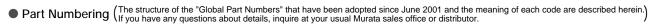

R-NETWORK



Cat.No.N16E-9

CONTENTS

2	
3	

Part Numbering —	2	2
SIP Resistor Network Features / Applications	3	
1 Standard Resistor Network RGLD Series	4	
2 Shrink Pitch Resistor Network RGLE Series	6	3
3 High-Power Isolated Resistor Network RGSD Series	8	3
4 R/2R Ladder Resistor Network RGSD Series	10	
5 Custom Resistor Network Series	12	4
Performance and Test Method	14	4
Packaging	15	
Minimum Quantitiy	15	-
①Caution / Notice	16	5
ISO9000 Certifications —	17	

R Network

(Global Part Number)
X, Y, L Circuit RG LD 8 X 103 J

Custom Circuit RG LD 8 A

1234

●Product ID

Product ID	
RG	R Networks

2Structure

Code	Structure
LD	Terminal Pitch : 2.54mm, Height : 5.0mm max.
LE	Terminal Pitch: 1.78mm, Height: 5.0mm max.
SD	Terminal Pitch : 2.54mm, Height : 6.5mm max.
HD	Terminal Pitch: 2.54mm, Height: 9.0mm max.

3Number of Element

Code	Number of Element	
8	1 or 2 digits shows the number of element.	

4Circuit

Code	Circuit
Х	Pull-up, Pull-down Circuit
Υ	Isolated Circuit
Z	Double Terminator Circuit
М	Divider Circuit
L	R/2R Ladder Circuit
Α	Custom Circuit

Expressed by three figures. The unit is ohm (Ω) . The first and second figures are significant digits, and the third figure expresses the number of zeros which follow the two figures.

Ex.)	Code	Nominal Resistance
	150	15Ω
	103	10kΩ

• Resistance Tolerance Z, M Circuit : R_A L Circuit : Impedance Tolerance

Code	Resistance Tolerance
J	±5%
G	±2%(22Ω min.)

Nominal Resistance (Z, M Circuit : R_B)

Expressed by three figures. The unit is ohm (Ω) . The first and second figures are significant digits, and the third figure expresses the number of zeros which follow the two figures.

Ex.)	Code	Nominal Resistance
	150	15Ω
	104	100kΩ

If R_A and R_B values are the same, $\ \ \ \ \$ and $\ \ \ \ \$ remain blanks, and the corresponding code is omitted.

8 Resistance Tolerance (Z, M Circuit : R_B)

Code	Resistance Tolerance
J	±5%
G	±2%(22Ω min.)

Packaging

Code	Packaging
T1	All-Pin Taping
T2	3pins Taping

10Design No.

Code	Design No.
1234	Expressed by four figures

SIP Resistor Network Features/Applications

These high quality SIP resistor networks are designed using Murata's years of experience in thick film resistor technology. Their reliability is assured by a massproduction system that puts quality first.

■Features

1. Various Types

Murata's R-networks are designed to meet a wide variaty of resistor needs. Three types are available: standard low profile (approximately the same height as ICs, 5mm max.), middle profile, and high profile.

Series Name

Pin Pitch			
	2.54mm	1.78mm	Remarks
Height			
9.0mm max.	RGHD	_	Custom Series
6.5mm max.	RGSD	_	Custom Series
5.0mm max.	RGLD	RGLE	Standard Series

2. Standard Circuits

Murata offers the circuits shown below in the standard series; they are frequently used in digital circuits and equipment. Also, Murata produces various custom products to fully meet the customer's needs.

3. Compact Design

Compact design allows these resistors to be used in applications requiring high density insertion. An added feature of the 2.54mm pitch types enables insertion along rows and lines of holes with the same pitch.

4. Automatic Insertion

To meet demands to decrease assembly and labor costs, Murata offers two taping types. This allows the products to be automatically inserted in the same way as general radial taping parts. Please note that some automatic insertion machines are not supported.

