Voltage	+2.7	-	+5.5	V
VOUT	Adjusted Output Voltage	0.6		+3.3	V
Та	Ambient Temperature	-40	-	+85	°C

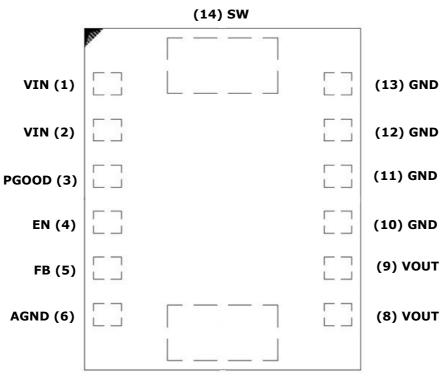
NOTES:

1. Parameters guaranteed and tested by power IC vendor.

ELECTRICAL SPECIFICATIONS: (Cont.)

Conditions: $T_A = 25 \text{ °C}$, Vin = 3.3V, Vout = 1.8V, Cin=22uF/X5R/6.3V , Cout=47uF/X5R/6.3V, unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
 Input 	 Input Characteristics 					
$I_{\text{SD}(\text{IN})}$	Input shutdown current	Vin = 3.3V, EN = GND	-	50	-	uA
$I_{Q(IN)}$	Input supply bias current	Vin = 3.3V, Iout = 0A EN = VIN Vout = 1.8V	-	120		uA
		Vin = 3.3V, EN = VIN	-	-	-	-
	Input supply	Iout = 5mA Vout = 1.8V	-	3.2	-	mA
$I_{S(IN)}$	current	Iout = 1.5A Vout = 1.8V	-	0.91	-	А
		Iout = 3.0A Vout = 1.8V	-	2	-	А
 Outp 	ut Characteristic	S				
Iout(dc)	Output continuous current range	Vin=3.3V, Vout=1.8V	0	-	3	А
Vo(set)	Ouput Voltage Set Point	With 0.5% tolerance for external resistor used to set output voltage	-3.0	-	+3.0	% Vo(set)
Vout / Vin	Line regulation accuracy	Vin = 3.3V to 5V Vout = 1.8V, Iout = 3.0A	-	0.1	-	% Vo(set)
Vоит / Іоит	Load regulation accuracy	Iout = 0A to 3.0A Vin = 3.3V, Vout = 1.8V	-	0.5	-	% Vo(set)
	Output ripple voltage	Vin = 3.3V, Vout = 1.8V EN = VIN	-	-	-	-
VOUT(AC)		IOUT = 5mA,	-	50	-	mVp-p
		IOUT = 3.0A,	-	15	-	mVp-p
Cout(max)	Maximum capacitive load	Iout = 3.0A, ESR≧1 mΩ	-	-	150	uF

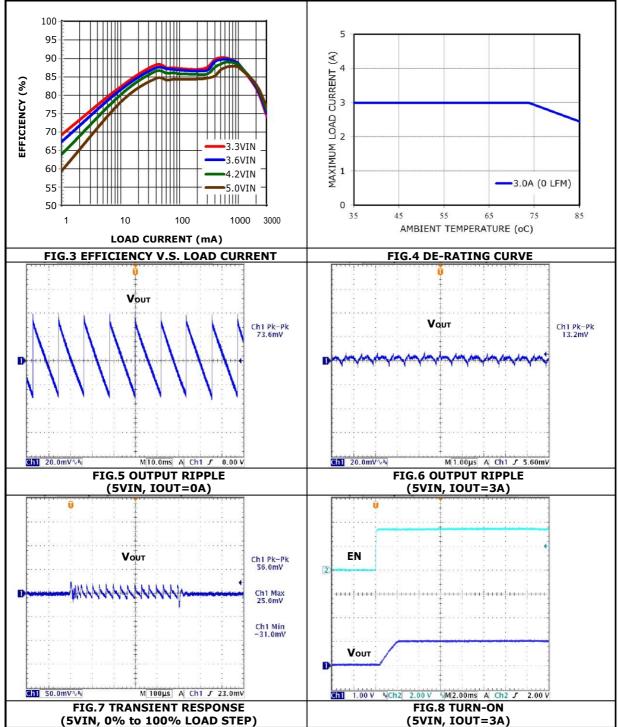

ELECTRICAL SPECIFICATIONS: (Cont.)

