

Aluminum electrolytic capacitors

Single-ended capacitors

Series/Type:B43896Date:December 2016

© EPCOS AG 2016. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.

EPCOS AG is a TDK Group Company.

Single-ended capacitors

High voltage - 125 °C

Long-life grade capacitors

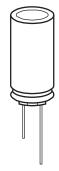
Applications

- Automotive electronics (piezo injection, DC-link converters)
- High temperature environments

Features

- High voltage design
- High ripple current capability
- Wide temperature range
- Low ESR at -40 °C
- RoHS-compatible

Construction


- Radial leads
- Charge-discharge proof, polar
- Aluminum case with insulating sleeve
- Minus pole marking on the insulating sleeve
- Stand-off rubber seal
- Case with safety vent

Delivery mode

Terminal configurations and packing:

- Bulk
- Taped, Ammo pack
- Cut
- Kinked
- PAPR (Protection Against Polarity Reversal): crimped leads, J leads, bent leads

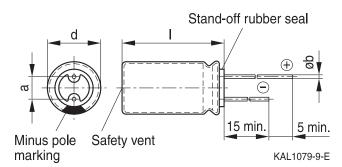
Refer to chapter "Single-ended capacitors – Taping, packing and lead configurations" for further details.

High voltage - 125 $^{\circ}$ C

Specifications and characteristics in brief

160 2	50 V DC						
$1.1 \cdot V_R$							
33 27	0 μF						
±20% ≙	Μ						
tan δ (m	$\tan \delta (\max.) = 0.20$						
I _{leak} = 0.	$I_{\text{leak}} = 0.03 \mu\text{A} \cdot \left(\frac{C_{\text{R}}}{\mu\text{F}} \cdot \frac{V_{\text{R}}}{V}\right) + 15 \mu\text{A}$						
Diameter (mm)		16	18				
ESL (nH)	26	34				
		•	·				
> 4000 h	ı						
$ \Delta C/C $	\leq 30% of initi	al value					
tan δ	\leq 3 times init	al specified	limit				
I _{leak}	\leq initial speci	fied limit					
4000 h							
∆C/C	\leq 25% of initi	al value					
tan δ	\leq 2 times initi	al specified	limit				
I _{leak}	\leq initial speci	fied limit					
	60068-2-6, test	Fc:					
Frequen	cy range 10 H	z 2 kHz, d	lisplacement amplitude max.				
1.5 mm,	acceleration m	nax. 20 <i>g,</i> du	uration 3×2 h.				
Capacito	or rigidly clamp	ed by the al	uminum case.				
To IEC 6	60068-1:						
40/125/5	56 (-40 °C/+12	25 °C/56 day	/s damp heat test)				
IEC 603	84-4						
	1.1 · V _R 33 27±20% \triangleq tan δ (m)I _{leak} = 0.DiameteESL (nH> 4000 h ΔC/C tan δI _{leak} 4000 h ΔC/C tan δI _{leak} To IEC €Frequen1.5 mm,CapacitoTo IEC €40/125/5	$\begin{array}{l} 33 \dots 270 \ \mu\text{F} \\ \pm 20\% \triangleq \text{M} \\ \hline \\ \tan \delta \ (\text{max.}) = 0.20 \\ \hline \\ I_{\text{leak}} = 0.03 \ \mu\text{A} \cdot \left(\frac{C_{\text{R}}}{\mu\text{F}} - \frac{1}{2}\right) \\ \hline \\ Diameter \ (\text{mm}) \\ \hline \\ \text{ESL} \ (\text{nH}) \\ \hline \\ > 4000 \ \text{h} \\ \Delta C/C &\leq 30\% \ \text{of initi} \\ \hline \\ \tan \delta &\leq 3 \ \text{times initi} \\ \hline \\ I_{\text{leak}} &\leq \text{initial speci} \\ \hline \\ 4000 \ \text{h} \\ \Delta C/C &\leq 25\% \ \text{of initi} \\ \hline \\ \tan \delta &\leq 2 \ \text{times initi} \\ \hline \\ I_{\text{leak}} &\leq \text{initial speci} \\ \hline \\ \text{To IEC 60068-2-6, test} \\ \hline \\ \\ \text{Frequency range 10 Hz} \\ 1.5 \ \text{mm, acceleration m} \\ \hline \\ \\ \text{To IEC 60068-1:} \\ \hline \end{array}$	$1.1 \cdot V_R$ $33 \dots 270 \ \mu F$ $\pm 20\% \triangleq M$ $\tan \delta (\max.) = 0.20$ $I_{leak} = 0.03 \ \mu A \cdot \left(\frac{C_R}{\mu F} \cdot \frac{V_R}{V}\right) + 15 \ \mu A$ Diameter (mm)16ESL (nH)26> 4000 h $ \Delta C/C \leq 30\%$ of initial value $\tan \delta \leq 3$ times initial specified $I_{leak} \leq$ initial specified limit4000 h $ \Delta C/C \leq 25\%$ of initial value $\tan \delta \leq 2$ times initial specified $I_{leak} \leq$ initial specified limitTo IEC 60068-2-6, test Fc:Frequency range 10 Hz 2 kHz, c1.5 mm, acceleration max. 20 g, duCapacitor rigidly clamped by the alTo IEC 60068-1:40/125/56 (-40 °C/+125 °C/56 day)				