Standard Circuits

Type Code	Х Туре	Y Type	М Туре	Z Type	L Type (RGSD)
Circuit	***************************************		\&\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	₩₩₩₩R1	R R R R R R R R R R

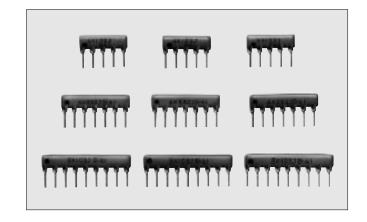
■Applications

Home Electronics

Color TVs, VCRs, audio equipment, home appliances containing microcomputers (air-conditioners, fan-heaters, washing machines, refrigerators, microwave ovens, etc.).

Industrial Equipment

Computer and peripheral devices, office supplies (printers, word-processors, plain paper copiers, electric typewriters, etc.) Communication equipment (telephones, digital exchanges, communication systems, etc.)

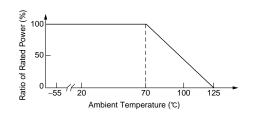

Programmable controllers, Measuring equipment, Car electronics and other types of equipment.

Standard Resistor Network RGLD Series

■Features

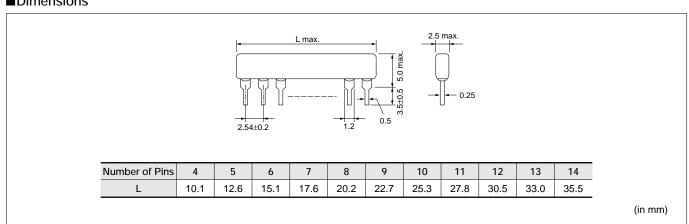
- 1. The popular RGLD series has standard low profile dimensions equivalent to those of an IC (height : 5.0mm max.; pitch : 2.54mm).
- 2. Available in tape packaging to meet assembly cost reduction demands.
- 3. Products of this series are used in standard digital circuits.

■Standard Circuits

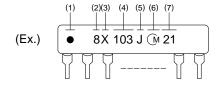

Circuit Type	Pull up, Pull down	Isolated	Double Terminator	Divider
Type Code	Х Туре	Y Type	Z Type	М Туре
Circuit	$R_1 \geqslant R_2 \geqslant R_3 \geqslant R_n \geqslant$ $1 \qquad 2 \qquad 3 \qquad 4 \qquad n+1$ $R_1 = R_2 = \cdots = R_n$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$R_1 \geqslant R_2 \geqslant R_2 \geqslant R_1 \geqslant R_2 \geqslant R_2 \geqslant R_1 \geqslant R_2 \geqslant R_2 \geqslant R_2 \geqslant R_1 \geqslant R_2 $
Number of Elements (Pins)	n=3 to 12 (4 to 13)	n=3 to 7 (6 to 14)	n=8 to 18 (even number) (6 to 11)	n=6 to 12 (even number) (7 to 13)

[•] Products with other circuits and other element numbers are also available as custom parts.

■Rating


■Rating						
	RGLD [®] X Type	RGLD [®] Y Type	RGLDnM Type	RGLD [®] Z Type		
Power Rating Each Resistor *1	1/8W	1/8W	1/8W	1/8W		
Total Rated Power	1/8W×Number of elements (n)	1/8W×Number of elements (n)	1/8W×Number of elements (n)	1/8W×Number of elements (n) ×0.6		
Rated Voltage *2	Rate	ed voltage (V) =√Power rating	(W) XNominal resistance valu	e (Ω)		
Standard Resistance		E-12 series*3				
Resistance Range		10(Ω) to 1MΩ				
Resistance Tolerance*5		J: ±5%, G: ±	-2% (22Ωmin.)			
Temp.Coeff.of Resistance	±200ppm/°C					
Max. Operating Voltage	100V					
Operating Temperature		—55 to	+125°C			

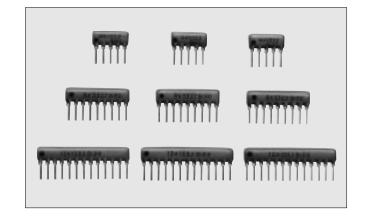
*1 Derating Curve
The rated power per element and the total rated power are derated according to the following curve.



- *2 When rated voltage exceeds the max. operating voltage, the max. operating voltage shall be regarded as the rated voltage.
- 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82
- *4 Standard Resistance Value for Z type (Ω)
- Ra/R_B=180/390, 220/330, 330/390, 330/470
- *5 Resistance tolerance : $\pm 1\%$, T.C.R : ± 100 ppm/°C is also available.

