Complementary Bias Resistor Transistors R1 = 4.7 k Ω , R2 = 47 k Ω NPN and PNP Transistors with Monolithic Bias Resistor Network

This series of digital transistors is designed to replace a single device and its external resistor bias network. The Bias Resistor Transistor (BRT) contains a single transistor with a monolithic bias network consisting of two resistors; a series base resistor and a base-emitter resistor. The BRT eliminates these individual components by integrating them into a single device. The use of a BRT can reduce both system cost and board space.

Features

- Simplifies Circuit Design
- Reduces Board Space
- Reduces Component Count
- S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable*
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS

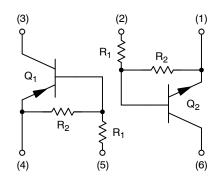
(T_A = 25°C both polarities Q₁ (PNP) & Q₂ (NPN), unless otherwise noted)

Rating	Symbol	Max	Unit				
Collector-Base Voltage	V _{CBO}	50	Vdc				
Collector-Emitter Voltage	V _{CEO}	50	Vdc				
Collector Current - Continuous	I _C	100	mAdc				
Input Forward Voltage	V _{IN(fwd)}	30	Vdc				
Input Reverse Voltage	V _{IN(rev)}	5	Vdc				

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ORDERING INFORMATION

Device	Package	Shipping [†]
MUN5333DW1T1G, NSVMUN5333DW1T1G*	SOT-363	3,000/Tape & Reel
NSVMUN5333DW1T3G*	SOT-363	10,000/Tape & Reel
NSBC143ZPDXV6T1G NSVBC143ZPDXV6T1G*	SOT-563	4,000/Tape & Reel
NSVBC143ZPDXV6T5G*	SOT-563	8,000/Tape & Reel
NSBC143ZPDP6T5G	SOT-963	8,000/Tape & Reel


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ON Semiconductor®

www.onsemi.com

PIN CONNECTIONS

MARKING DIAGRAMS

SOT-363 CASE 419B-02

SOT-563 CASE 463A

SOT-963 CASE 527AD

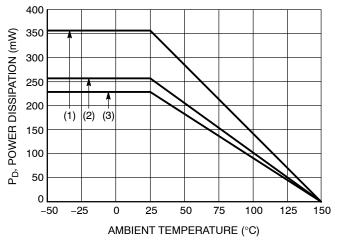
33/Y = Specific Device Code

M = Date Code*= Pb-Free Package

(Note: Microdot may be in either location)

*Date Code orientation may vary depending upon manufacturing location.

THERMAL CHARACTERISTICS


	Characteristic	Symbol	Max	Unit			
MUN5333DW1 (SOT-363) ONE JUNCTION HEATED							
Total Device Dissipation T _A = 25°C (Note 19) (Note 20) Derate above 25°C (Note 20)	(Note 19)	P _D	187 256 1.5 2.0	mW mW/°C			
Thermal Resistance, Junction to Ambient	(Note 19) (Note 20)	$R_{ heta JA}$	670 490	°C/W			
MUN5333DW1 (SOT-363) BO	TH JUNCTION HEATED (Note 21)						
Total Device Dissipation T _A = 25°C (Note 19) (Note 20) Derate above 25°C (Note 20)	(Note 19)	P _D	250 385 2.0 3.0	mW mW/°C			
Thermal Resistance, Junction to Ambient (Note 20)	(Note 19)	$R_{ heta JA}$	493 325	°C/W			
Thermal Resistance, Junction to Lead (Note 19) (Note 20)		$R_{ hetaJL}$	188 208	°C/W			
Junction and Storage Tempera	ature Range	T _J , T _{stg}	-55 to +150	°C			
NSBC143ZPDXV6 (SOT-563)	ONE JUNCTION HEATED						
Total Device Dissipation T _A = 25°C (Note 19) Derate above 25°C	(Note 19)	P _D	357 2.9	mW mW/°C			
Thermal Resistance, Junction to Ambient	(Note 19)	$R_{ heta JA}$	350	°C/W			
NSBC143ZPDXV6 (SOT-563)	BOTH JUNCTION HEATED (Note 21)						
Total Device Dissipation T _A = 25°C (Note 19) Derate above 25°C	(Note 19)	P _D	500 4.0	mW mW/°C			
Thermal Resistance, Junction to Ambient	(Note 19)	$R_{ hetaJA}$	250	°C/W			
Junction and Storage Tempera	ature Range	T _J , T _{stg}	-55 to +150	°C			
NSBC143ZPDP6 (SOT-963) (ONE JUNCTION HEATED						
Total Device Dissipation $T_A = 25^{\circ}C \qquad \text{(Note 22)}$ (Note 23) Derate above 25°C (Note 23)	(Note 22)	P _D	231 269 1.9 2.2	MW mW/°C			
Thermal Resistance, Junction to Ambient (Note 23)	(Note 22)	$R_{ heta JA}$	540 464	°C/W			
NSBC143ZPDP6 (SOT-963) BOTH JUNCTION HEATED (Note 21)							
Total Device Dissipation T _A = 25°C (Note 22) (Note 23) Derate above 25°C (Note 23)	(Note 22)	P _D	339 408 2.7 3.3	MW mW/°C			
Thermal Resistance, Junction to Ambient (Note 23)	(Note 22)	$R_{ hetaJA}$	369 306	°C/W			
Junction and Storage Tempera	ature Range	T _J , T _{stg}	-55 to +150	°C			