1) Refer to chapter "General technical information, 5 Useful life" on how to interpret useful life.



Dimensional drawing

With stand-off rubber seal

Diameters (mm): 16, 18

Dimensions and weights

Dimensions (mm)			Approx. weight
d +0.5	1	a ±0.5	b	g
16	20 +2.0	7.5	0.80 ±0.05	5.5
18	20 +2.0	7.5	0.80 ±0.1	8.0
18	25 +2.0	7.5	0.80 ±0.1	9.0
18	31.5 +2.0	7.5	0.80 ±0.1	11.0
18	35 +2.0	7.5	0.80 ±0.1	13.0
18	40 +2.5	7.5	0.80 ±0.1	16.0

High voltage - 125 °C

Overview of available types

Other voltage and capacitance ratings are available upon request.

V _R (V DC)	160	250						
	Case dimensions $d \times I$ (mm)	Case dimensions $d \times I$ (mm)						
C _R (μF)								
33		16×20						
47		18×20						
56		18×25						
68	16×20	18×31.5						
100	18×20	18 × 35						
120	18 × 25							
140		18×40						
180	18 × 31.5							
220	18 × 35							
270	18 × 40							

High voltage - 125 °C

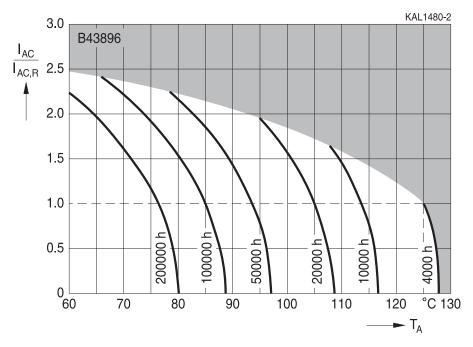
Technical data and ordering codes

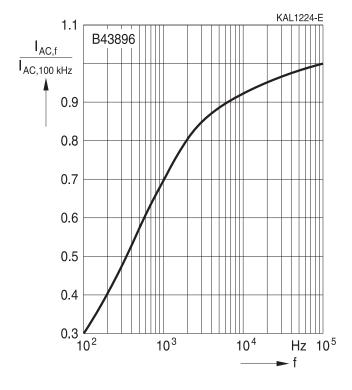
C _R	Case	ESR _{max}	ESR _{max}	Z _{max}	I _{AC,R}	Ordering code				
120 Hz	dimensions	10 kHz	10 kHz	100 kHz	100 kHz	(composition see				
20 °C	d×I	−40 °C	20 °C	20 °C	125 °C	below)				
μF	mm	Ω	Ω	Ω	mA					
V _R = 160 V	V _R = 160 V DC									
68	16×20	16.9	0.297	0.284	730	B43896D1686M***				
100	18×20	14.3	0.250	0.239	920	B43896D1107M***				
120	18×25	12.0	0.210	0.201	1160	B43896D1127M***				
180	18×31.5	9.7	0.171	0.163	1410	B43896D1187M***				
220	18×35	7.5	0.131	0.125	1650	B43896D1227M***				
270	18 × 40	5.2	0.092	0.088	1900	B43896D1277M***				
V _R = 250 V	DC									
33	16×20	16.9	0.297	0.284	730	B43896D2336M***				
47	18×20	14.3	0.250	0.239	920	B43896D2476M***				
56	18×25	12.0	0.210	0.201	1160	B43896D2566M***				
68	18×31.5	9.7	0.171	0.163	1410	B43896D2686M***				
100	18 × 35	7.5	0.131	0.125	1650	B43896D2107M***				
140	18×40	5.2	0.092	0.088	1900	B43896D2147M***				