Conditions: $T_A = 25 \text{ °C}$, Vin = 3.3V, Vout = 1.8V, Cin=22uF/X5R/6.3V , Cout=47uF/X5R/6.3V, unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Cont	Control Characteristics					
Ven_th	Enable upper threshold voltage	Ven_th rising	1.2	-	-	V
V EN_TH	Enable lower threshold voltage	Ven_th falling	-	-	0.4	V
Fosc	Oscillator frequency	Note 1, PWM Operation	-	1.2	-	MHz
Vref	Referance voltage	Note 1	-2.0%	0.600	+2.0%	V/%
	PGOOD threshold	Upper trip, VREF respect to the regulation, Note 1	-	+10%	-	%
Vpgood_th	voltage	Lower trip, VREF respect to the regulation, Note 1	-	-10%	-	%
Vpgood_l	PGOOD sink current capability	Sink 1mA			0.4	V
Vpgood_h	PGOOD logic high voltage	VIN=3.3V, VFB=0.6V	3.2			V
Fault Protection						
Іцміт_тн	Current limit threshold	Peak value of inductor current, Note 1	4.2	4.8	-	А
Тотр	Over temperature protection	Note 1	-	150	-	°C

PIN CONFIGURATION:

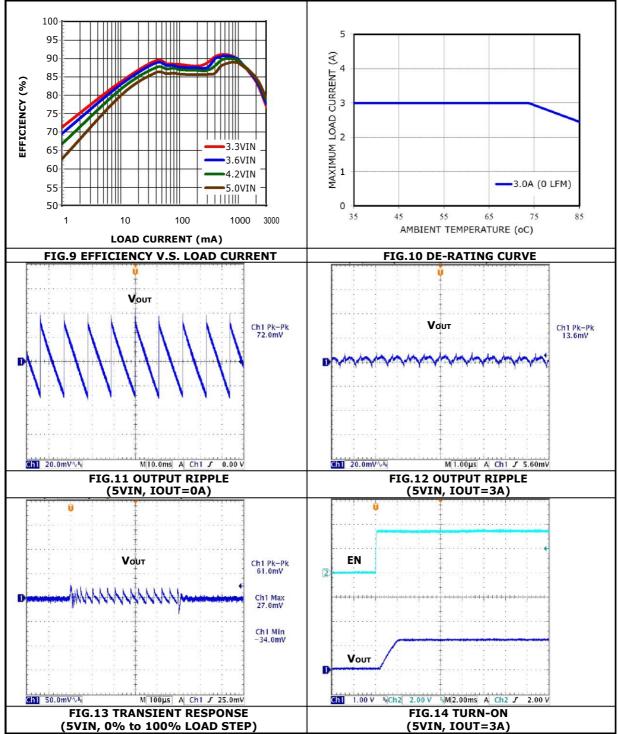
(7) VOUT


TOP VIEW

PIN DE	PIN DESCRIPTION:		
Symbol	Pin No.	Description	
VIN	1, 2	Power input pin. It needs to connect input rail.	
PGOOD	3	Power Good indicator. The pin output is an open drain that connects to VIN by an internal pull-up resistor. PG is pulled up to VIN when the FB voltage is within 10% of the regulation level. If FB voltage is out of that regulation range, it is LOW.	
EN	4	On/Off control pin for module. EN = LOW, the module is off. EN = HIGH, the module is on.	
FB	5	Feedback input. Connect an external resistor divider from the output to GND to set the output voltage.	
AGND	6	Analog ground.	
VOUT	7, 8, 9	Power output pin. Connect to output for the load.	
GND	10, 11, 12, 13	Power ground pin for signal, input, and output return path. This pin needs to connect one or more ground plane directly.	
SW	14	Switch output	