■Dimensions

\blacksquare Marking


- (1) Pin 1 identification
- (2) Number of Resistors (3) Type (Circuit) Designation
- (4) Nominal Resistance Value (3 digits)
- (5) Resistance Tolerance
- (6) Manufacturer's Code
- (7) Date Code (Year, Month)

muRata

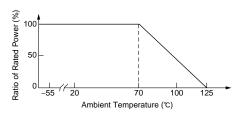
Shrink Pitch Resistor Network RGLE Series

■Features

- 1. The RGLE series comprises standard low profile R-networks with dimensions equivalent to those of a shrink pin pitch IC (height: 5.0mm; pitch: 1.78mm).
- 2. Equivalent dimensions to shrink pin pitch IC facilitates PCB pattern design and enables high density insertion.

■Standard Circuits

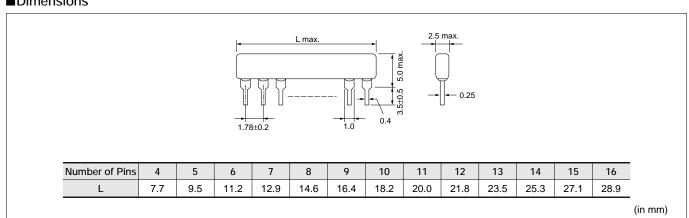
Circuit Type	Pull up, Pull down	Isolated	Divider
Type Code	Х Туре	Ү Туре	М Туре
Circuit	$R_1 \stackrel{\textstyle >}{_{\textstyle \sim}} R_2 \stackrel{\textstyle >}{\underset{\textstyle \sim}} R_3 \stackrel{\textstyle >}{\underset{\textstyle \sim}} R_0 \stackrel{\textstyle >}{\underset{\textstyle \sim}}$ $1 2 3 4 n+1$ $R_1 = R_2 = \cdots = R_0$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Number of Elements (Pins)	n=3 to 15 (4 to 16)	n=3 to 8 (6 to 16)	n=6 to 12 (even number) (7 to 13)

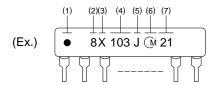

[•] Products with other circuits and other element numbers are also available as custom parts.

■Rating

Rating						
	RGLE [®] X Type	RGLE [®] Y Type	RGLEnM Type			
Power Rating Each Resistor *1	1/10W	1/10W	1/10W			
Total Rated Power		1/10WXNumber of elements (n)				
Rated Voltage *2	Rated voltage	Rated voltage (V) = $\sqrt{\text{Power rating (W)} \times \text{Nominal resistance value }(\Omega)}$				
Standard Resistance	E-12 series *3					
Resistance Range	10 Ω to 1M Ω					
Resistance Tolerance *4	J : ±5%, G : ±2% (22Ωmin.)					
Temp. Coeff. of Resistance	±200ppm/°C					
Max. Operating Voltage	100V					
Operating Temperature	−55 to +125°C					

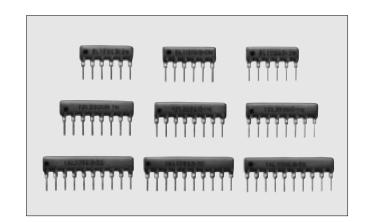
*1 Derating Curve


The rated power per element and the total rated power are derated according to
the following curve.


- *2 When rated voltage exceeds the max. operating voltage, the max. operating voltage shall be regarded as the rated voltage.
- 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82
- 33, 39, 47, 56, 68, 82 *4 Resistance tolerance : ±1%, T.C.R : ±100ppm/°C is also available.