Composition of ordering code

*** = Version

- 000 = for standard leads, bulk
- 001 = for kinked leads, bulk
- 002 = for cut leads, bulk
- 003 = for crimped leads, blister
- 004 = for J leads, blister (for all dimensions, excluding $d \times I = 18 \times 40$ mm)
- 009 = for taped leads, Ammo pack, lead spacing F = 7.5 mm (for all dimensions, excluding $d \times I = 18 \times 35/40$ mm)
- 012 = for bent 90° leads, blister




B43896

Useful life¹⁾

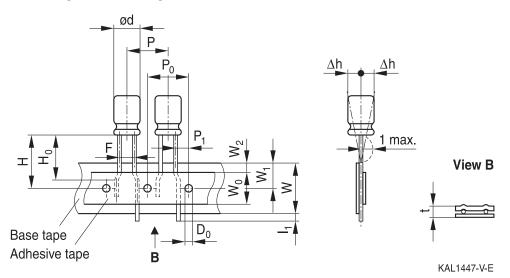
depending on ambient temperature T_A under ripple current operating conditions

Frequency factor of permissible ripple current I_{AC} versus frequency f

1) Refer to chapter "General technical information, 5 Useful life" on how to interpret useful life.

Taping, packing and lead configurations

Taping


Single-ended capacitors are available taped in Ammo pack from diameter 8 to 18 mm as follows:

Lead spacing F = 3.5 mm (\emptyset d = 8 mm) Lead spacing F = 5.0 mm (\emptyset d = 8 ... 12.5 mm) Lead spacing F = 7.5 mm (\emptyset d = 16 ... 18 mm).

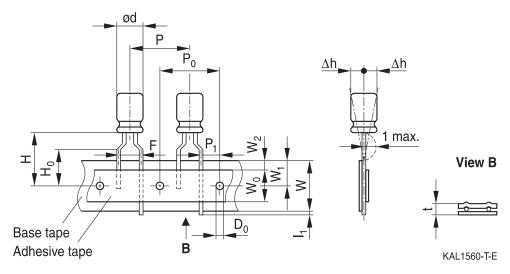
The dimensions for F, P_1 and 1 max. are specified with reference to the center of the terminal wires.

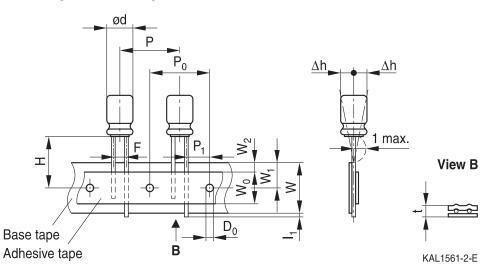
Lead spacing 3.5 mm (\emptyset d = 8 mm)

Last 3 digits of ordering code: 006

Dimensions in mm

\varnothing d	F	Н	W	W ₀	W_1	W_2	Р	P ₀	P ₁	I ₁	t	Δh	D ₀
8	3.5	18.5	18.0	9.5	9.0	3.0	12.7	12.7	4.6	1.0	0.7	1.0	4.0
Toler- ance	+0.8 -0.2	±1.0	±0.5	min.	±0.5	max.	±1.0	±0.3	±0.6	max.	±0.2	max.	±0.2

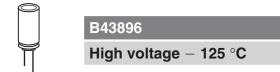

Leads can also run straight through the taping area.