TYPICAL PERFORMANCE CHARACTERISTICS: (1.0VOUT)

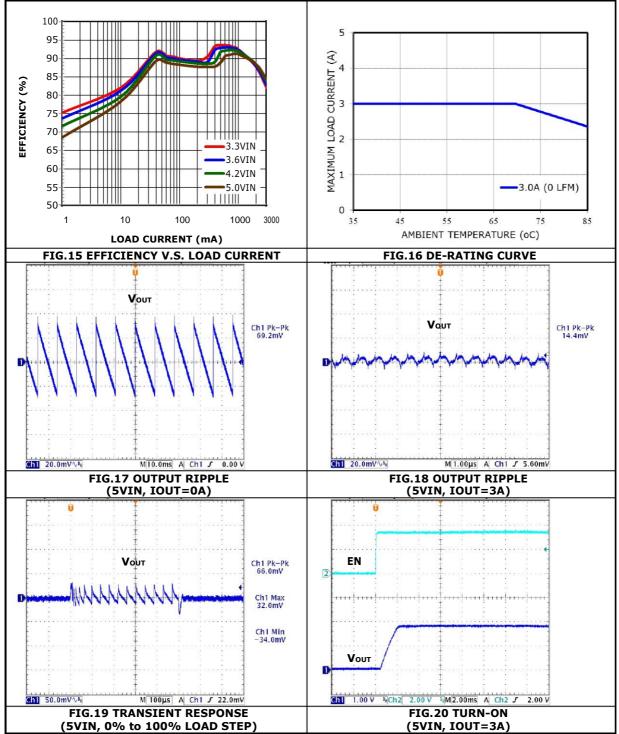
Conditions: $T_A = 25 \text{ °C}$, unless otherwise specified. Test Board Information: 76.2mm× 76.2mm× 1.6mm, 4 layers. The output ripple and transient response measurement is short loop probing and 20MegHz bandwidth limited.



The following figures provide the typical characteristic curves at 1.0Vout.

TYPICAL PERFORMANCE CHARACTERISTICS: (1.2VOUT)

Conditions: $T_A = 25 \text{ }^{\circ}C$, unless otherwise specified. Test Board Information: 76.2mm× 76.2mm× 1.6mm, 4 layers. The output ripple and transient response measurement is short loop probing and 20MegHz bandwidth limited.



The following figures provide the typical characteristic curves at 1.2Vout.

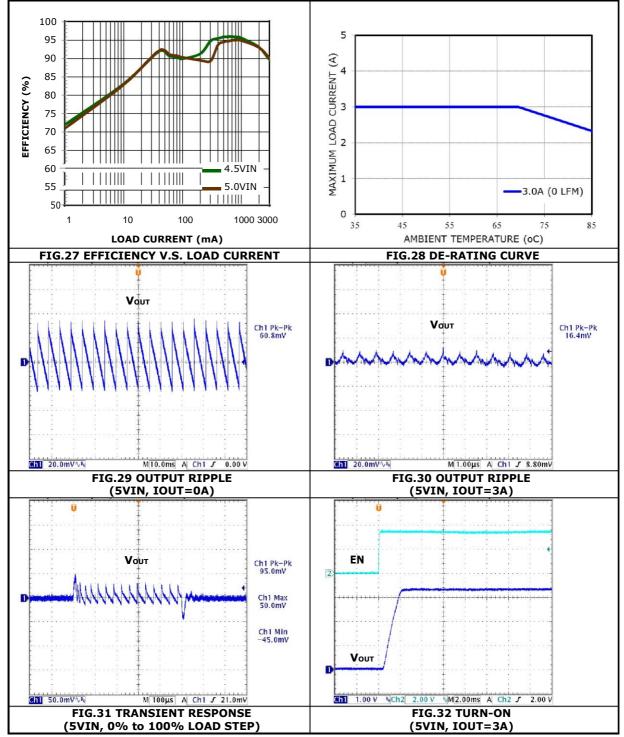
TYPICAL PERFORMANCE CHARACTERISTICS: (1.8VOUT)

Conditions: $T_A = 25 \text{ °C}$, unless otherwise specified. Test Board Information: 76.2mm× 76.2mm× 1.6mm, 4 layers. The output ripple and transient response measurement is short loop probing and 20MegHz bandwidth limited.