■Dimensions

 \blacksquare Marking


- (1) Pin 1 identification
- (2) Number of Resistors (3) Type (Circuit) Designation
- (4) Nominal Resistance Value (3 digits)
- (5) Resistance Tolerance
- (6) Manufacturer's Code
- (7) Date Code (Year, Month)

muRata

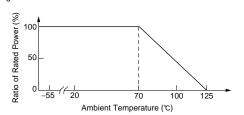
High-Power Isolated Resistor Network RGSD Series

■Features

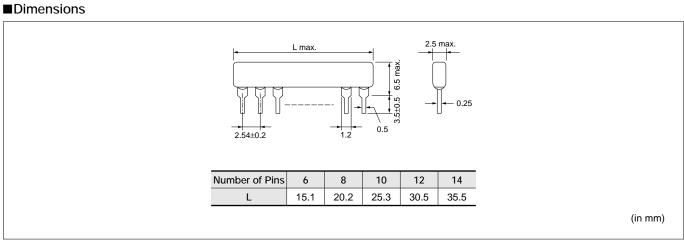
- 1. Y type is isolated circuit type. And Y type is used as current limiting resistor, level translating resistor.
- 2. The RGSD series (height : 6.5mm max.; pitch : 2.54mm) is high-power resistor network.
- 3. Available in the tape packing to meet assembly cost reduction demands.
- 4. An added feature of the 2.54mm pitch types enables insertion along rows and lines of holes with the same pitch.

■Standard Circuits

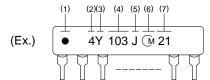
■Standard (Circuits				
Circuit Type	Isolated	Isolated		Isolated	
Type Code	RGSD3Y Type	RGSD4	Y Type	RGSD5Y Type	
Circuit	R ₁ R ₂ R ₃ WW	R ₁ R ₂ W	R ₃ R ₄ W	R ₁ R ₂ R ₃ R ₄ R ₅ W W W W W W W W W W W W W W W W W W W	
Circuit Type	Isolated			Isolated	
Type Code	RGSD6Y Type			RGSD7Y Type	
Circuit	R ₁ R ₂ R ₃ R ₄ W W W W W W W W W W W W W W W W W W W	Rs Rs WW 9 10 11 12	R ₁ R ₂ W	Rs R4 Rs R6 R7 W W W W W W W W W W W W W W W W W W	


[•] Products with other circuits and other element numbers are also available as custom parts.

■Rating

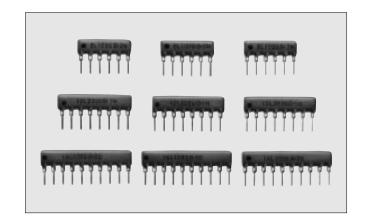

■ Rating						
	RGSD3Y	RGSD4Y	RGSD5Y	RGSD6Y	RGSD7Y	
Power Rating Each Resistor *1			1/4W			
Total Rated Power		1/4	WXNumber of elements	(n)		
Rated Voltage *2		Rated voltage (V) = \sqrt{F}	Power rating (W) ×Nomin	al resistance value (Ω)		
Standard Resistance		E-12 series *3				
Resistance Range			10 Ω to 1M Ω			
Resistance Tolerance *4		J : ±5%, G : ±2% (22Ωmin.)				
Temp. Coeff. of Resistance	±200ppm/°C					
Max. Operating Voltage	100V					
Operating Temperature			−55 to +125°C			

*1 Derating Curve


The rated power per element and the total rated power are derated according to the following curve.

- $\ensuremath{^{*}2}$ When rated voltage exceeds the max. operating voltage, the max. operating voltage shall be regarded as the rated voltage.
- *3 E-12 Standard Values
- 10, 12, 15, 18, 22, 27,
- 33, 39, 47, 56, 68, 82
- *4 Resistance tolerance : $\pm 1\%$, T.C.R : ± 100 ppm/°C is also available.

■Marking


- (1) Pin 1 identification
- (2) Number of Resistors
- (3) Type (Circuit) Designation(4) Nominal Resistance Value (3 digits)
- (5) Resistance Tolerance
- (6) Manufacturer's Code (7) Date Code (Year, Month)

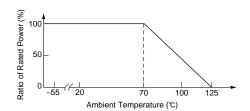
muRata

R/2R Ladder Resistor Network RGSD Series

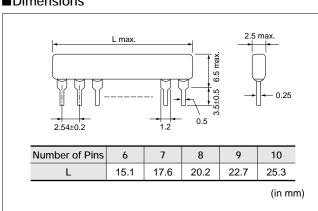
■Features

- 1. These high performance R/2R ladder R-networks enabled by thick film technology have a maximum of 8 bits.
- 2. The linearity of RGSD series R/2R ladder R-networks is guaranteed. They have the performance of $\pm 1/2$ LSB.
- This series has a compact design (height: 6.5mm) and is used in AD/DA converters in a variety of digital circuits and equipment.