Lead spacing 5.0 mm (\emptyset d = 8 mm)

Last 3 digits of ordering code: 008

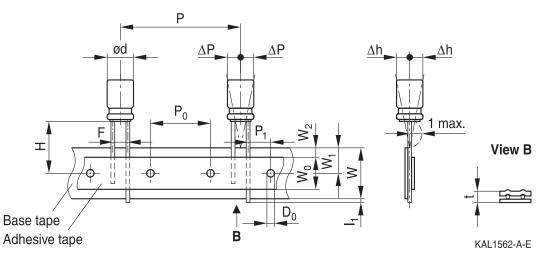
Lead spacing 5.0 mm (Ø d = 10 ... 12.5 mm)

Last 3 digits of ordering code: 008



Dimensions in mm

\varnothing d	F	Н	W	W_0	W_1	W ₂	H ₀	Р	P ₀	P ₁	I ₁	t	Δh	D ₀
8		20.0		9.5			16.0	12.7	12.7	3.85				
10	5.0	19.0	18.0	9.5	9.0	1.5	_	12.7	12.7	3.85	1.0	0.6	1.0	4.0
12.5		19.0		11.5			_	15.0	15.0	5.0				
Toler- ance	+0.8 -0.2	±0.75	±0.5	min.	±0.5	max.	±0.5	±1.0	±0.2	±0.5	max.	+0.3 -0.2	max.	±0.2


Taping is available up to dimensions $d \times I = 12.5 \times 25$ mm.

Lead spacing 7.5 mm (\emptyset d = 16 ...18 mm)

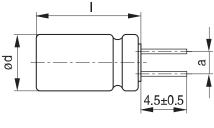
Last 3 digits of ordering code: 009

Dimensions in mm

\varnothing d	F	Н	W	W _o	W_1	W ₂	Р	P ₀	P ₁	I ₁	t	ΔP	Δh	D_0
16	75	10 5	10 0	10.5	0.0	1.5	20.0	15.0	0.75	10	07	0	0	4.0
18	7.5	10.0 10.	10.0	18.0 12.5	9.0	1.5	30.0	15.0	3.75	1.0	0.7	0	0	4.0
Toler-	±0.8	-0.5	+0 5	min.	+0.5	may	+1.0	+0.2	+0 5	may	+0.2	+1 0	+1 0	+0.2
ance	-0.0	+0.75	±0.5		±0.5	max.	±1.0	±0.2	±0.5	max.	±0.2	1.0	±1.0	±0.2

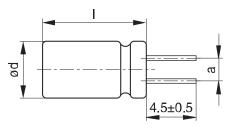
Taping is available up to dimensions $d \times I = 16 \times 31.5$ mm and 18×31.5 mm.

High voltage – 125 °C


Cut or kinked leads

Single-ended capacitors are available with cut or kinked leads. Other lead configurations also available upon request.

Cut leads


Last 3 digits of ordering code: 002

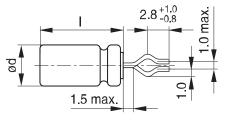
With stand-off rubber seal

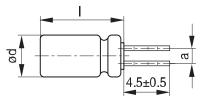
KAL1085-I

With flat rubber seal

KAL1086-R

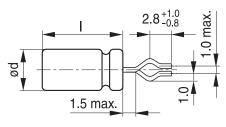
Case size	Dimensions (mm)
$d \times I$ (mm)	a ±0.5
10 × 12.5	5.0
10 × 16	5.0
10×20	5.0
12.5 × 20	5.0
12.5 × 25	5.0
16×20	7.5
16 × 25	7.5
16 × 31.5	7.5
16 × 35.5	7.5
18×20	7.5
18 × 25	7.5
18 × 31.5	7.5
18 × 35	7.5
18 × 40	7.5

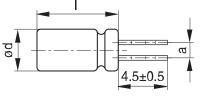



Kinked leads

Last 3 digits of ordering code: 001

With stand-off rubber seal





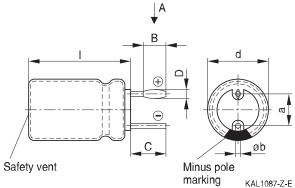
KAL1083-2

With flat rubber seal

KAL1084-A

Case size	Dimensions (mm)
$d \times I$ (mm)	a ±0.5
10 × 20	5.0
12.5×20	5.0
12.5×25	5.0
16 × 20	7.5
16 × 25	7.5
16 × 31.5	7.5
16 × 35.5	7.5
18 × 20	7.5
18 × 25	7.5
18 × 31.5	7.5
18 × 35	7.5
18 × 40	7.5

PAPR leads (Protection Against Polarity Reversal)


These lead configurations ensure correct placement of the capacitor on the PCB with regard to polarity. PAPR leads are available for diameters from 10 mm up to 18 mm (excluding $d \times I = 12.5 \times 30/35/40$ mm).

There are three configurations available: Crimped leads, J leads, bent 90° leads.