The following figures provide the typical characteristic curves at 1.8Vout.

TYPICAL PERFORMANCE CHARACTERISTICS: (2.5VOUT)

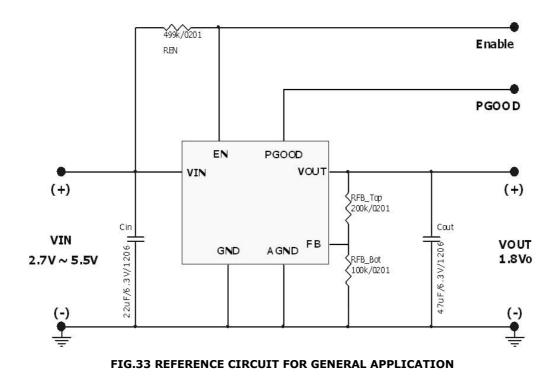
Conditions: $T_A = 25 \text{ °C}$, unless otherwise specified. Test Board Information: 76.2mm× 76.2mm× 1.6mm, 4 layers. The output ripple and transient response measurement is short loop probing and 20MegHz bandwidth limited.



The following figures provide the typical characteristic curves at 2.5Vout.

TYPICAL PERFORMANCE CHARACTERISTICS: (3.3VOUT)

Conditions: $T_A = 25 \text{ °C}$, unless otherwise specified. Test Board Information: 76.2mm× 76.2mm× 1.6mm, 4 layers. The output ripple and transient response measurement is short loop probing and 20MegHz bandwidth limited.


The following figures provide the typical characteristic curves at 3.3Vout.

APPLICATIONS INFORMATION:

REFERENCE CIRCUIT FOR GENERAL APPLICATION:

The Figure 33 shows the module application schematics for input voltage +5V or +3.3V and turn on by input voltage directly through enable resistor (REN).

APPLICATIONS INFORMATION: (Cont.)

SAFETY CONSIDERATIONS:

Certain applications and/or safety agencies may require fuses at the inputs of power conversion components. Fuses should also be used when there is the possibility of sustained input voltage reversal which is not current limited. For greatest safety, we recommend a fast blow fuse installed in the ungrounded input supply line. The installer must observe all relevant safety standards and regulations. For safety agency approvals, install the converter in compliance with the end-user safety standard.

INPUT FILTERING:

The module should be connected to a low AC impedance source supply and a highly inductive source or line inductance can affect the stability of the module. An input capacitor must be placed directly to the input pin of the module, to minimize input ripple voltage and ensure module stability.

OUTPUT FILTERING:

To reduce output ripple and improve the dynamic response to as step load change, the additional capacitor at the output must be used. Low ESR polymer and ceramic capacitors are recommended to improve the output ripple and dynamic response of the module.

PROGRAMMING OUTPUT VOLTAGE:

The module has an internal 0.6V±2% reference voltage. The output voltage can be programed by the dividing resistance RFB which respects to FB pin and GND pin. The output voltage can be calculated as shown in Equation 1 and the resistor according to typical output voltage is shown in TABLE 1.

	(RFB_top)	
VOUT (V) = 0.6×1	+	(EQ.1)

	(RFB_bot)	
Vout (V)	RFB_top (kΩ)	RFB_bot (kΩ)
1.0	200(1%)	300(1%)
1.2	200(1%)	200(1%)
1.8	200(1%)	100(1%)
2.5	200(1%)	63.2(1%)
3.3	200(1%)	44.2(1%)

TABLE.01 Resistor values for common output voltages

APPLICATIONS INFORMATION: (Cont.)