^{19.} FR-4 @ Minimum Pad.
20. FR-4 @ 1.0 × 1.0 Inch Pad.
21. Both junction heated values assume total power is sum of two equally powered channels.
22. FR-4 @ 100 mm², 1 oz. copper traces, still air.
23. FR-4 @ 500 mm², 1 oz. copper traces, still air.

ELECTRICAL CHARACTERISTICS (T_A = 25°C both polarities Q₁ (PNP) & Q₂ (NPN), unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS				•	•
Collector-Base Cutoff Current (V _{CB} = 50 V, I _E = 0)	Ісво	-	-	100	nAdc
Collector-Emitter Cutoff Current (V _{CE} = 50 V, I _B = 0)	I _{CEO}	-	-	500	nAdc
Emitter-Base Cutoff Current $(V_{EB} = 6.0 \text{ V}, I_{C} = 0)$	I _{EBO}	-	-	0.18	mAdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu A, I_E = 0$)	V _{(BR)CBO}	50	-	-	Vdc
Collector-Emitter Breakdown Voltage (Note 24) (I _C = 2.0 mA, I _B = 0)	V _{(BR)CEO}	50	-	-	Vdc
ON CHARACTERISTICS					
DC Current Gain (Note 24) (I _C = 5.0 mA, V _{CE} = 10 V)	h _{FE}	80	200	-	
Collector-Emitter Saturation Voltage (Note 24) (I _C = 10 mA, I _B = 1.0 mA)	V _{CE(sat)}	-	-	0.25	V
Input Voltage (Off) ($V_{CE} = 5.0 \text{ V}, I_{C} = 100 \mu\text{A}$) (NPN) ($V_{CE} = 5.0 \text{ V}, I_{C} = 100 \mu\text{A}$) (PNP)	V _{i(off)}		0.6 0.67	- -	Vdc
Input Voltage (On) $(V_{CE} = 0.2 \text{ V, } I_{C} = 5.0 \text{ mA}) \text{ (NPN)} $ $(V_{CE} = 0.2 \text{ V, } I_{C} = 5.0 \text{ mA}) \text{ (PNP)}$	V _{i(on)}	- -	0.9 0.91	_ _	Vdc
Output Voltage (On) ($V_{CC} = 5.0 \text{ V}, V_B = 2.5 \text{ V}, R_L = 1.0 \text{ k}\Omega$)	V _{OL}	-	-	0.2	Vdc
Output Voltage (Off) ($V_{CC} = 5.0 \text{ V}, V_B = 0.5 \text{ V}, R_L = 1.0 \text{ k}\Omega$)	V _{OH}	4.9	-	-	Vdc
Input Resistor	R1	3.3	4.7	6.1	kΩ
Resistor Ratio	R ₁ /R ₂	0.08	0.1	0.14	

^{24.} Pulsed Condition: Pulse Width = 300 ms, Duty Cycle ≤ 2%.