Crimped leads

Last 3 digits of ordering code: 003

With stand-off rubber seal

The series B41898 has no sleeve nor minus pole marking, the positive pole is marked on the aluminum case side instead.

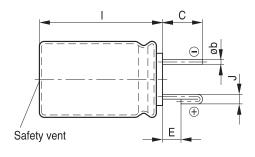
Suggestion for PCB hole diameter

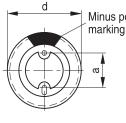
Suggestion for PCB hole diameter, wire Ø0.8 mm

KAL1089-G-E

Case size	Dimensio	ons (mm)				
$d \times I$ (mm)	B ±0.2	C ±0.5	D ±0.1	E ±0.1	a ±0.5	Øb
16×20	1.5	3.0	1.3	0.3	7.5	0.8 ±0.05
16 × 25	1.5	3.0	1.3	0.3	7.5	0.8 ±0.05
16×31.5	1.5	3.0	1.3	0.3	7.5	0.8 ±0.05
16 × 35.5	1.5	3.0	1.3	0.3	7.5	0.8 ±0.05
18×20	1.5	3.0	1.3	0.3	7.5	0.8 ±0.1
18×25	1.5	3.0	1.3	0.3	7.5	0.8 ±0.1
18×31.5	1.5	3.0	1.3	0.3	7.5	0.8 ±0.1
18 × 35	1.5	3.0	1.3	0.3	7.5	0.8 ±0.1
18×40	1.5	3.0	1.3	0.3	7.5	0.8 ±0.1

Please read *Cautions and warnings* and *Important notes* at the end of this document.




J leads

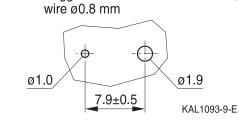
ø0.8

 5.3 ± 0.5

Last 3 digits of ordering code: 004

Minus pole marking The series B41898 has no sleeve nor minus pole marking, the positive pole is marked on the aluminum case side instead.

KAL1091-S-E


Suggestion for PCB hole diameter

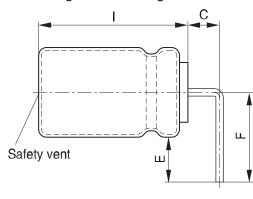
Suggestion for PCB hole diameter, wire ø0.6 mm

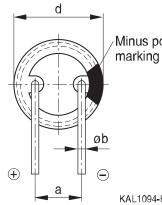
Œ

ø1.5

KAL1092-1-E

Suggestion for PCB hole diameter,


Case size	Dimension	is (mm)			
$d \times I$ (mm)	C ±0.5	E ±0.5	J ±0.2	a ±0.5	Øb
10 × 12.5	3.2	0.7	1.2	5.0	0.6 ±0.05
10×16	3.2	0.7	1.2	5.0	0.6 ±0.05
10×20	3.2	0.7	1.2	5.0	0.6 ±0.05
12.5 × 20	3.2	0.7	1.2	5.0	0.6 ±0.05
12.5 × 25	3.2	0.7	1.2	5.0	0.6 ±0.05
16×20	3.5	0.7	1.6	7.5	0.8 ±0.05
16 × 25	3.5	0.7	1.6	7.5	0.8 ±0.05
16×31.5	3.5	0.7	1.6	7.5	0.8 ±0.05
16 × 35.5	3.5	0.7	1.6	7.5	0.8 ±0.05
18×20	3.5	0.7	1.6	7.5	0.8 ±0.1
18×25	3.5	0.7	1.6	7.5	0.8 ±0.1
18×31.5	3.5	0.7	1.6	7.5	0.8 ±0.1
18 × 35	3.5	0.7	1.6	7.5	0.8 ±0.1



B43896 High voltage - 125 °C

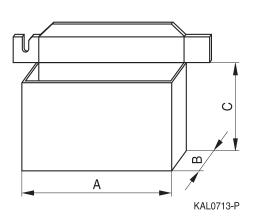
Bent 90° leads for horizontal mounting pinning

Last 3 digits of ordering code: 012

Minus pole The series B41898 has no sleeve nor minus pole marking, the positive pole is marked on the aluminum case side instead.

