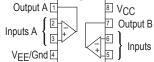

SMD Type

Single Supply Dual Operational Amplifiers

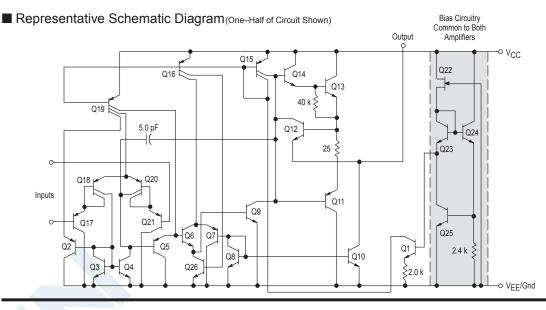

LM358 (KM358)

Features

- Short Circuit Protected Outputs
- True Differential Input Stage
- Single Supply Operation: 3.0 V to 32 V
- Low Input Bias Currents
- Internally Compensated
- Common Mode Range Extends to Negative Supply
- Single and Split Supply Operation

IC

(Top View)


Inputs B

■ Absolute Maximum Ratings Ta = 25°C

Parameter	Symbol	Rating	Unit
Power Supply Voltages			
Single Supply	Vcc	32	Vdc
Split Supplies	VCC, VEE	±16	
Input Differential Voltage Range *1	Vidr	±32	Vdc
Input Common Mode Voltage Range *2	VICR	-0.3 to 32	Vdc
Output Short Circuit Duration	tsc	Continuous	
Junction Temperature	TJ	150	°C
Thermal Resistance, Junction-to-Air	Reja	238	°C/W
Storage Temperature Range	Tstg	-55 to +125	°C
Operating Ambient Temperature Range	Та	0 to +70	°C

*1 Split Power Supplies.

*2 For supply voltages less than 32 V the absolute maximum input voltage is equal to the supply voltage.

LM358 (KM358)

■ Electrical Characteristics Ta = 25°C(Vcc = 5.0 V, VEE = Gnd, TA	= 25℃, unless otherwise noted.)
---	---------------------------------

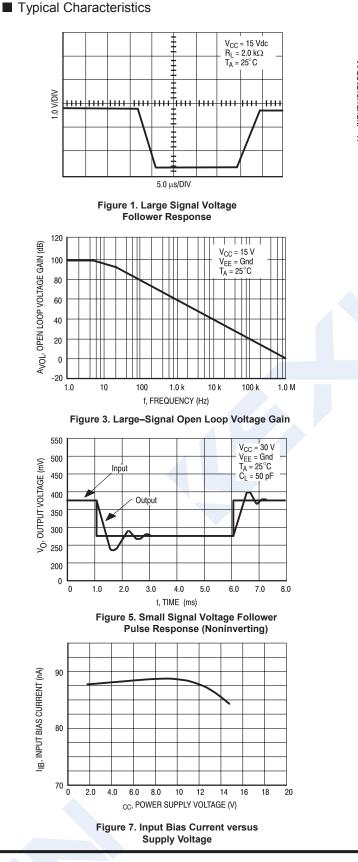
Parameter	Symbol	Test conditions	Min	Тур	Max	Unit	
		Vcc = 5.0 V to 30 V, Vic = 0 V to Vcc -1.7V					
		$Vo \simeq 1.4 V$, Rs = 0Ω					
Input Offset Voltage	Vio	TA = 25°C		2.0	7.0	mV	
		TA = Thigh *5			9.0	1	
		TA = TIOW *5			9.0	1	
Average Temperature Coefficient of Input Offset Voltage	∆Vio/∆T	TA = Thigh to Tlow *5		7.0		µV/℃	
Input Offset Current	lio	TA = Thigh to Tlow *5		5.0	50		
input Onset Current	IIO	TA - Thigh to How 5			150	n A	
Innut Dies Current	lue.	TA = Thigh to Tlow *5		-45	-250	nA	
Input Bias Current	lів			-50	-500	1	
Average Temperature Coefficient of Input Offset Current	$\triangle V$ io/ $\triangle T$	TA = Thigh to Tlow*5		10		pA/℃	
Input Common Mode Voltage Range *6	VICR	Vcc = 30 V	0		28.3	v	
input common mode voltage range o	VICK	Vcc = 30 V, TA = Thigh to Tlow	0		28	v	
Differential Input Voltage Range	Vidr				Vcc	V	
	Ave	RL = 2.0 kΩ Vcc = 15 V, For Large Vo Swing,	25	100		V/mV	
Large Signal Open Loop Voltage Gain	Avol	TA = Thigh to Tlow	15			v/mv	
Channel Separation	Cs	1.0 kHz \leq f \leq 20 kHz, Input Referenced		-120		dB	
Common Mode Rejection	Cmr	$Rs \le 10 \text{ K}\Omega$	65	70		dB	
Power Supply Rejection	Psr		65	100		dB	
		TA = Thigh to Tlow *5					
		Vcc = 5.0 V, RL = 2.0KΩ TA = 25℃	3.3	3.5		- v	
Output Voltage-High Limit	Vон	Vcc = 30 V, RL = 2.0 KΩ	26				
		Vcc = 30 V, RL = 10 KΩ	27	28			
		Vcc = 5.0 V, R∟ = 10 KΩ		_			
Output Voltage-Low Limit	Vol	OL TA = Thigh to Tlow *5		5	20	mV	
Output Source Current	lo+	VID = +1.0 V, Vcc = 15 V	20	40		mA	
		VID = -1.0 V, VCC = 15 V	10	20		mA	
Output Sink Current	lo-	VID = -1.0 V, Vo = 200 mV	12	50		μA	
Output Short Circuit to Ground *7	Isc			40	60	mA	
		TA = Thigh to Tlow *5					
Power Supply Current (Total Device)	Icc	Vcc = 30 V, Vo = 0 V, RL = ∞		1.5	3.0	mA	
		Vcc = 5 V, Vo = 0 V, RL = ∞		0.7	1.2		