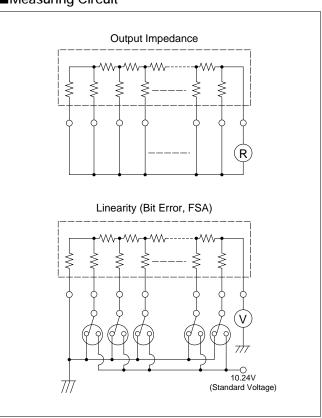
1

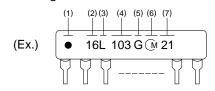

■Standard Circuits

■Standard (Circuits			
Circuit Type	4Bit R/R2 Ladder Circuit	5Bit R/R2 La	ndder Circuit	6Bit R/R2 Ladder Circuit
Type Code	RGSD8L Type	RGSD1	OL Type	RGSD12L Type
Circuit	\$2R \$2R \$2R \$2R \$2R \$0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 2 3		R R R R R S S S S S S S S S S S S S S S
Circuit Type	7Bit R/R2 Ladder Circu	uit	8Bit R/R2 Ladder Circuit	
Type Code	RGSD14L Type		RGSD16L Type	
Circuit	\$\frac{1}{2}R\$ \$\frac		\$\frac{1}{2}R\$ \$\frac{2}{2}R\$ \$\frac	


■Rating								
		RGSD8L	RGSD10L	RGSD12L	RGSD14L	RGSD16L		
Power Rati	ng Each Resistor *		1/32W					
Total Rate	d Power		1/	32W×Number of elemen	ts			
Rated Volt	age		Rated voltage (V) = $\sqrt{\text{Power rating (W)} \times \text{Nominal resistance value }(\Omega)}$					
(R) Standa	rd Resistance	10, 20, 25, 50 Series						
(R) Resista	nce Range	100 Ω to 100k Ω						
Output Imp	edance Tolerance			G: ±2%				
Linearity	Bit Error			±1/2 LSB				
Linearity	Full Scale Accuracy	±3.12%	±1.56%	±0.78%	±0.39%	±0.20%		
Temperature	Output Impedance	±200ppm/°C						
Coefficient	Bit Voltage	±50ppm/°C						
Operating	Temperature		−55 to +125°C					

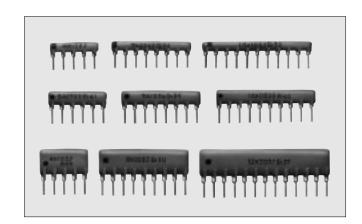
* Derating Curve


The rated power per element and the total rated power are derated according to


■ Dimensions

■Measuring Circuit

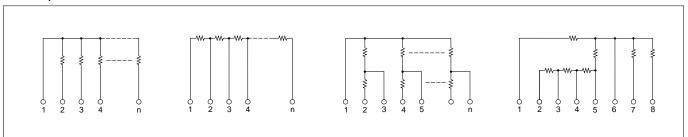
■Marking


- (1) Pin 1 identification
- (2) Number of Resistors
- (3) Type (Circuit) Designation
- (4) Nominal Resistance Value (3 digits)
- (5) Impedance Tolerance
- (6) Manufacturer's Code (7) Date Code (Year, Month)

muRata

Custom Resistor Network Series

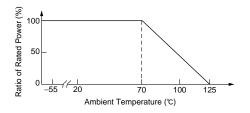
■Features


- 1. The profiles of custom resistor network series products range from high profile (9.0mm) to low profile (5.0mm). All R-network needs can be accommodated.
- 2. High accuracy performance on resistance tolerance, temperature coefficient etc, is available with high technology and high grade materials.
- 3. Also, on the relative precision of the performance between resistor elements, the high accuracy is available.