KAL1094-H-E

Case size	Dimensions	Dimensions (mm)								
$d \times I$ (mm)	C ±0.5	E ±0.5	F ±0.5	a ±0.5	Øb					
16×20	4.0	4.0	12.0	7.5	0.8 ±0.05					
16 × 25	4.0	4.0	12.0	7.5	0.8 ±0.05					
16 × 31.5	4.0	4.0	12.0	7.5	0.8 ±0.05					
16 imes 35.5	4.0	4.0	12.0	7.5	0.8 ±0.05					
18×20	4.0	4.0	13.0	7.5	0.8 ±0.1					
18×25	4.0	4.0	13.0	7.5	0.8 ±0.1					
18×31.5	4.0	4.0	13.0	7.5	0.8 ±0.1					
18 × 35	4.0	4.0	13.0	7.5	0.8 ±0.1					
18×40	4.0	4.0	13.0	7.5	0.8 ±0.1					


Bent leads for diameter 12.5 mm available upon request.

Packing units and box dimensions

Ammo pack

Case size $d \times I$	Dimer	Dimensions (mm)		
mm	A_{max}	B _{max}	C _{max}	pcs.
8×11.5	345	60	240	1000
10 × 12.5	345	60	280	750
10 × 16	345	65	200	500
10×20	345	65	200	500
12.5 imes 20	345	65	260	500
12.5 imes 25	345	70	260	500
16×20	325	65	285	300
16×25	325	65	285	300
16 imes 31.5	325	80	275	300
18×20	325	65	285	250
18×25	325	65	285	250
18×31.5	325	80	275	250

B43896

Overview of packing units and code numbers

								PAPR	
Case size	Stan-	Tapeo	l,		Kinked	Cut	Crimped	J leads,	Bent 90°
$d \times I$	dard,	Ammo	o pack		leads,	leads,	leads,	blister	leads,
	bulk				bulk	bulk	blister		blister
mm	pcs.	pcs.			pcs.	pcs.	pcs.	pcs.	pcs.
8×11.5	1000	1000		_	—	_	_		
10 × 12.5	1000	750			_	1000	_	900	
10 × 16	1000	500			_	1000	_	675	
10×20	500	500			500	500	-	500	
12.5 × 20	350	500			350	350	-	300	1)
12.5 × 25	250	500		500	500	_	225	1)	
12.5 × 30	200	_		-	—	_	_		
12.5 × 35	175	_		-	-	_	_		
12.5 × 40	175	-		-	-	_	—		
16×20	250	300		200	200	200	200	420	
16 × 25	250	300		200	200	216	216	216	
16×31.5	200	300		250	250	180	180	180	
16 × 35.5	100	_		100	100	150	150	150	
18×20	175	250		175	175	200	200	420	
18×25	150	250	250		150	150	200	200	200
18×31.5	100	250			100	100	150	150	150
18 × 35	100	_		100	100	150	150	150	
18×40	125	-			100	100	72	_	72
The last three	000	Code	F (mm)	d (mm)	001	002	003	004	012
digits of the		006	3.5	8					
complete		008	5	812.5					
ordering code		009	7.5	1618					
state the lead									
configuration									

B43896 High voltage – 125 °C

Cautions and warnings

Personal safety

The electrolytes used by EPCOS have been optimized both with a view to the intended application and with regard to health and environmental compatibility. They do not contain any solvents that are detrimental to health, e.g. dimethyl formamide (DMF) or dimethyl acetamide (DMAC).

Furthermore, some of the high-voltage electrolytes used by EPCOS are self-extinguishing.

As far as possible, EPCOS does not use any dangerous chemicals or compounds to produce operating electrolytes, although in exceptional cases, such materials must be used in order to achieve specific physical and electrical properties because no alternative materials are currently known. We do, however, restrict the amount of dangerous materials used in our products to an absolute minimum.

Materials and chemicals used in EPCOS aluminum electrolytic capacitors are continuously adapted in compliance with the EPCOS Corporate Environmental Policy and the latest EU regulations and guidelines such as RoHS, REACH/SVHC, GADSL, and ELV.

MDS (Material Data Sheets) are available on the EPCOS website for all types listed in the data book. MDS for customer specific capacitors are available upon request. MSDS (Material Safety Data Sheets) are available for all of our electrolytes upon request.

Nevertheless, the following rules should be observed when handling aluminum electrolytic capacitors: No electrolyte should come into contact with eyes or skin. If electrolyte does come into contact with the skin, wash the affected areas immediately with running water. If the eyes are affected, rinse them for 10 minutes with plenty of water. If symptoms persist, seek medical treatment. Avoid inhaling electrolyte vapor or mists. Workplaces and other affected areas should be well ventilated. Clothing that has been contaminated by electrolyte must be changed and rinsed in water.