*5 Tlow = 0 $^{\circ}$ C, Thigh = +70 $^{\circ}$ C

*6 The input common mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common mode voltage range is Vcc -1.7 V.

KEXIN

*7 Short circuits from the output to VCC can cause excessive heating and eventual destruction. Destructive dissipation can result from simultaneous shorts on all amplifiers.


Marking

Marking LM358

IC

LM358 (KM358)

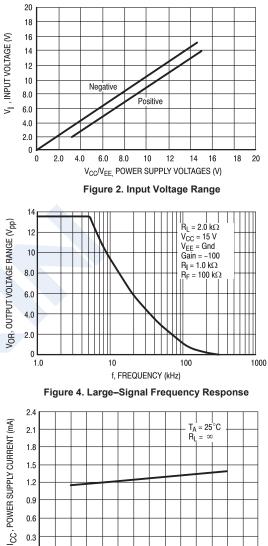


Figure 6. Power Supply Current versus Power Supply Voltage

20

25

30

35

15

0 L 0

KEXIN

5.0

10

V_{CC}

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Operational Amplifiers - Op Amps category:

Click to view products by **KEXIN** manufacturer:

Other Similar products are found below :

 OPA2991IDSGR
 OPA607IDCKT
 007614D
 633773R
 635798C
 635801A
 702115D
 709228FB
 741528D
 NCV33072ADR2G

 SC2903VDR2G
 LM258AYDT
 LM358SNG
 430227FB
 430228DB
 460932C
 AZV831KTR-G1
 409256CB
 430232AB
 LM2904DR2GH

 LM358YDT
 LT1678IS8
 042225DB
 058184EB
 070530X
 714228XB
 714846BB
 873836HB
 MIC918YC5-TR
 TS912BIYDT

 NCS2004MUTAG
 NCV33202DMR2G
 M38510/13101BPA
 NTE925
 SC2904DR2G
 SC358DR2G
 LM358EDR2G
 AZV358MTR-G1

 AP4310AUMTR-AG1
 HA1630D02MMEL-E
 NJM358CG-TE2
 HA1630S01LPEL-E
 LM324AWPT
 HA1630Q06TELL-E
 NJM4558CG-TE2

 AZV358MMTR-G1
 SCY33178DR2G
 NCS4325DR2G
 LM7301SN1T1G
 NJU77806F3-TE1