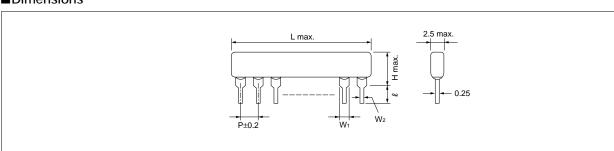
■Standard Series

Series Name	RGHD Series	RGSD Series	RGLD Series	RGLE Series
Dimensions (in mm)	9.0 max.	9; 0±9; 0; 0±9; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0;	3.54±0.5	3.0±0.5 3.0±0.
(in mm)				
Standard No. of pins	4 to 14	4 to 14	4 to 14	4 to 16

■Example Custom Circuits


■Rating

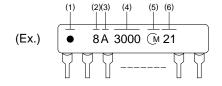
■Raung					
	RGHD Series	RGSD Series	RGLD Series	RGLE Series	
Power Rating Each Resistor *1	to 1/2W	to 1	/4W	to 1/8W	
Total Rated Power *1	1/5X(Number of pins-1)W	1/8×(Numbe	er of pins-1)W	1/16×(Number of pins-1)W	
Rated Voltage *2		Rated voltage (V) :	=√Power rating (W) ×No	ominal resistance value (Ω)	
Resistance Range		10 Ω to 10M Ω			
Resistance Tolerance	D:=	D : $\pm 0.5\%$,(100 Ω to 100k Ω), F : $\pm 1\%$,(47 Ω to 220k Ω), $\pm 2\%$ (22 Ω Over), J : $\pm 5\%$			
Resistance Value Ratio		±0.5%, ±1%, ±2% (Per customer's specifications)			
Temp.Coeff.of Resistance	±200ppm/°C (±100ppm/°C is also available)				
Max. Operating Voltage	to 500V				
Operating Temperature	−55 to +125°C				


^{*1} Derating Curve

The rated power per element and the total rated power are derated according to the following curve.

*2 When rated voltage exceeds the max. operating voltage, the max. operating voltage shall be regarded as the rated voltage.

\blacksquare Dimensions

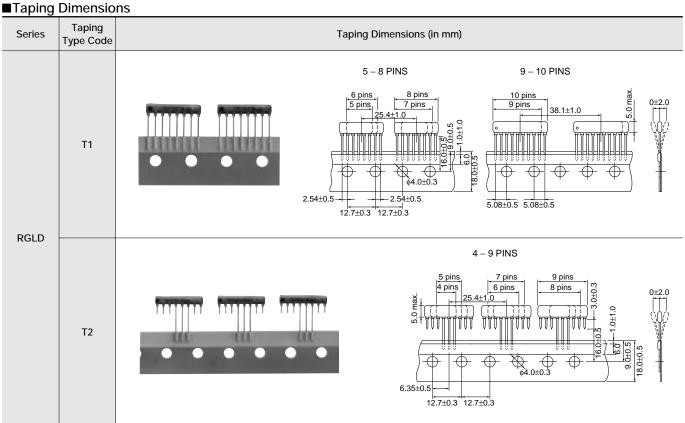

Series	RGHD	RGSD	RGLD	RGLE		
Н	9.0	6.5	5.0	5.0		
l	3.5±0.5					

Dimension Series	Р	W1	W2	
RGLE	1.78	1.0	0.4	
Others	2.54	1.2	0.5	

Nu Series	imber of Pins	4	5	6	7	8	9	10	11	12	13	14	15	16
	RGLE	7.7	9.5	11.2	12.9	14.6	16.4	18.2	20.0	21.8	23.5	25.3	27.1	28.9
L	Others	10.1	12.6	15.1	17.6	20.2	22.7	25.3	27.8	30.5	33.0	35.5	1	_

(in mm)

■Marking

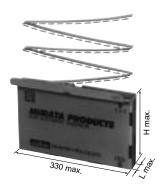

- (1) Pin 1 identification
- (2) Number of Resistors
- (3) Type (Circuit) Designation
- (4) Murata's design No.
- (5) Manufacturer's Code(6) Date Code (Year, Month)