RECOMMENDATION LAYOUT GUIDE:

In order to achieve stable, low losses, less noise or spike, and good thermal performance some layout considerations are necessary. The recommendation layout is shown as Figure 34.

- The ground connection between pin 10 and 13 should be a solid ground plane under the module. It can be connected to one or more ground plane by using several Vias.
- 2. Keep the R_{FB_top} and R_{FB_bot} connection trace to the module pin 5 (FB) short.
- 3. Use large copper area for power path (VIN, VOUT, and GND) to minimize the conduction loss and enhance heat transferring. Also, use multiple Vias to connect power planes in different layers.

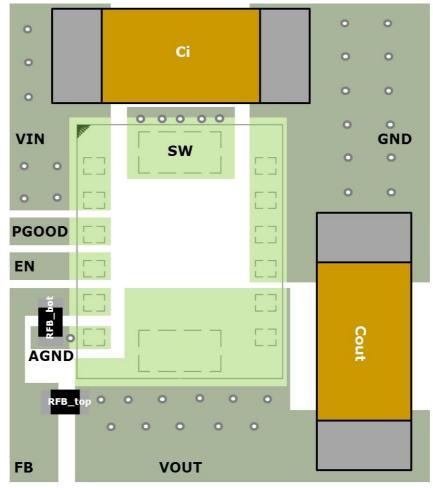


FIG.34 RECOMMENDATION LAYOUT (TOP LAYER)

APPLICATIONS INFORMATION: (Cont.)

Thermal Considerations:

All thermal testing condition is complied with JEDEC EIJ/JESD 51 Standards. Therefore, the test board size is 76.2mm× 76.2mm× 1.6mm with 4 layers. The case temperature of module sensing point is shown as Figure 35. Then Rth(jchoke-a) is measured with the component mounted on an effective thermal conductivity test board on 0 LFM condition. The MUN3CAD03-MG-91 power module is designed for using when the case temperature is below 110°C regardless the change of output current, input/output voltage or ambient temperature.

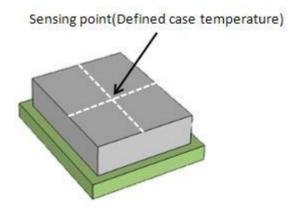
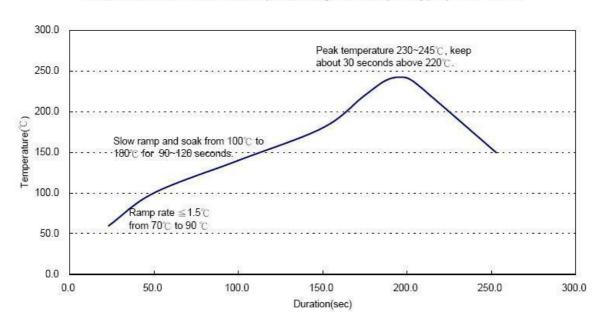
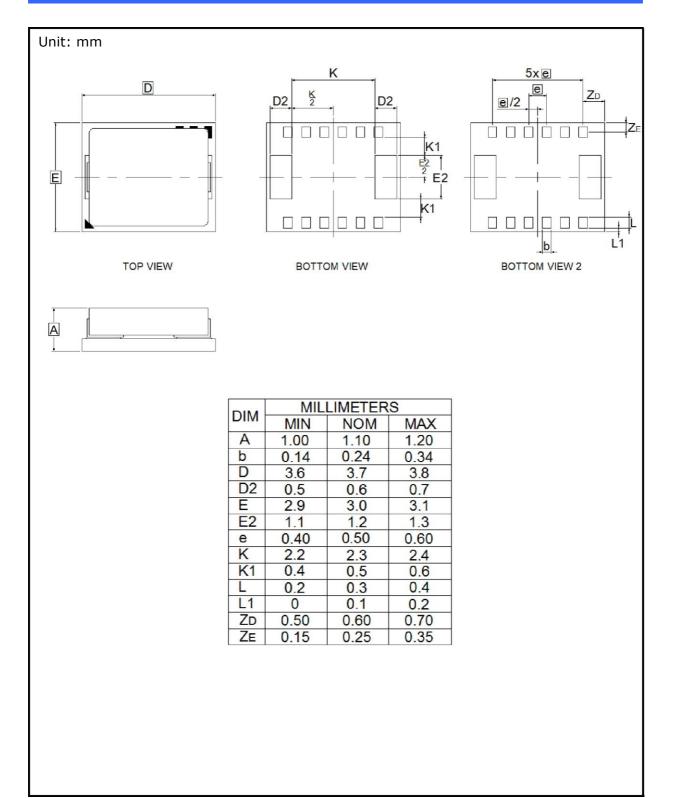