- (1) SOT-363; 1.0×1.0 Inch Pad
- (2) SOT-563; Minimum Pad
- (3) SOT-963; 100 mm², 1 oz. Copper Trace

Figure 45. Derating Curve

TYPICAL CHARACTERISTICS – NPN TRANSISTOR MUN5333DW1, NSBC143ZPDXV6

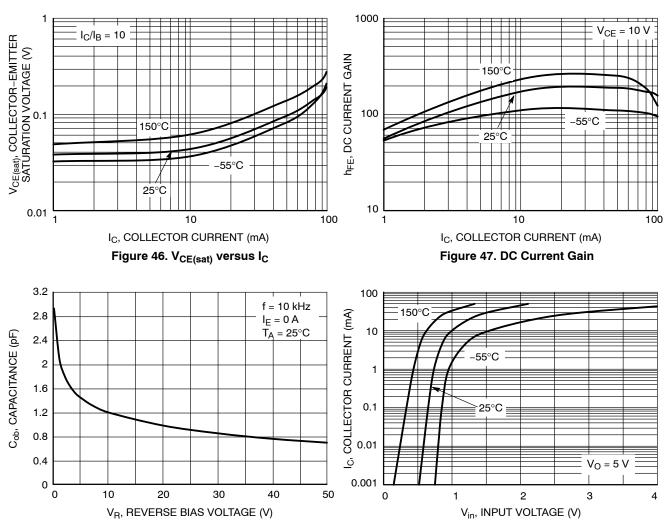


Figure 48. Output Capacitance

Figure 49. Output Current versus Input Voltage

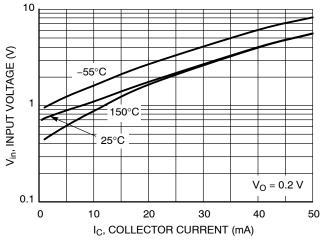


Figure 50. Input Voltage versus Output Current

TYPICAL CHARACTERISTICS – PNP TRANSISTOR MUN5333DW1, NSBC143ZPDXV6

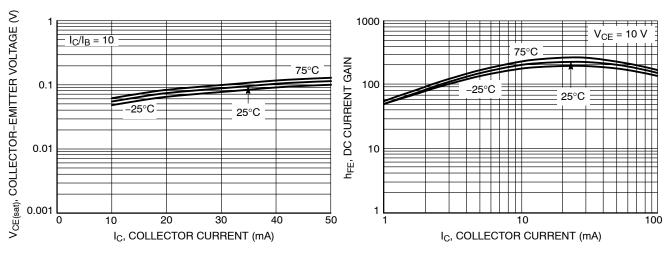


Figure 51. $V_{\text{CE(sat)}}$ vs. I_{C}

Figure 52. DC Current Gain

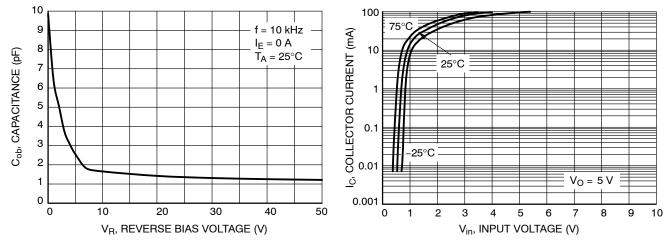


Figure 53. Output Capacitance

Figure 54. Output Current vs. Input Voltage

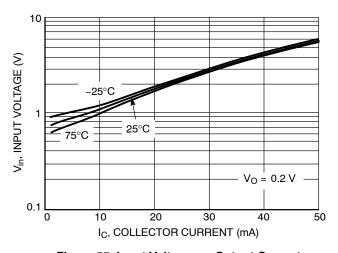


Figure 55. Input Voltage vs. Output Current