High voltage – 125 °C

Product safety

The table below summarizes the safety instructions that must be observed without fail. A detailed description can be found in the relevant sections of chapter "General technical information".

Торіс	Safety information	Reference chapter "General technical information"	
Polarity	Make sure that polar capacitors are connected with the right polarity.	1 "Basic construction of aluminum electrolytic capacitors"	
Reverse voltage	Voltages of opposite polarity should be prevented by connecting a diode.	3.1.6 "Reverse voltage"	
Mounting position of screw- terminal capacitors	Screw terminal capacitors must not be mounted with terminals facing down unless otherwise specified.	11.1. "Mounting positions of capacitors with screw terminals"	
Robustness of terminals	The following maximum tightening torques must not be exceeded when connecting screw terminals: M5: 2.5 Nm M6: 4.0 Nm	11.3 "Mounting torques"	
Mounting of single-ended capacitors	The internal structure of single-ended capacitors might be damaged if excessive force is applied to the lead wires. Avoid any compressive, tensile or flexural stress. Do not move the capacitor after soldering to PC board. Do not pick up the PC board by the soldered capacitor. Do not insert the capacitor on the PC board with a hole space different to the lead space specified.	11.4 "Mounting considerations for single-ended capacitors"	
Soldering	Do not exceed the specified time or temperature limits during soldering.	11.5 "Soldering"	
Soldering, cleaning agents	Do not allow halogenated hydrocarbons to come into contact with aluminum electrolytic capacitors.	11.6 "Cleaning agents"	
Upper category temperature	Do not exceed the upper category temperature.	7.2 "Maximum permissible operating temperature"	
Passive flammability	Avoid external energy, e.g. fire.	8.1 "Passive flammability"	

High voltage – 125 °C

Topic	Safety information Avoid overload of the capacitors.	Reference chapter "General technical information" 8.2	
flammability		"Active flammability"	
Maintenance	Make periodic inspections of the capacitors. Before the inspection, make sure that the power supply is turned off and carefully discharge the capacitors. Do not apply excessive mechanical stress to the capacitor terminals when mounting.	10 "Maintenance"	
StorageDo not store capacitors at high temperatures of high humidity. Capacitors should be stored at $+5$ to $+35$ °C and a relative humidity of $\leq 75\%$.		7.3 "Shelf life and storage conditions"	
		Reference chapter "Capacitors with screw terminals"	
Breakdown strengthDo not damage the insulating sleeve, especially when ring clips are used for mounting.sleeves		"Screw terminals – accessories"	

Display of ordering codes for EPCOS products

The ordering code for one and the same product can be represented differently in data sheets, data books, other publications and the website of EPCOS, or in order-related documents such as shipping notes, order confirmations and product labels. The varying representations of the ordering codes are due to different processes employed and do not affect the specifications of the respective products.

Detailed information can be found on the Internet under www.epcos.com/orderingcodes.

B43896

Symbols and terms

Symbol	English	German		
С	Capacitance	Kapazität		
C _R	Rated capacitance	Nennkapazität		
Cs	Series capacitance	Serienkapazität		
C _{S,T}	Series capacitance at temperature T	Serienkapazität bei Temperatur T		
C _f	Capacitance at frequency f	Kapazität bei Frequenz f		
d	Case diameter, nominal dimension	Gehäusedurchmesser, Nennmaß		
d _{max}	Maximum case diameter	Maximaler Gehäusedurchmesser		
ESL	Self-inductance	Eigeninduktivität		
ESR	Equivalent series resistance	Ersatzserienwiderstand		
ESR _f	Equivalent series resistance at frequency f	Ersatzserienwiderstand bei Frequenz f		
ESR_{T}	Equivalent series resistance at temperature T	Ersatzserienwiderstand bei Temperatur T		
f	Frequency	Frequenz		
I	Current	Strom		
I _{AC}	Alternating current (ripple current)	Wechselstrom		
I _{AC,RMS}	Root-mean-square value of alternating current	Wechselstrom, Effektivwert		
I _{AC,f}	Ripple current at frequency f	Wechselstrom bei Frequenz f		
I _{AC,max}	Maximum permissible ripple current	Maximal zulässiger Wechselstrom		
I _{AC,R}	Rated ripple current	Nennwechselstrom		
I _{leak}	Leakage current	Reststrom		
I _{leak,op}	Operating leakage current	Betriebsreststrom		
I	Case length, nominal dimension	Gehäuselänge, Nennmaß		
I _{max}	Maximum case length (without terminals and mounting stud)	Maximale Gehäuselänge (ohne Anschlüsse und Gewindebolzen)		
R	Resistance	Widerstand		
R _{ins}	Insulation resistance	Isolationswiderstand		
R_{symm}	Balancing resistance	Symmetrierwiderstand		
Т	Temperature	Temperatur		
ΔT	Temperature difference	Temperaturdifferenz		
T _A	Ambient temperature	Umgebungstemperatur		
T _c	Case temperature	Gehäusetemperatur		
T _B	Capacitor base temperature	Temperatur des Gehäusebodens		
t	Time	Zeit		
Δt	Period	Zeitraum		
t _b	Service life (operating hours)	Brauchbarkeitsdauer (Betriebszeit)		