Figure 35. Case Temperature Sensing Point

REFLOW PARAMETERS:

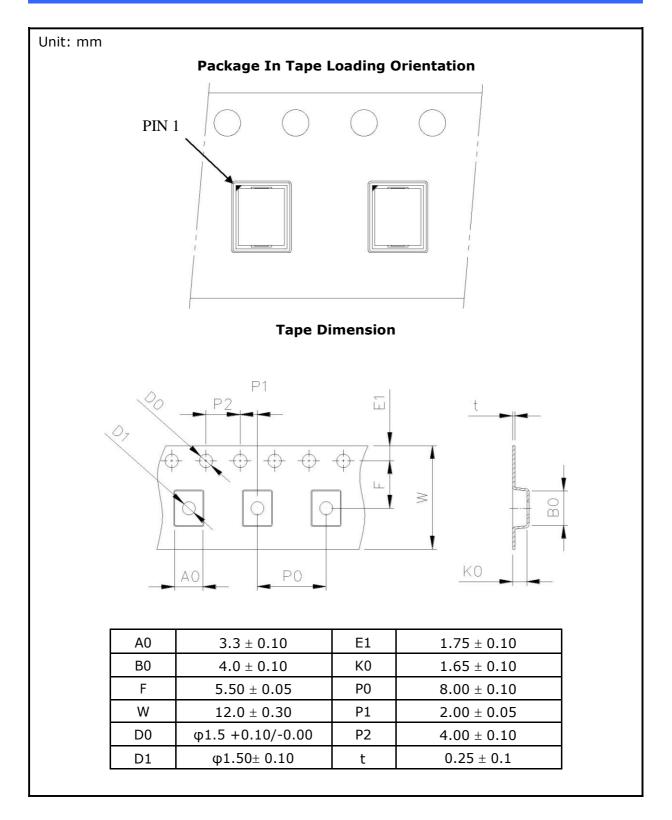
Lead-free soldering process is a standard of making electronic products. Many solder alloys like Sn/Ag, Sn/Ag/Cu, Sn/Ag/Bi and so on are used extensively to replace traditional Sn/Pb alloy. Here the Sn/Ag/Cu alloy (SAC) are recommended for process. In the SAC alloy series, SAC305 is a very popular solder alloy which contains 3% Ag and 0.5% Cu. It is easy to get it. Figure 9 shows an example of reflow profile diagram. Typically, the profile has three stages. During the initial stage from 70°C to 90°C, the ramp rate of temperature should be not more than 1.5°C/sec. The soak zone then occurs from 100°C to 180°C and should last for 90 to 120 seconds. Finally the temperature rises to 230°C to 245°C and cover 220°C in 30 seconds to melt the solder. It is noted that the time of peak temperature should depend on the mass of the PCB board. The reflow profile is usually supported by the solder vendor and user could switch to optimize the profile according to various solder type and various manufactures' formula.