TYPICAL CHARACTERISTICS – NPN TRANSISTOR NSBC143ZPDP6

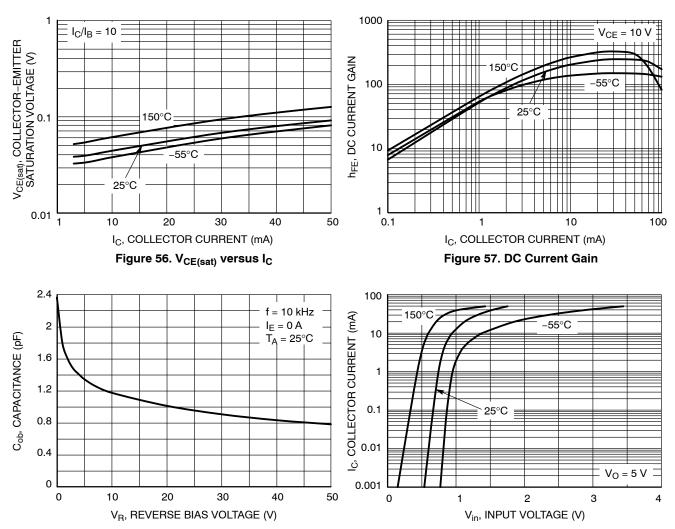


Figure 58. Output Capacitance

Figure 59. Output Current versus Input Voltage

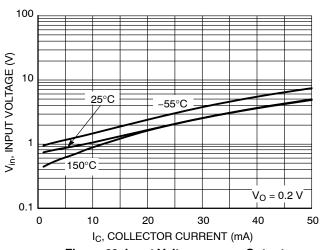


Figure 60. Input Voltage versus Output Current

TYPICAL CHARACTERISTICS – PNP TRANSISTOR NSBC143ZPDP6

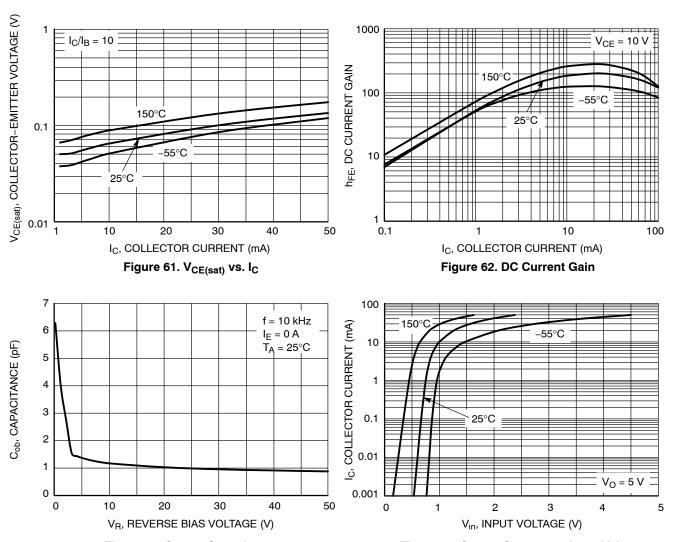


Figure 63. Output Capacitance

Figure 64. Output Current vs. Input Voltage

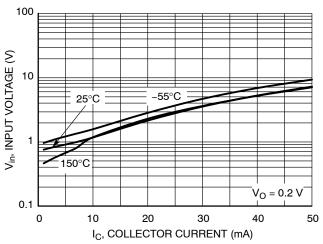
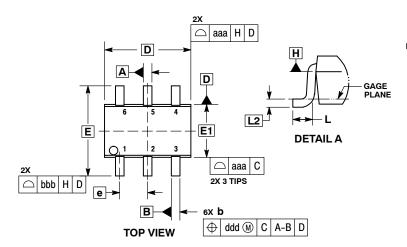
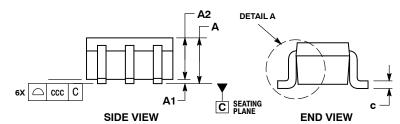
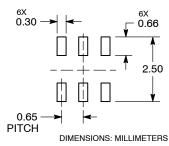




Figure 65. Input Voltage vs. Output Current

PACKAGE DIMENSIONS

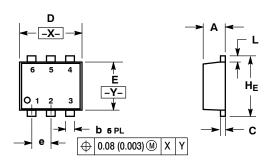
SC-88/SC70-6/SOT-363 CASE 419B-02 **ISSUE Y**


NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS.

- CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH,
 PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0:20 PER END.
 DIMENSIONS D AND E1 AT THE OUTERMOST EXTREMES OF
 THE PLASTIC BODY AND DATUM H.
 DATUMS A AND B ARE DETERMINED AT DATUM H.
 DIMENSIONS 6 AND c APPLY TO THE FLAT SECTION OF THE
 LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP.
 DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION.
 ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN
 EXCESS OF DIMENSION 6 AT MAXIMUM MATERIAL CONDITION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER TION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α			1.10			0.043
A1	0.00		0.10	0.000		0.004
A2	0.70	0.90	1.00	0.027	0.035	0.039
b	0.15	0.20	0.25	0.006	0.008	0.010
С	0.08	0.15	0.22	0.003	0.006	0.009
D	1.80	2.00	2.20	0.070	0.078	0.086
E	2.00	2.10	2.20	0.078	0.082	0.086
E1	1.15	1.25	1.35	0.045	0.049	0.053
е	0.65 BSC		0.026 BSC			
L	0.26	0.36	0.46	0.010	0.014	0.018
L2	0.15 BSC			0.006 BSC		
aaa	0.15			0.006		
bbb	0.30			0.012		
ccc	0.10			0.004		
ddd		0.10			0.004	

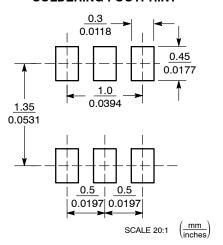

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

SOT-563, 6 LEAD CASE 463A ISSUE G

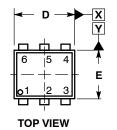
- NOTES:

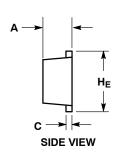

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

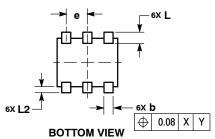
 2. CONTROLLING DIMENSION: MILLIMETERS

 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

	MILLIMETERS		INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.50	0.55	0.60	0.020	0.021	0.023
b	0.17	0.22	0.27	0.007	0.009	0.011
С	0.08	0.12	0.18	0.003	0.005	0.007
D	1.50	1.60	1.70	0.059	0.062	0.066
E	1.10	1.20	1.30	0.043	0.047	0.051
е		0.5 BSC)	(0.02 BS0	
L	0.10	0.20	0.30	0.004	0.008	0.012
HE	1.50	1.60	1.70	0.059	0.062	0.066

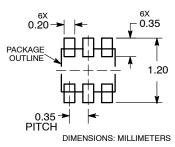

SOLDERING FOOTPRINT*




*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

SOT-963 CASE 527AD **ISSUE E**



NOTES

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
- 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS					
DIM	MIN	NOM	MAX			
Α	0.34	0.37	0.40			
b	0.10	0.15	0.20			
С	0.07	0.12	0.17			
D	0.95	1.00	1.05			
E	0.75	0.80	0.85			
е	0.35 BSC					
HE	0.95	1.00	1.05			
L	0.19 REF					
L2	0.05	0.10	0.15			

RECOMMENDED MOUNTING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and 🕠 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. Coverage may be accessed at www.onsemi.com/site/par/-atent_-warking.pgr. On Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - Pre-Biased category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

MMUN2217LT1G FP101-TL-E RN1607(TE85L,F) DRC9A14E0L DTA124GKAT146 DTA144WETL DTA144WKAT146
DTC113EET1G DTC115TETL DTC115TKAT146 DTC124TETL DTC144ECA-TP DTC144VUAT106 MUN5241T1G

BCR158WH6327XTSA1 NSBA114TDP6T5G NSBA143TF3T5G NSBA143ZF3T5G NSBC114EF3T5G NSBC114YF3T5G

NSBC123TF3T5G NSBC143TF3T5G NSVMUN2212T1G NSVMUN5111DW1T3G NSVMUN5314DW1T3G NSVUMC2NT1G

SMMUN2134LT1G SMUN2212T1G SMUN5235T1G SMUN5330DW1T1G SSVMUN5312DW1T2G 2SC3650-TD-E RN1303(TE85L,F)

RN4605(TE85L,F) BCR135SH6327XT TTEPROTOTYPE79 UMC3NTR DTA113EET1G EMA2T2R EMH15T2R SDTA114YET1G

SMMUN2111LT3G SMMUN2113LT1G SMMUN2114LT1G SMMUN2211LT3G SMUN2214T3G SMUN5113DW1T1G

SMUN5335DW1T1G NSBA114YF3T5G NSBC114TF3T5G