Performance and Test Method

	Test Item	Performance				Test	Method		
			Based on JIS C 5202 5.1. Maximum applied voltage is shown in the table below.						
			Nominal Resistance Range(Ω) Max. Applied Voltage (V) <100 0.3						
DC R	esistance value	Within the specified Value	100≦R<1k				1	_	
DC K	esistance value	within the specified value		1k≦R<10k			3	_	
			10k≦R<100k 100k≦R<1M			0 25	_		
				≥1M			0	_	
						culation shall be	made with the	or over 30 minu he formula showi	tes at each stage a below.
			Stage	Temp.°C		Rema		<u> </u>	
			1 2	20±5 −55±3	Sta	andard temp. or	n low-temp. s	ide	
			3	20±5	Sta	ndard temp. on	high-temp s	side	
	erature	Within ±200nnm/°C	4	125±3	Ota	naara tomp. on	riigii tomp. c		
Coefficient of Resistance		Within ±200ppm/°C	R : Actu R ₀ : Actu t : Actu	ual measured ual measured ual measured ual measured	resistar value o value o	nce value(Ω) at nce value(Ω) at f test temperature f standard temperature $\times \frac{1}{t-t_0} \times 1$	t₀ ℃ ure (℃) perature (℃)		
Short Time Overload No noticeable abnormalities in appearance. $\Delta R: \mbox{Within} \pm 1.0\%$		Apply 2.5 times the rated voltage for 5 seconds to each resistor in the network, one at a time. Maintain at room temperature for 30 minutes after remove the voltage, then measure.							
Terminal Strength	Pull Test	There shall be no broken or loose	Fix the sample body and apply a load of 10N gradually to the pin in the axial direction. Maintain the force for 10 seconds.						
Tem	Bend Test	pins.				tical direction a ilar operation in			ion under applying
Resistance to damage nor not appearance.		There shall be neither mechanical damage nor noticeable change in appearance. ΔR: Within ±0.5%	Immerse the pin in melted solder at 260±5°C up to the level of the seating plane of pin f 10±1 second and raise. Then maintain at room temperature for over 1 hour and measure.						
		Over 95% of the immersed part of the pins is covered with new solder.	Immerse the pin in a flux comprising methanol and resin (weight ratio 25%) up to the level the seating plane of pin for 5−10seconds. Then, immerse in melted solder at 235±5°C f 2±0.5 second and raise slowly.						
		There shall be no mechanical				er repeating the	-	own in the table	below, maintain at
	perature	damage.	Stag	e 1		2	3	4	
Cycling		ΔR : Within ±0.5%	Temp.	(℃) —55	±3	Room Temp.	125±2	Room Temp.	
			Time (n	nin.) 30)	2 to 3	30	2 to 3	
Humidity		There shall be no noticeable abnormalities in appearance. ΔR: Within ±2.0%	Maintain without load at a constant temperature 40±2℃ and const 1000±⁴8 hours. Remove and maintain at room temperature for ov						
Humidity Load There shall be no noticeable abnormalities in appearance. ΔR : Within $\pm 2.0\%$		abnormalities in appearance.	Apply the rated voltage intermittently, 1.5 hours on and 0.5 hours off in a chamber at a constant temperature of 40±2°C and constant humidity of 90−95% for 1000±⁴8 hours. Remove and maintain at room temperature for over 1 hour, then measure.						
There shall be no noticeable abnormalities in appearance. ΔR: Within ±2.0%		Apply the rated voltage intermittently, 1.5 hours on and 0.5 hours off in a high-temperature chamber at 70±3℃ for 1000± ⁴⁸ hours. Remove and maintain at room temperature for over 1 hour, then measure.							

Packaging

- 1. R-networks are available in two types of taping: 3-pin taping and all-pin taping.
- 2. 3-pin taping type is applicable to automatic insertion equivalent to 5mm pitch radial taping parts. The tips of untaped terminals are shaped by a V-cut for high accuracy insertion.


■Standard Ammo Pack Package Quantity

1000pcs./case

■Package and Marking

• H, L (Height and Length)

	0 7		
Type	Number of pins	Н	L
T1	5 to 8	200	40
'''	9 to 10	290	40
T2	4 to 9	210	45
			(in mm)

■Minimum Quantity 1000pcs.

⚠Caution/Notice

■ ① Caution

Use within rated voltage
To avoid resistor burning or breakdown, do not use
beyond the rated voltage calculated by taking the square
root of the product or rated power and nominal resistance
value.