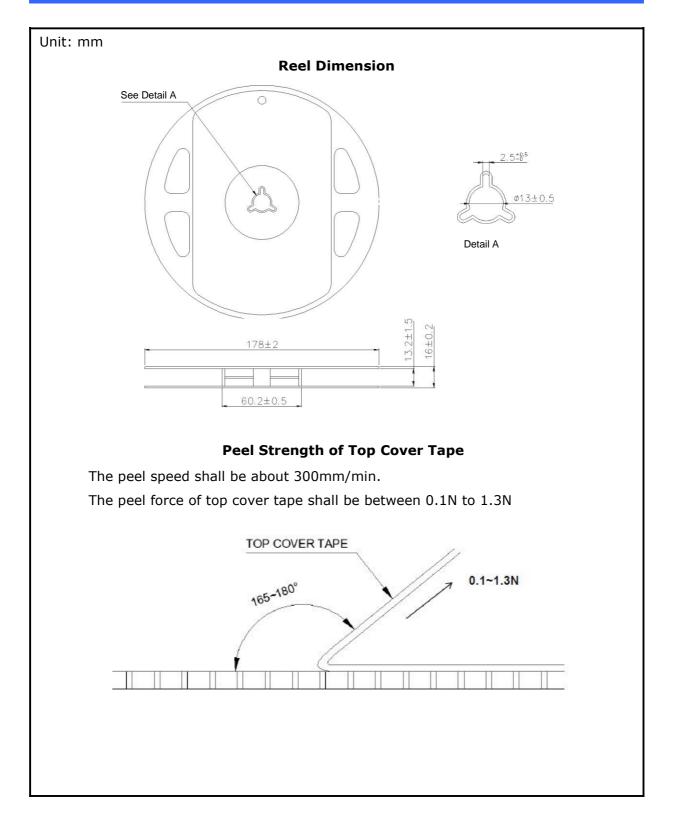
Recommended Reflow Profile OL213 Solder Paste: SAC305(Sn96.5/Ag3.0/Cu0.5) Alloy, mp. 216~219℃

FIG.36 Recommendation Reflow Profile

PACKAGE OUTLINE DRAWING:



LAND PATTERN REFERENCE:



PACKING REFERENCE:

PACKING REFERENCE: (Cont.)

REVERSION HISTORY:

Date	Revision	Changes
2013.12.06	00	Release the preliminary specification.
		Thermal de-rating updated.
2014.01.08	01	Thermal resistance Rth(j-a) updated.
		Packing reference revised.
2014.11.11	02	Release new part number.
2014.12.22	03	Update land pattern and reference layout.
2014.12.31	04	Change Upol module to LDS module.
2015.05.20	05	Update package outline drawing data.
2015.06.24	06	Add REFLOW PARAMETERS

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Management Modules category:

Click to view products by Cyntech manufacturer:

Other Similar products are found below :

 FPF1C2P5BF07A
 FPF1C2P5MF07AM
 FH2000NPBAP
 ZY0515AS-1W
 B0505S-2W
 B0305S-1W
 B0505S-1W
 WRA1212CS-3W

 AP24N20-HV
 TAS25-24-W
 TAS10-5-W
 TAD10-1505-NI
 HCS2-12S12
 DC2626A
 CS-POWEREVER-02
 CS-POWEREVER-01
 01D-6R5

 2A
 11D-05S05NANL
 12D-03S05N3KVAC
 12D-05S05N3WNL
 12D-05S05RNL
 12D-24S05R2W
 12DA-05S05N2W
 13D-05S05NCNL

 13DS1-12D09NNL
 13DSB-05S05N1.5KV
 14D-12S03R1KVNL
 14DB-05S05N1.5KV
 14D2-05S05R2W
 MEE1S0309SC
 22D-12D12NCNL

 EN5322QI
 LTM4624EY#PBF
 1SP0340V2M0-45
 IGD515EI
 1SP0335D2S1-5SNA0750G650300
 2SP0115T2A0-FF600R12ME4

 2SD106AI-17 UL
 2SC0635T2A1-45
 2SC0115T2A0-12
 2SC0108T2F1-17
 1SD210F2-MBN1200H45E2-H_Opt1
 A0505S-1W
 A0505S-1W

 1WR2
 A0505S-1WR3
 A0505S-2WR2
 A0509S-1WR3
 A0512S-1WR2
 A0512S-1WR2