High voltage - 125 $^\circ\text{C}$

Symbol	English	German
V	Voltage	Spannung
V _F	Forming voltage	Formierspannung
V_{op}	Operating voltage	Betriebsspannung
V _R	Rated voltage, DC voltage	Nennspannung, Gleichspannung
Vs	Surge voltage	Spitzenspannung
X _c	Capacitive reactance	Kapazitiver Blindwiderstand
XL	Inductive reactance	Induktiver Blindwiderstand
Z	Impedance	Scheinwiderstand
Ζ _T	Impedance at temperature T	Scheinwiderstand bei Temperatur T
tan δ	Dissipation factor	Verlustfaktor
λ	Failure rate	Ausfallrate
ε ₀	Absolute permittivity	Elektrische Feldkonstante
ε _r	Relative permittivity	Dielektrizitätszahl
ω	Angular velocity; $2 \cdot \pi \cdot f$	Kreisfrequenz; $2 \cdot \pi \cdot f$

Note

All dimensions are given in mm.

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an EPCOS product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or lifesaving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available. The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.
- Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms of Delivery for Products and Services in the Electrical Industry" published by the German Electrical and Electronics Industry Association (ZVEI).

Important notes

7. The trade names EPCOS, CeraDiode, CeraLink, CeraPad, CeraPlas, CSMP, CSSP, CTVS, DeltaCap, DigiSiMic, DSSP, ExoCore, FilterCap, FormFit, LeaXield, MiniBlue, MiniCell, MKD, MKK, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, PQSine, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, SIP5D, SIP5K, TFAP, ThermoFuse, WindCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.epcos.com/trademarks.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Aluminium Electrolytic Capacitors - Radial Leaded category:

Click to view products by EPCOS manufacturer:

Other Similar products are found below :

NRELS102M35V16X16C.140LLF ESRG160ETC100MD07D 227RZS050M 335CKR250M 476CKH100MSA 477CKR100M 107CKR010M 107CKH063MSA RJH-25V222MI9# RJH-35V221MG5# B43827A1106M8 RJH-50V221MH6# EKYA500ELL470MF11D B41022A5686M6 ESRG250ELL101MH09D EKMA160EC3101MF07D RJB-10V471MG3# ESMG160ETD221MF11D EKZH160ETD152MJ20S RJH-35V122MJ6# EGXF630ELL621ML20S RBD-25V100KE3#N EKMA350ELL100ME07D ESMG160ETD101ME11D ELXY100ETD102MJ20S EGXF500ELL561ML15S EKMG350ETD471MJ16S 35YXA330MEFC10X12.5 RXW471M1ESA-0815 ELXZ630ELL221MJ25S ERR1HM1R0D110T LPE681M30060FVA LPL471M22030FVA HFE221M25030FVA LKMD1401H221MF B41888G6108M000 EKMA160ETD470MF07D UHW1J102MHD6 EKMG500ETD221MJC5S LKMK2502W101MF LKMD1401H181MF LKMI2502G820MF LKMJ2001J122MF LKML2501C472MF LKMJ4002C681MF 450MXH330MEFCSN25X45 450MXK330MA2RFC22X50 63ZLH560MEFCG412.5X30 ELH2DM331025KT ELH2DM471P30KT