■Notice

- Handling after mounting to PCB
 Do not bend the product after mounting and soldering the product. If subjected to mechanical stress, the resistor may become damaged.
- Confirmation of resistor operation in application Ensure proper performance of the product in your application.
- 3. Environmental conditions

 Do not use or store the product in locations containing corrosive gasses (Cl₂, H₂S, NH₃, SO₂, NO_x, etc.) or having such high humidity as will dew as the product's resin coating does not form a perfect seal.

ISO 9000 Certifications

Manufacturing plants of these products in this catalog have obtained the ISO9002 quality system certificate.

Plant	Certified Date	Organization	Registration No.	
Kanazu Murata Manufacturing Co., Ltd.	July. 1. 1998	UL*	A6734	

^{*} UL : Underwriters Laboratories Inc.

⚠ Note:

1. Export Control

(For customers outside Japan)

No muRata products should be used or sold, through any channels, for use in the design, development, production, utilization, maintenance or operation of, or otherwise contribution to (1) any weapons (Weapons of Mass Destruction (nuclear, chemical or biological weapons or missiles) or conventional weapons) or (2) goods or systems specially designed or intended for military end-use or utilization by military end-users. For customers in Japan

For products which are controlled items subject to the "Foreign Exchange and Foreign Trade Law" of Japan, the export license specified by the law is required for export.

- 2. Please contact our sales representatives or product engineers before using the products in this catalog for the applications listed below, which require especially high reliability for the prevention of defects which might directly damage a third party's life, body or property, or when one of our products is intended for use in applications other than those specified in this catalog.
- 1 Aircraft equipment
- 2 Aerospace equipment 3 Undersea equipment 4 Power plant equipment
- Medical equipment 6 Transportation equipment (vehicles, trains, ships, etc.)
- ® Disaster prevention / crime prevention equipment Traffic signal equipment Data-processing equipment
- Mapplication of similar complexity and/or reliability requirements to the applications listed above 3. Product specifications in this catalog are as of November 2001. They are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering. If there are any questions, please contact our sales representatives or
- 4. Please read rating and \(\textit{\Delta}\text{CAUTION}\) (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
- 5. This catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.
- 6. Please note that unless otherwise specified, we shall assume no responsibility whatsoever for any conflict or dispute that may occur in connection with the effect of our and/or a third party's intellectual property rights and other related rights in consideration of your use of our products and/or information described or contained in our catalogs. In this connection, no representation shall be made to the effect that any third parties are authorized to use the rights mentioned
- 7. No ozone depleting substances (ODS) under the Montreal Protocol are used in our manufacturing process.

http://www.murata.com/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Resistor Networks & Arrays category:

Click to view products by Murata manufacturer:

Other Similar products are found below:

CS6600552K000B8768 CSC06A0122K0GEJ CSC08A01470KGEK M8340105K1002FGD03 M8340106MA010FHD03

M8340107K1471FGD03 M8340108K1001FCD03 M8340108K2402GGD03 M8340108K3240FGD03 M8340108K3242FGD03

M8340108K3322FCD03 M8340108K4991FGD03 M8340108K6202GGD03 M8340109K2002FCD03 M8340109M4701GCD03 EXB
24N121JX EXB-24N330JX EXB-24N470JX EXB-A10E102J EXB-A10E104J 744C083101JTR EXB-U14360JX EXB-U18240JX EXB
U18390JX MDP1603100KGE04 PRA100I2-1KBWNW GUS-SS4-BLF-01-1002-G ACAS06S0830339P100 ACAS06S0830343P100

ACAS06S0830344P100 RM2012A-102/104-PBVW10 RM2012A-102503-PBVW10 RM2012A-502104-PBVW10 RM3216B-102302
PBVW10 L091S102LF ACAS06S0830341P100 ACAS06S0830342P100 ACAS06S0830345P100 EXB-14V300JX EXB-U14220JX EXB
U14470JX EXB-U18330JX EXB-V4N100JV EXB-V8V220GV PRA100I2-10KBWN PRA100I4-10KBWN CSC09A014K70JEK

M8340102M4701JAD04 M8340105K1002GGD03 M8340105M1001JCD03